用户名: 密码: 验证码:
AF-BAF工艺对养猪废水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽养殖业的飞速发展给社会带来物质财富和经济利益的同时,畜禽养殖废水所引起的环境污染问题也日趋严重。探索经济、高效的适合我国国情的养猪废水处理技术是当前水污染治理的热点和难点。针对养养猪废水化学需氧量(COD)、氨氮(NH_3-N)和悬浮物(SS)浓度高的特点,本试验采用厌氧生物滤池(AF)联合曝气生物滤池(BAF)作为处理工艺,研究其对废水中COD、NH_3-N和SS的去除效果,为养猪废水处理提供一种新的工艺。以来自陕西杨凌本香集团某养猪场的废水为研究对象,以COD、NH_3-N和SS浓度及去除率为测定指标。在AF、BAF反应器分别成功启动后,确定其最佳运行参数,并在此基础上研究AF-BAF工艺对废水COD、NH_3-N、SS的去除效果,主要结论如下:
     (1)养猪废水经AF-BAF工艺处理后,出水COD、NH_3-N、SS浓度均满足《畜禽养殖业污染物排放标准》(GB18596—2001)的要求,AF-BAF工艺对养猪废水具有良好的处理效果。AF-BAF系统对COD、NH_3-N、SS的总去除率分别为94.69%、87.72%、79.67%。
     (2)温度为30~35℃时,AF反应器经过89d启功成功,有机负荷可达到6.5kg/(m3·d),AF稳定运行时,对COD的去除率平均值为81.13%,对NH_3-N的去除率平均值为18.93%,进水COD浓度为5500~6500mg/L,NH_3-N浓度为380~460mg/L时,出水COD浓度为960~1308mg/L,NH_3-N浓度为290~380mg/L,具有启动快、处理效果稳定、抗冲击负荷能力强等优点。
     (3)温度为30~35℃时,AF反应器对COD的去除率最高,温度升高或降低都会引起COD去除率的下降。AF反应器的最佳水力停留时间(HRT)为18h,HRT低于18h时,COD去除率随HRT的延长而升高,HRT高于18h时,COD去除率增加不明显。
     (4)AF进水的pH值波动范围是7.02~8.26,平均pH值为7.66,出水pH波动范围是6.06~7.80,平均pH值为7.17,整个运行过程,反应器内pH较稳定,未出现酸化现象。
     (5)AF反应器中COD去除率随有机负荷的提升而升高,有机负荷从0.5提升到6.5kg/(m3·d)的过程中,COD去除率与进水有机负荷的关系满足y=3.5942x+56.271。最大负荷时COD去除率未出现下降,表明还未达到AF的最大处理能力。
     (6)AF反应器中发生厌氧氨氧化作用,对NH_3-N有一定的去除效果,去除率平均值为18.93%,稳定运行时进水NH_3-N浓度为380~460mg/L,出水NH_3-N浓度为290~380mg/L。
     (7)BAF反应器经25d成功启动,启动过程分启动阶段和负荷提升两个阶段。稳定运行时,BAF对COD的去除率平均值为77.38%,对NH_3-N的去除率平均值为86.42%。进水COD和NH_3-N浓度分别为960~1300mg/L、190~340mg/L,出水COD和NH_3-N浓度分别290~380mg/L、40~70mg/L。
     (8)BAF的最佳运行参数为:温度为25℃,气水比为7,HRT为10h。温度、气水比的提高和HRT的延长,都会使污染物得到充分的降解,COD和NH_3-N去除率上升。但当参数值超过其最佳值时,会引起导致运行效果的下降和能耗的增加。
     (9)BAF进水为AF出水,pH波动范围是6.06~7.80,平均pH值为7.17, BAF出水pH波动范围为7.03~8.11,平均pH值为7.46,整个运行过程,BAF反应器内pH较稳定,基本符合硝化过程及反硝化过程对pH值的要求。
The rapid development of Livestock and poultry breeding industry have provided socialmaterial wealth and economic benefit, but environmental pollutions caused by livestock andpoultry breeding waste water is becoming to be an increasingly serious problem at the sametime. Exploring an economic and effective piggery wastewater treatment technology whichsuits our national condition is the hot spot and difficulty of polluted water controlling. Thechemical oxygen demand (COD), ammonia (NH_3-N) and Suspended matter(SS)concentrations in piggery wastewater are high. A treatment process of anaerobic filter (AF)plus biological aerated filter (BAF) was used.The objective was to study the effect ofAF-BAF process on wastewater COD, NH_3-N and SS content. The results could provide anew technology for the treatment of livestock and poultry cultivation wastewater. Wastewaterfrom a pig farm of Ben xiang group in Shaanxi Yangling was studied. COD, NH_3-N and SSremoval rates were selected as determination standard. After starting the AF and BAF reactors,the optimum operational parameters were determined. Next, the AF-BAF system wasoperated under these optimum conditions to determine the COD, NH_3-N removal rates fromwastewater. The main conclusions are as follows:
     (1)The water quality indices(COD, NH_3-N, SS) of the effluent meet the DischargeStandard of Pollutants for Livestock and Poultry Breeding(GB18596—2001)after treatmentof AF-BAF. The process is effective for the treatment of piggery wastewater. On average, thetreatment process removed94.69%of the COD,87.72%of the NH_3-N and79.67%of the SS.
     (2)At30~35℃, theAF reactor required89days for start-up. Organic load forAF canreach6.5kg/(m3·d). When AF operate stable, the treatment process removed81.13%of theCOD and18.93%of the NH_3-N on average. The COD of the influent ranged from5500to6500mg/L and the NH_3-N concentration ranged from380to460mg/L. After treatment, theCOD of the effluent ranged from960to1308mg/L and the NH_3-N concentration rangedfrom290to380mg/L.
     (3)The optimum temperature for theAF was30~35℃. At30~35℃, the removal rate of COD is supreme. The increasing and decreasing of temperature can cause COD removalrate decline. The optimum hydraulic retention time (HRT) for the AF was18h. HRT <18h,the COD removal rate increased with HRT, when HRT>18h, the increase of COD removalrate was not significantly.
     (4)The influent pH value ranged form7.02to8.26inAF, the average is7.66. Theeffluent pH value ranged form6.06~7.80, the average is7.17.The pH value was stable in AFreactor during the whole operation process and acidification did not appear.
     (5)COD removal rate increased with organic load elevation inAF reactor. The removalrate of COD and organic loading meet the relationships: y=3.5942x+56.271, when organicload increased from0.5to6.5kg/(m3·d). The COD removal rate did not decline when AFreached the maximum load that showed the maximum capacity of AF has not reached.
     (6)Anaerobic ammonia oxidation occurs inAF reactor. The average removal rate ofNH_3-N is18.93%. Part of ammonia nitrogen depredated. When AF operate stable, the NH_3-Nof influent concentration ranged from380to460mg/L. After treatment, the NH_3-N ofeffluent concentration ranged from290to380mg/L.
     (7)BAF reactor required25days for start-up. When BAF operate stable, the treatmentprocess removed77.38%of the COD and86.42%of the NH_3-N on average. The COD of theinfluent ranged from960to1300mg/L and the NH_3-N concentration ranged from290to380mg/L. After treatment, the COD of the effluent ranged from190to340mg/L and the NH_3-Nconcentration ranged from40to70mg/L.
     (8)For the BAF, the optimum temperature was25℃, the optimum HRT was10and theoptimum gas to water ratio was7.Raise of temperature, gas water ratio and HRT can makethe pollutants depredate fully and COD and NH_3-N removal rate increase.But when theparameter values above the optimum value will cause decline of activated sludge andincreasing of energy consumption.
     (9)The influent pH value ranged form6.06to8.80in BAF, the average is7.17. Theeffluent pH value ranged form7.03~8.11, the average is7.46. The pH values were stable inBAF reactor during the whole operation process and basically meet the needs of nitrificationand denitrification.
引文
卞有生,金东霞.2004.规模化畜禽养殖场污染防治技术研究.中国工程科学,6(3):53~57
    蔡明凯,张智,焦世珺.2010.AF-人工湿地-生态塘工艺处理养殖废水.给水排水,36(2):65~68
    段焱,邓仕奎,朱春兰,胡晓梅,孙雅琴,侯麟.2010.悬浮填料SBR处理畜禽废水效果研究.安全与环境工程,17(4):9~12
    付志敏,张玉高,汪晓军.2012.厌氧滤池处理纺织印染废水的中试研究.环境工程学报,6(2):535~539
    高克强,高怀友.2004.畜禽养殖业污染物处理与处置.北京:化学工业出版社:1~20
    高廷耀.1998.水污染控制工程程(下).第一版.北京:高等教育出版社:180~182
    国家环保局《水和废水检测分析方法》编委会.1989.水和废水检测分析方法.北京:中国环境科学出版设,112~243
    贺延龄.1981.废水的厌氧生物处理.北京:中国轻工业出版社:21~35
    李锋,朱南文,李树平.1999.有氧条件同时硝化/反硝化的反应动力学模式.中国给水排水,15(6):58~60
    李文捷,卢少勇,程丽.2006.BAF系统中有机物对氨氮去除的影响研究.工业水处理,26
    (10):46~48
    李文君,蓝梅,彭先佳.2011.UV/H2O2联合氧化法去除畜禽养殖废水中的抗生素,33(4):25~32
    李秀萍.2009.城郊农村畜禽粪便和尸体污染及其危害.现代农业科技,1(14):250~252
    林伟华,蔡昌达.2006.CSTR-SBR工艺在畜禽废水处理中的应用.环境工程,21(3):13-15
    刘锋,吴建华,马三剑.2006.组合式厌氧滤池(UBF)处理柠檬酸生产废水.中国给水排水,22(8):63~65
    刘明轩,杜启云,王旭.2007.USR在养殖废水处理中的实验研究.天津工业大学学报,26(6):36~38
    刘雨,赵庆良,郑兴灿编著.2000.生物膜法污水处理技术,北京:中国建筑工业出版社:128~142
    骆世明.2002.香根草和风车草人工湿地对养猪废水氮磷处理效果的研究.应用生态学报,16(12):26~28
    纳丽萍.2008.生物接触氧化工艺处理生活污水填料性能试验研究.西安:长安大学:54~57
    彭里,王定勇.2003.养猪废水的生物处理技术及其效果.家畜生态,24(2):67~70
    彭武厚.1997.厌氧消化法处理养殖粪的研究.工业微生物,1(4):1~4
    区岳州,胡勇有.2005.氧化沟污水处理技术及工程实例.北京:北京北学工业出版:11~12
    全武刚,王继徽,刘大鹏.2002.高浓度氨氮废水的处理现状与发展.工业水处理,22(9):9~10
    沈耀良,王宝贞.1999.废水生物处理新技术理论与应用.中国环境科学出版社:157
    石利军,刘慧芳,郝建朝.2011.HBR反应器处理畜禽养殖废水实验研究.环境科学与技术,2011,34(1):148~151
    史云祥,阮文权,顾强.2004.同步硝化反硝化好氧颗粒污泥脱氮过程条件研究.江苏环境科技,17(2):18~20
    孙峰.2009.MBBR处理畜禽养殖场废水的实验研究.科学技术与工程,2009,9(2):482~485
    孙锦宜.2003.含氮废水处理技术与应用(第二版).北京:化学工业出版社,6~38
    孙晋刚,朱茂田,王彬.2008.UASB-A/O工艺处理玉米淀粉生产废水.中国给水排水,24(10):57~59
    孙振钩.2000.中国畜牧业环境污染问题亟待解决.饲料工业,21(4):4~5
    汪植三.1995.养殖舍粪便污水及废气净化的研究.农业工程学报,11(4):90~95
    王劲松,胡勇有.2001.曝气生物滤池填料的研究进展.工业用水与废水,2(5):7-9
    王守伟,祝明,赵燕,朱百泉,万波.2006.生物渗滤床处理养殖废水的技术经济性研究.农业工程学报.22(suppl):252~255
    王蔚知.2008.UASB/SBR/氧化塘工艺处理养猪废水.环境污染与治理,30(4):103~104
    王占生.1999.微污染水源饮用水处理[M].北京:中国建工出版社:11~14
    王兆军.2001.养殖污染有效防治途径探讨.中国人口资源与环境,11(2):72~74
    谢蓉.1999.上海市畜牧业污染控制与黄浦江上游水源保护.农村生态境,15(l):41~44
    谢勇丽,邓仕槐,段莎丽,肖德林.2007.UASB的启动及其对畜禽废水处理的试验研究.农业环境科学报,2007,26(增刊):423~426.
    徐金兰,王志盈,高峰.2003.有机负荷对ABR运行性能的影响.中国给水排水,9(10)1~5
    许峰,王锋雷,史惠祥.2010.BAF在印染废水深度处理的试验研究.水处理技术,2010,36(10):80~83
    闫立龙,张颖,任源、.2009.BAF净化尿素废水的启动特性研究.环境科学与技术,32(9):173~175
    颜智勇,吴根义,刘宇赜.2007.UASB/SBR/化学混凝工艺处理养猪废水.中国给水排水,23(14):66~68.
    颜智勇,吴根义,易浩.2007.UASB/SBR/化学混凝工艺处理养猪废水.中国给水排水,2007,23(14):66~68
    杨立.2003.厌氧滤池一好氧接触氧化法在啤酒废水处理中的应用.云南环境科学,22(3):145~146.
    杨丽芳,朱树文,高红武.2007.ABR厌氧/CASS好氧复合工艺处理养殖废水.中国给水排水,2007,23(8):62~65
    杨元青.2008,我国农村饮用水水质安全问题探析.山东农业大学学报:自然科学版,39(1):119~124.
    姚梅峰,方江敏,周兴求.2007.AF+BAF深度处理PCB生产废水的试验研究.环境科学与技术,2007,30(7):96~97
    张欣.2007.ASBR-SBR组合工艺处理畜禽养殖场废水的研究.重庆:重庆大学:11~32
    张波,史红钻,张丽丽.2005. pH厨余废物两相厌氧消化中水解和酸化过程的影响.环境科学学报,25(5)5:665~668
    张克强.2004.畜禽养殖业污染物处理与处置.北京:化学工业出版社:13~35
    张威,任玉芬,蒋胜韬.2009.浸没式MBR在养养猪废水处理中的应用.环境工程学
    报,2009,3(11):2005~2008
    张文艺,翟建平,郑钧,.2006.曝气生吗滤池污水处理工艺与设计.环境工程,24(2):9~13
    张文艺,翟建平,郑明东.2005.BAF工艺进行焦化废水研究.给水排水,2005,31(7):51~53
    赵雪莲,翟东会,白晓枫.2011.厌氧滤池-MBR工艺处理小规模乳制品废水.给水排水,37(2):62~64
    郑俊,吴浩汀编著.2005.曝气生物滤池工艺的理论与工程应用.北京:化学工业出版社,1~40
    郑武,谢晓丽,陈仁中.1998.广州市畜牧业废水排放与治理现状分析.农业环境与发展15(2):17~20
    朱杰.2008.高浓度养殖废水处理新工艺.学术动态,1(2):24~26
    朱杰,付永胜.2007.肉类加工废水生物脱氮工艺过程研究.成都:西南交通大学出版社:1~35
    朱杰,黄涛.2010.畜禽养殖废水达标处理新工艺.北京:化学工业出版社:24~25
    朱坷.2006.ASBR-SBR处理低温低浓度有机废水的试验研究.天津:天津大学:2006,34~50
    庄涛,张体祥,庞艳.2005.厌氧生物滤池—生物接触法治理酿造生产污水工程实例.环境科学与管理,30(4):89~92
    Abma W R, Schultz C E, Mulder J W.2007.Full scale granular sludge ANAMMOX process.Water SciTechnol,55(8/9):27~33
    Cintoli R.1995. Ammonium up take by zeolite and treatment in UASB reactor of piggery wastewater.Water science and technology,32(12):73~81
    Donalds M.1999. Controlling factors for simultaneous nitrification and denitrification in a two-stageintermittent aeration process to treating Domestic Sewage. Water Research.33(4):961~970.
    Fujishima A, Honda K.1972.Electrochemical photolysis of water at semiconductor electrode.Nature,238(5358):37~38
    Hyung Seok Yoo.1999. Nitrogen removal from synthetic wastewater by simultaneous nitrificationand denitrification (SND) via nitrite in a intermittently-aerated reactor. Water Research.33(1):145~154.
    Igor B, Bronislava H, Miloslav D.2002.The use of upflow anaerobic filter and an SBR for wastewatertreatment at ambient temperature.Water research,36:1084~1088
    Imai T, Ukita M, Liu J.1997.Advanced start-up of UASB reactors by adding of water absorbingpolymer. Wat Sci Tech,36(6):399~406.
    Jea Youl Joung, Hae Woo Lee, Hyeoksun Choi.2009.Influences of organic loading disturbances on theperformance of anaerobic filter process to treat purified terephthalic acid wastewater. Ioresource echnology,100(8):2457~2461
    Kuga P S., Nagaoha H, Ohgaki S.1982. Effect of turbulence on nitrifying bio-films at non-limitingsubstrate conditions, Wat.Res,26(10):1629~1638
    Mccarty D, Chen J. J, Slack D.2000. Full Scale Case Studies of a Biological Aerated Filter (BAF) forOrganics and Nitrogen Removal. Wat. Sci. Tech,41(4-5):1~4
    Natalia Quici, Maria E. Morgada, Gabriela Piperata, Paola Babay, Raquel T Gettar, Marta I Litter.2005. Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photoFenton processes. Catalysis Today,101(3-4):253~260
    Robert L.2000.Constructed wetlands folivestock wastewater management. Ecological Engineering,15:41~55
    Schmid M,Twaehtmann U,Klein M.2000.Moleeular evidenee forgenus level diversity of bacteriaeapable of catalyzing anaeroblc ammonium oxidation.Sys.APPI.Microbiol,23(l):93~106
    Strida A, Vande Graaf A A, Mulder A, Debrun P.1995.Anaerobic oxidation of ammonium is abiologically mediated Process. Applied and Envirorunental Mierobiology,61(4):124~1251
    Tschui M., Boller M., Gujer, W.1994.Tertiary Nitrification in Aerated Pilot Bio-filters. Wat. Sci.Tech,29(11):53~60
    Vande Graaf A A, Kuenen J G.1995.Anaerobic oxidation of ammonium is a biologically mediatedprocess. APPl Environ Mierobiol,61:1246~1251.
    Zeeman G, Methane P.1994. Roduetion/emission in storages for animal manure.Fertilizer research,37(3):207~211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700