用户名: 密码: 验证码:
普鲁兰多糖高产菌株Y68多糖发酵生产及其机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普鲁兰多糖(pullulan)是一种应用价值较高的微生物胞外多糖,除了普鲁兰多糖本身在农业、食品工业、制药工业和化妆品工业中具有重要用途外,经过化学改造的各种普鲁兰衍生物还是很重要的抗病毒、抗血栓、抗血凝固、抗肿瘤药物的工业原料。但由于现有工业化生产菌株产量低,实际应用就受到了很大的限制。根据国内外文献报道,现有的普鲁兰生产菌株主要是普鲁兰类酵母(Aureobasidium pullulans),其产量一般在3.0%-5.0%(w/v)左右,并且现已报导的产普鲁兰菌株发酵产生胞外多糖时容易产生色素,给产品的后处理带来极大的不便,随着发酵时间的进行,发酵液的pH不断下降,从而影响了胞外多糖的产生。因此,获得具有新特征和产量更高的普鲁兰生产菌株和研究这些菌株发酵最佳条件的工作就变得非常重要。
     目前有关A. pullulans产普鲁兰多糖的机理还了解很少,与普鲁兰合成相关的酶也鲜有报导。本研究主要利用生物化学方法测定了不同胞外多糖产量细胞中UDP-葡萄糖库的大小,有关的酶活性大小,以便了解UDP-葡萄糖库在真核微生物调节过量合成胞外普鲁兰中的作用,为进一步提高真核微生物胞外多糖的产量提供理论依据。这必将对普鲁兰多糖的工业化生产产生深远的意义。
     本实验室保存的菌种Y68在250mL摇瓶中发酵培养56h普鲁兰多糖产量可达52.47g/L。针对此菌株在发酵时的营养、初始pH、通气量和转速等条件的需求,我们在2L发酵罐中进行了发酵条件的研究,发现菌株Y68发酵产普鲁兰的最适条件为:葡萄糖碳源,初始pH7.0,最佳转速300rpm,最佳通气量为6.5 L/min。在此条件下,得到的普鲁兰最高产量为65 g/L。菌株Y68是目前所有酵母中普鲁兰产量最高的菌株。恒定pH对该菌株胞外普鲁兰多糖的生产同样有影响,最适生产恒定pH为6.0,但产量低于其在pH 7.0情况下的产量。在后面的研究中发现,胞内几种酶活力的差异可以解释该现象。经微生物常规方法鉴定以及分子生物学方法18S rDNA、ITS序列的克隆测序证实:Y68菌株应属Aureobasidium pullulans。
     为了确定胞外普鲁兰产量与胞内各酶活力水平间的关系,本文研究了不同培养条件、产不同量普鲁兰多糖情况下Y68菌株细胞中UDPG含量的变化以及在不同培养条件下细胞中普鲁兰多糖合成酶、葡萄糖基转移酶、UDPG焦磷酸化酶以及磷酸葡萄糖变位酶活力的差异。研究结果发现:
     1.研究Y68菌株在不同培养条件下(包括不同的pH、不同的碳源)和不同菌株在相同培养条件下胞外多糖产量以及其与细胞内UDPG含量的关系,结果发现:胞外普鲁兰多糖产量与细胞内UDPG含量成反比例关系,即胞外多糖量高的情况下胞内的UDPG含量反而低。反之多糖量高的情况下,胞内的UDPG含量反而较高。这一结果与乳酸菌中的情况恰好相反。
     2. Y68菌株在不同碳源培养基中培养,细胞内普鲁兰合成酶、葡萄糖基转移酶、UDPG焦磷酸化酶以及磷酸葡萄糖变位酶的酶活力都随胞外多糖产量的增加而升高,表明这些酶对胞外多糖生产有促进作用。Y68菌株在不同pH条件培养80小时结果发现,细胞中除普鲁兰合成酶活力有一个先升高后降低的过程外,其它酶都是逐渐升高后趋于稳定。总体看来这些胞内酶都对胞外普鲁兰多糖的累积有明显的促进作用。
     本研究纯化的Y68菌株细胞内葡萄糖基转移酶,其Native-PAGE表观分子量为350 kDa,而SDS-PAGE表观分子量为50.8 kDa。该酶的最适作用pH、温度分别为6.0、和40℃。化合物二硫苏糖醇(DTT)对酶有保护作用,而EDTA、碘乙酸和PMSF则对酶有明显的抑制作用。其对底物PNPG的Km值和Vmax分别为1.03 mmol/mL和1.107μg/min
Pullulan is a linear homopolysaccharide of glucose that is often described as anα-(1, 6) linked polymer of maltotriose subunits produced by strains of Aureobasidium pullulans. It can be produced by A. pullulans from a variety of carbohydrate such as glucose, hydrolyzed amylum, sucrose and glucose and so on. The pullulan has the characteristics of water-soluble, no-gelation, no-aging and without any toxicity. Biodegradable properties of pullulan, production from starch or other sugars and the characteristics mentioned above make pullulan be a promising material and be applied in numerous fields such as biomedicine, chemical industries, food industries, biotechnology and so on. Many products consisting of pullulan function as films, binders, adhesives, thickeners, viscosity improvers and coating agents
     Strain Y68, a high pullulan yield yeast strain kept in our laboratory, was identified using the routine method and molecular method. Results of 18S rDNA and ITS sequences showed that strain Y68 has 100% similarity to Aureobasidim pullulans and results of routine identification also indicate that physiological and biochemical characteristics of strain Y68 was identical with Aureobasidium pullulans. So strain Y68 was finally identified as Aureobasidium pullulans.
     To get the highest pullulan yield, it was very important to optimize the culture conditions for pullulan production by strain Y68. Effects of different initial pHs, constant pHs, carbon sources, agitation and aeration on pullulan production by strain Y68 were examined. It was found that the highest yield of pullulan was achieved when the yeast strain was grown in the medium with initial pH 7.0, agitation of 300 rpm and aeration of 6.5 L/min, containing glucose. Under these conditions, 65 g/L pullulan was yielded. Results of study on pullulan yield at constant pH showe that it was not necessary to keep broth pH at a constant level for pullulan yield.
     In order to better understand the correlation between some enzymes and pullulan yield in strain Y68, effects of different sugars and different pHs on UDP-glucose level, pullulan-related synthase,α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase activity in the cells of strain Y68 and UDP-glucose level in different pullulan-producing strains were examined. Our results demonstrate that the more pullulan was synthesized, the less UDP-glucose was left in the cells of Y68 and this phenomenon alsp happened in other pullulan-producing yeast strains which produced less pullulan. However, it was observed that the more pullulan was synthesized, the higher pullulan-related synthase activity was detected in the cells Y68. Therefore, high pullulan yield was related to low UDP-glucose level and high pullulan-related synthases activity in A. pullulans Y68. Furthermore, it was observed that more pullulan was synthesized, the higherα-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase activity were detected in the cells of Y68. Therefore, high pullulan yield is related to highα-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase activity in A. pullulans Y68 grown on different sugars.
     As a key enzyme in pullulan synthesis, glucosyltransferase in the cells of Y68 was purified and characterized. The results obtained in this study showed that the molecular mass of glucosyltransferase was 350 kDa on the Native-PAGE gel, but 50.8 kDa on the SDS-PAGE gel which indicated the enzyme was composed of several subunits. Study on the characteristic of enzyme showed activity of this enzyme was inhibited greatly by metal ion such as Hg~(2+), Mn~(2+), Ca~(2+) and so on. EDTA, PMSF, DTT and SDS also influenced the enzyme activity obviously,but only DTT can stimulate glucosyltransferase activity. The optimal pH for its activity was 6.0 and temperature was 40℃. Km and Vmax of this enzyme for PNPG were 1.03mmol/mL and 1.107μg/min, respectly.
引文
1. Adefo Eascalante et al., Activity of the enzymes involved in the synthesis of exopolysaccharide precursors in an overproducing mutant ropy strain of Streptomyces thermophilus, FEMS Microbiology Letters, 2002, 209: 289-293.
    2. Alban, S., Schauerte, A., Franz, G., Anticoagulant sulfated polysaccharides: part I: Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydrate Polymers, 2002, 47, 267-276.
    3. Alban S., Scharerte A., Franz G.. Anticoagulant sulfated polysaccharides:Part I. Synthesis and atructure-activity relationships of new pullulan sulfates. Carbohydr Polym. 2001, Norio N.S., Nishimura S.I., Akira E. et al.. I Preparation and characterization of water-soluble chitin phosphate. nt.J.Biol Macromol.1984, 6(1):53-54
    4. Augustin.J., Kuniak. L,Hudecova.D.(1997) Screening of yeasts and yeast-like organisms Aureobasidium pullulans for pullulan production Biologia.Bratislava 52,399-404
    5. Badr-Eldin. S.M.,El-Masry.H.G., Mohamad. F.H.A., Abd El-Rahman.O.A.,(1994)Polysaccharide production by Aureobasidium pullulans:factors affecting polysaccharide formation. World J.Microbiol.Bacteriol.10.423-426
    6. Bart Degeest et al., Correlation of activities of the enzymesα-phosphoglucomutase, UDP-galactose 4-epimerase and UDP-pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03, Applied and Environmental Microbiology, 2000, 66: 3519-3527.
    7. Bastin, D. A., Stevenson, G., Brown, P. K., Haase, A., & Reeves, P. R.(1993). Repeat unit polysaccharides of bacteria: A model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length.Molecular Microbiology, 7, 725–734.
    8. Bataille I., Huguet J., Muller G., et al.. Associative behaviour of hydrophobically modified carboxymethylpullulan derivatives. Int J of Biol Macromol.1997, 20(3):179-191
    9. Becker, A., Katzen, F., Puhler, A., Ielpi, L., Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol.1998, 50, 145-152.
    10. Behrens.U., Lohse.R.(1977) Investigations for the production of pullulan .Die Nahrung ,21,199-204
    11. Bender.H., Lehmann.J., Wallenfels.K.(1959)Pullulan, an extracellular glucan from Pullularia pullulans. Biochim.Biophys.Acta 36,309-316
    12. Bock, A.,Lechner, K., Huber, O.(1991). Aureobasidium pullulans strain, process for its preparation and use there of U.S. Patent 5,019,514.
    13. Bradley S. C., Abu-Baker M.S., Barbara M.M., Robert J.S.,(2004).Which morphological forms of the fungus Aureobasidium pullulans are responsible for pullulan production? FEMS Microbiology Letters. 232:225-228.
    14. Catley B. Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl. Microbiol., 1971, 22:641 - 649.
    15. Catley B J. Pullulan synthesis by Aureobasidium pullulans. In:Berkeley R C W,Gooday G W, Ellwood D C (ed.). Microbial polysaccharides and polysaccharases. London: Academic Press., 1979:69– 84.Catley,B.J.,
    16. Hutchison, A.(1981) Elaboratin of pullulan by spheroplasts of Aureobasidium pullulans, Trans.Br.Mycol.Soc.76.451-456.
    17. Catley, B.J.,McDowell.W(1982) Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium pullulans.Carbohydr.Res.153.79-86.
    18. Cately B.J., McDowell W. 1982, Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium pullulans. Carbohydr. Res., 103: 65 - 75.
    19. Cately B J. Pullulan, a relationship between molecular weight and fine structure. FEBS Microbial. Lett., 1970, 10 (3): 190 - 193.
    20. Catley, B.J. (1973) The rate of elaboration of the extracellular polysaccharide,pullulan, during growth of Pullularia pullulans. J. Gen.Microbiol. 78, 33-38.
    21. Catley, B.J.(1971) Utilization of carbon sources by Pullularia pullulans for the elatoration of extracellular polysaccharide. Appl.Microbiol.22.641-649
    22. Catley B.J.,Whelan W.J.Observations on the Structure of Pullulan.Archives of Biochemistry and Bio-physic,1971,143:138~142
    23. Cerning,J.,Bouillanne, C.,Desmazeaud, M.J.,and Landon, M.,(1998) Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol.Lett.10,255-260
    24. Cerning, J.(1995) Production of exopolysaccharides by lactic acid bacteria and dairypropionibacteria. Lait. 75,463-472
    25. Chahid, 2,Montet, D., Pina, M. and Graille, J., Effect of water activity on enzymatic synthesis of alkylglycosidase. Biotechnol.Lett. 1992,14:281-284
    26. Chi Z.M et al., Trehalose accumulation from Starch by Saccharomycopsis fibuligera sdu, Enzyme and Microbiol Technology, 2001, 28: 240-245.
    27. Chi Zhenming and Zhao Shuangzhi, 2003.Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast, Enzyme and Microbial Technology, 33, 206-211.
    28. Chi,Z. Liu, J. Ji,J. Meng, Z. Enhanced conversion of starch to trehalose by a mutant of Saccharomycopsis fibuligera sdu, Journal of Biotechnology, 2003,102:135– 141.
    29. Chung. H.J., Kim, Y.J., Chai, Y.K., Hwang, Y.K. and Park.Y.S., Purification and Characterization of UDP-glucose:tetrahydrobiopterin glucosyltransferase from Synechococcas sp, PCC7942. Biochimica et Biophysicalo Acta. 2000,1524:183-188
    30. Cullen, D., Yand.V., Jeffries, T., Bolduc, J.,Andrews, J.H.(1991). Genetic transformation of Aureobasidium pullulans. J. Biotechnol. 21, 283-288.
    31. Dace R., Mcbride E., Brooks K. et al.. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thromb Res.1997, 87(1):113-121
    32. Degeest, B., B. Janssens, and L. De Vuyst. Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: production kinetics, enzyme activities, and EPS yields. J. Appl. Microbiol.
    33. Degeest, B., and L. De Vuyst. 2000. Correlation of activities of the enzymesα-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 66:3519–3527.
    34. De Vuyst, L. and Degeest, B.(1999)Heteropolysaccharides from lactic acid bacteria.FEMS Microbiol.Rev.23,153-177
    35. De Vuyst, L., Vanderveken, F., Ven, S.and Degeest,B.(1998) Prodution by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J.Appl.Microbiol.84,1059-1068
    36. Escalante, A., Wacher-Rodarte, C., Garcia-Garibay, M. and Farres, A.(1998) Enzymesinvolved in carbohydrate metabolism and their role on exopolysaccharide procuction in Streptococcus thermophilus. J.Appl.Microbiol.84,108-114.
    37. Finkleman, M.A.J., Zajic, J.E.,Vardanis, A.(1980)New method of procucing protoplasts of Aureobasidium pullulans. Appl. Environ. Microbiol. 39, 923-925.
    38. Finkelman.M.A.J.,Vardanis, A.(1982b) Simplified microassay for pullulan synthesis. Appl. Environ. Microbiol. 43,483-485
    39. Finkelman.M.A.J.,Vardanis, A.(1982a) Pullulan elaboration by Aureobasidium pullulans protoplasts. Appl.Environl.Microbiol.44,121-127
    40. Forrest, H.S., Van Baalen, C., Microbiology of unconjugated pteridines. Annu. Rev. Microbiol. 1970, 24:91-108
    41. Forrest, H.S., Van Baalen C., Mayers, J., Arch.Biochem. Biophys. 1958, 78:95-99
    42. Frana G., Alban S.. Structure-activity relationship of antithrombotic polysaccharide derives. Int. J.Biol.Macromol. 1995, 17(6)
    43. Gadd, G.M.,Cooper, L.A.(1984) Strain and medium-related variability in the yeast-mycelial transition of Aureobasidium pullulans. FEMS Microbiol.Lett. 23,47-49.
    44. Gibbs,P.A. R.,and Seviour J. Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? Appl Microbiol Biotechnol,1996,46: 503-510
    45. Gibbs, P.A.R. and Seviour, R.J. (1996) Pullulan. In: Polysaccharides in Medicinal Applications (Dimitriu, S., Ed.), pp. 59-86. Marcel Dekker,New York.
    46. Griffin, A.M., Morris, V.J. and Gasson, M.J.(1996) The cpsABCDE genes involved in polysaccharide production in Streptococcus salivarius ssp. Thermophilus stain NCFB 2393. Gene 183,23-27
    47. Grobben, G. J., M. R. Smith, J. Sikkema, and J. A. M. de Bont. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 46:279–284.
    48. Hamada S., Horikoshi T. and Minami T.,Purification and characterization of cell-associated glucosyltransferase synthesizing water insoluble glucan from serotypic Streptococcus mutant . J.Gen.Microbiol. 1989,135:335-344.
    49. Hamada S.and Slade H.D., Biology, immunology, and cariogenicity of Streptococcus mutuans. Microbiol.Rev. 1980, 44:331
    50. Hatfield, L., Van Baalen, C., Forrest, H.S., Plant Physilo. 1961,36:240-243
    51. Hughes, F.A. and Lew, B.W. Physical and functional properties of some higher alkyl polyglucoside .J.Am. Chem. Soc. 1970,47:162-167
    52. Ikawa, J., Sasner, J.. Haney, J.F Foxmall, T.L.Phytochemistry 1995,38:1229-1232
    53. Imberty A, Perez S, Hricovini M, et al. Flexibility in a tetra-saccharide fragment from the high mannose type of N-linked oligosaccharide.Int.J. Biol. Macromol., 1993, 15: 17-23.
    54. Imshenetskii, A.A., Kondrateva, T.F., Smutko,A.N.(1981)Influence of carbon and nitrogen sources on pullulan biosynthesis by polyploid strains of Pullularia pullulans, Mikrobiol.50,102-105
    55. Imshenetskii, A.A., Kondrat’eva, T.F., Smut’ko, A.N.(1982) Spontaneous and ultraviolet-induced variability of the pullulan-synthesizing activity of Pullularia (Aureobasidium) pullulans strains with different levels of ploidy. Microbiol. 51,964-967
    56. Imshenetskii, A.A., Kondrat’eva, T.F., Kudryashev, L.I., Yarovaya, S. M., Smut’ko,A.N., Alekseeva, G.. S.(1983a) A comparative study of pullulans synthesized by strains of Pullularia (Aureobasidium) pullulans of differing levels of ploidy, Microbiol. 52, 816-820.
    57. Imshenetskii, A.A., Kondrat’eva, T.F., Smut’ko,A.N.,(1983b). Colchicine-induced synthesis of pullulan in Pullularia (Aureobasidium) pullulans Microbiol. 52, 404-407.
    58. Imshenetskii, A.A., Kondrat’eva, T.F., Dul’tseva, N.M.(1985a). A rapid method for selecting mutants of Pullularia pullulans with high pullulan-synthesizing activity. Microbiol. 54, 647-650.
    59. Imshenetskii, A.A., Kondrat’eva, T.F., Dvadtsamova,E.A. and Vorontsova, N.N.(1985b). Activity of pullulan synthesis by diploid culture of Pullularia pullulans on media with different carbon sources, Microbiol. 54, 927-929.
    60. Ismail, A.M.S., Sobieh, U.I., and Abdel-Fattah, A.F. Biosynthesis of cyclodextrin glucosyltransferase andβ-cyclodextrin by Bacillus macerans 314 and properties of the crude enzyme. The Chemical Engineering Journal, 1996,61:247-253
    61. Daran J.M.; Dallies N.D.; Thines-Sempox, D.; Paquet V. and Francois J., Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae, Eur. J. Biochem, 1995, 233: 520-530.
    62. Kakiuchi N., Hattori M., Nishizawa M., Yamagishi T., Okuda T., Namba T., Studies on dental caries prevention by traditional medicines.Ⅷ. Inhibitory effect of various tannins on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem. Pharm.Bull. 1986,34:720.
    63. Kelly,P.J., Catley, B.J.(1977).The effect of ethidium bromide mutagenesis on dimorphism,estracellular metabolism and cytochrome levels in Aureobasidium pullulans. J.Gen.Microbiol.102.249-254.
    64. Kleane R. and Berger E.G., The molecular and cell biology of glucosyltransferase. Biochim.Biophys.Acta.1993,1154: 283-325.
    65. Kennedy J F, White C A. Bioactive Carbohydrates. Chichester: Ellis Horwood Ltd, 1983.
    66. Koga T., Akasaka H., Okahashi N., Hamada S., J.Gen.Microbiol. 1986,132:2873
    67. Kockova-Kratochvilova, A., Cernakova, M and Slavikova.E.(1980)Morphological changes during the life cycle of Aureobasidium pullulans(deBary)Arnaud.Folia Microbiol.25,56-67.
    68. Kornfeld R.and Kornfeld S., Assembly of asparaging-linked oligosaccharides. Annu.Rev.Biochem. 1985,54:631-664
    69. Kun N., Tae B.L., Park K.H. et al.. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J of Pharm Sci.2003, 18(2):165-173
    70. Kurtzman CP, Fell JWThe yeasts. A taxonomic Study, Fouth Revised and enlarged edn. In: Kurtzman CP, Fell JW (eds) Elsevier. Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 2000, 1-600
    71. Laroute, V. and Willemot, R.M. Glucoside synthesis by glucoamylase orβ-glucosidase in organic solvents. Biotechnol. Lett.1992,14,169-174
    72. .Lazaridon, A., Roukas, T., Biliaderis, C. G., Varikousi, H. Varikousi., Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb. Technol. 2002,31, 122-132.
    73. Leathers, T.D.,(1991) Genetic strategies to enhance pullulan production. Proceedings, U.S-Japan Natural Resources Protein Panel 20th Annual Meeting . Tsukuba. Japan. October 21-24. UJNR Protein Resources Panel. Pp.18-31.
    74. Leathers, T.D.,(1993) Substrate regulation and spectificity of amylases from Aureobasidium strain NRRL Y-12,974, FEMS Microbiol. Lett. 110,217-222.
    75. Lee, H.W., Oh, C.H., Geyer, A., Pfleiderer, W., Park, Y.S., Characterization of a novel unconjugated pteridine glycoside, cyanopterin, in Synechocystis sp. PCC6803.Biochim, Biophys. Acta 1410,1999,61-70.
    76. Lee K Y, Yoo Y J. Optimization of pH for high molecular weight pullulan. Biotechnol. Lett., 1993, 15: 1021 - 1024.
    77. Lee S.L. and Chen W.C., Optimization of medium composition for the production of glucosyltransferase by Aspergilluls niger with response surface methodology. Enzyme Microb. Technol. 1997, 21:436-440.
    78. Lehle, L.,Tanner,W.(1978)Biosynthesis and characterization of large dolichyl diphosphate-linked oligosaccharides in Saccharomyces cereviaiae,Biochim. Biophys.Acta 539,218-229
    79. Lethers,T.D., Notsinger, G.W.,Kurtzman,C.P and Bothast, R.J.,(1998)Pullulan production by color variant strains of Aureobasidium pullulans. J.Ind.Microbiol.3,231-238
    80. Loesche W.L., Role of Streptococcus mutans in human dental decay, Microbiol. Rev.1986,50:353
    81. Looijesteijn, P. J., I. C. Boels, M. Kleerebezem, and J. Hugenholtz. 1999.Regulation of exopolysaccharide production by Lactococcus lactis subsp.cremoris by the sugar source. Appl. Environ. Microbiol. 65:5003–5008.
    82. Luc De Vuyst and Bart Degeast, Heteropolysaccharides from lactic acid bacteria, FEMS Microbiology Reviews, 1999,27:153-177.
    83. Madlova A, Antosova M, Polakovic M, et al. Thermal Stability of Fructosyl-transferase from Aureobasidium Pullulans. Chem. Pap.,2000, 54 (6a): 339 - 344.
    84. Mahner C. et al., Synthesis and characterization of dextran and pullulan sulfate, Carbohydrtae Research, 2001, 331: 203-208.
    85. Masuda K, Masahiro S., Kazutoshi H.et al.. Evaluation of Carboxymethylpullulan as a Novel Carrier for Targeting Immune Tissues. Pharm Res. 2001,18(2)
    86. Matsumara, S., Imai, K., Yohikawa, S., Kawada, K., and Clchibori, T. Surface activities, biodegradability and antimicrobial properties of n-alkyl glycosices, mannosides, and galactosides. J.Am. Oil. Chem. Soc.1990,67:996-1001
    87. Matsunaga, T. Burgess, J.G., Yamada, N., Komatsu, K., Yoshida, S., Wachi, Y., An ultraviolet(UV-A) absorbing bipterin glucoside from the marine planktonic Cyanobacterium oscillatoria sp., Appl. Microbiol. Biotechnol. 1993,39:250-253
    88. McNeil B, Kristiansen B. Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microbiol. Tech., 1990, 12:521-526
    89. Mihai D. et al., Chemical reactions on polysaccharides I. Pullulan sulfation, European Polymer Journal, 37:541-546, 2001.
    90. Mitsunaga, T., Abe, I., J. Wood Chem. Technol. 1997,17:327
    91. Mitsuhiro S., Ryoichi N., Nozawa T. et al.. Synthesis and properties of etherified pullulans. Eur Polym J. 2002, 38(3):497-501
    92. McCleary R.V. and Gibson T.S. 1989. Purification , properties, and industrial significance of transglucosidase from Aspergillus niger. Car.Res. 185 :147-162.
    93. Mocanu G., Mihai D., Pihai L. et al.. Associative pullulan gels and their interaction with biological active substances. J Control Release.2002, 83(1):41-51
    94. Mocanu G., Vizitiu D., Mihai D. et al.. Chemical reaction on polysaccharides V.Pullulan chloroalkylation. Carbohydr Polym.1999, 39(3): 283-288
    95. Monsan, P., Paul, F., Pelenc, V., and Boures, E. Enzymatic production ofα-butylflycoside and its fatty acid esters. Ann.N.Y.Acad.Sci. 1996,799,633-641
    96. Morona, R., Stroeher, U. H., Karageorgos, L. E., Brown, M. H., &Manning, P. A. (1995). A putative pathway for biosynthesis of the O-antigen component, 3-deoxy-l-glycero-tetronic acid, based on the sequence of the Vibrio cholerae O1 rfb region. Gene, 166, 19–31.
    97. Morona, R., Van den Bosch, L., & Manning, P. A. (1995a). Molecular,genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. Journal of Bacteriology, 177, 1059–1068
    98. Moscovici M, Ionescu C, Oniscu C, Fotea O, Protopopescu P, Hanganu LD. Improved exopolysaccharide production in fed-batch fermentation of Aureobasidium pullulans with increased impeller speed. Biotechnol Lett,1996,18:787-790
    99. Nakahara, K., Kawabata, S., Ono, H., Ogura, K. Tanaka, T., Ooshima, T., Hamada, S., Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl. Environ. Microbiol. 1993,59:968
    100. Nancy E. Harding et al., Identification, genetic and biochemical analysis of genes involved insynthesis of sugar precursors of xanthan gum, Journal of General Microbiology, 1993, 139: 447-457.
    101. Ono K, Yasuda N, Ueda S. Effect of pH on pullulan elaboration by Aureobasidium pullulans S.I. Agric. Biol. Chem.,( 1977b), 44: 2112 -2118.
    102. Ono.k., Kawahara.Y,.Ueda.S.(1977a) Effect of pH on the content of glycolipids in Aureobasidium pullulans S-1. Agric.Biol. Chem.41.2313-2317
    103. Park,D.(1982)Inorganic nitrogen nutrition and yeast-mycelial dimorphism in Aureobasidium pullulans.Tran.Br.Mycol.Soc.78, 385-388
    104. Paulson J.C. and Colley K.J., Glycosyltransferase.structure, localization, and control of cell type-specific glycosylation. J.Biol.Chem.1989,264:17615-17618.
    105. Pazur J.H.and Ando T.,1960, J.Biol.Chem.,235:297-302
    106. Peery, R.B., Skatrud, P.L,(1996). Multiple drug resistance gene of Aureobasidium pullulans. U.S. Patent 5,516,655.
    107. Pelenc, V., Paul, F. and Monsan, P.Enzymatic stereospecific production ofα-glucosidse from starch etc. by reaction with alcohol in the presence ofα-transglucosidase and optional conversion toα-glucoside ester using a lipase. Patent W O 93/04185,1993
    108. Peters T, Meyer B, Stuike-Prill R, et al. A montecarlo method for conformational analysis of saccharides. Carbohydr. Res., 1993, 238: 498 - 503.
    109. Picton L., Mocanu G., Mihai D. et al.. Chemically modified exopolysaccharide pullulans :physico-chemical characteristics of ionic derivatives. Carbohydr Polym.1995, 28(2):131-136
    110. Pollock, T.J.,Thorne, L., Armentrout, T.W. (1992) Isolation of new Aureobasidium pullulans with produce high-molecular-weight pullulan with reduced pigmentation. Appl. Envion.Microbiol. 58,877-883.
    111. Poolman, B., Royer, T.J.,Mainzer, S.E. and Schmidt, B.F.(1990) Carbohydrate utilization in Streptococcus thermophilus:charzcterization of the genes for aldose 1-epimerase(mutarotase) and UDP-glucose 4-epimerase. J.Bacteriol. 172,4037-4047
    112. Ramirez-Zavala B, Mercado-Flores Y, Hernadez-Rodriguez C, Villa-Tanaca L. 2004,Purification and characterization of lysine aminopeptidase from Kluyveromyces marxiamus, FEMS Microbiol. Lett., 235: 369-375.
    113. Ramos, S. and Garcia-Acha, I.G. (1975) A vegetative cycle of Pullularia pullulans. Trans. Br. Mycol. Soc. 64, 129-135
    114. Reeslev, M., Strom, T., Jensen, B. and Olsen, J. (1997) The ability of the yeast form of Aureobasidium pullulans to elaborate exopolysaccharidein chemostat culture at various pH values. Mycol. Res. 101,650-652
    115. Reeslev M. Influence of Zn2+ on yeast-mycelium dimorphism and exopolysaccharide production by the fungus Aureobasidium pullulans growth in a defined mediain continuous culture. J. Gen. Microbiol.,1993, 139: 3065 - 3070.
    116. Rho D, Mulchandani A, Luong JHT, Leduy A. Oxygen requirement in pullulan fermentation. Appl Microbiol Biotechnol,1988,28:361-366
    117. Rice K G,Wu P,Brand L,et al. Experimental determination of oligosaccharide three dimensional structure. Curr. Opin. in Struc. BioL.,1993, 3: 669 - 674.
    118. Richard van Kranenburg, Ingeborg B Boels, Michiel Kleerebezem and Willen M de Vos, Genetics and Engineering of Mcrobial exopolysaccharides for food: approaches for production of existing and novel polysaccharide, Current Opinion in Biotechnology, 1999, 10: 498-504.
    119. Robyt J F. Essentials of Carbohydrate Chemistry. New York: Springer-Verlag, 1998.
    120. Robyt.J.F.,(1995)Mechanisms in the glucansucrase synthesis of polysaccharides and ologosaccharides from sucrose, in: Adv, Carbohydr. Chem.Biochem. (Horton.D.,Ed.). San Diego.CA:Academic Press.133-168. Vol.51.
    121. Ronen M, Guterman H, Shabtai Y. Monitoring and control of pullulan production using vision sensor. J. Biochem. Biophys. Methods, 2002, 51: 243 - 249.
    122. Roukas T, Serris G. Effect of the shear rate on pullulan production from beet molasses by Aureobasidium pullulans in an airlift reactor. Appl. Biochem. Biotechnol., 1999, 80: 77 - 89.
    123. Sakanaka S., Sato, T., Kim, M., Yamamoto, T. Agric.Biol.Chem., 1990,54:2925
    124. Sawamura, s., Tonosaki, Y., Hamada, S., Biosci. Biotechnol. Biochem. 1992,56:766
    125. Schellhaass, S.M.and Morrisk, H.A.(1985)Rheological and scanning electron microscopic examination of skim-milk gels ovtained by fermenting with ropy and non-ropy strains of lactic acid bacterial Food Microstruct.4,279-287
    126. Shibata M., Asahina M., T amoton N. et al.. Chemical modification of pullulan by isocyanate compounds. Polymer. 2001, 42(1):59-64
    127. Silman,R.W.,Bryan, W.L.,Leathers,T.D.(1990)A comparison of polysaccharides from strains of Aureobasidium pullulans.FEMS Microbiol.Lett.71,65-70
    128. Simon L, Caye-Vaugien C, Bouchonneau M. Relation between pullulan production, morphological state and growth conditions in Aureobasidium pullulans: new observations. J. Gen. Microbiol., 1993, 139: 979 - 985.
    129. Stingele, F.and Mollet, B.(1996) Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Mol.Microbiol. 22,357-366
    130. Stingele, F., Newell, J. W. and Neeser, J.-R.1999a. Unraveling the function of glycosyltransferases in Streptococcus thermophilus Sfi6. J. Bacteriol. 181:6354–6360.
    131. Stingele, F., S. Vincent, J. F. Faber, E. J. Newell, J. W. Kamerling, J. P. and. Neeser. J.-R 1999b. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32:1287–1295.
    132. Sugimoto, K. (1978). Pullulan Production and applications. Ferment. Ind. 36,98-108.
    133. Sutherland,ILW., Norval, M.,(1970)The synthesis of exopolysaccharide by Klebsiella aerogenes membrane preparations and the involvement of lipid intermediates.Biochem.J.120,567-576
    134. Sun-Woong J., Jeong Y.I., Kim S.H.. Characterization of hydrophobized pullulan with various hydrophobicities. Int J Pharm.2002, 254(2):109-121
    135. Sutherland, I.W.(1990) Biotechnology of Microbial Exopolysaccharides, 163pp. Cambridge University Press,Cambridge
    136. Sutherland, Ian W.. Novel and established applications of microbial polysaccharides. TIBTECH, 1998, 16 (1): 41 - 46.
    137. Tagashira, M., Uchiyama, K., Yoshimura, T. Shirota, M., Uemitsu, N., Inhibition by hop bract polyphenols of cellular adherence and water-insoluble glucan synthesis of mutans Streptococci. Biosci. Biotechnol. Biochem. 1997,61:332
    138. Taguchi, R., Kikuchi, Y., Kobayashi, T.,(1973) Structural uniformity of pullulan produced by several strains of Pullularia pullulans. Agric.Biol.Chem.,37,1583-1588
    139. Tarabasz-Szymanska, L., Galas, E.(1993). Two-step mutagenesis of Pullularia pullulansleading to clones producing pure pullulan with high yield. Enzyme Microb. Technol. 15, 317-320.
    140. Thornewell, S.J., Peery, R.B., Skatrud, P.L.,(1995a). Cloning and characterization of the gene encoding translation elongation factor 1αfrom Aureobasidium pullulans. Gene 162, 105-110.
    141. Thornewell, S.J., Peery, R.B., Skatrud, P.L.,(1995b). Integrative and replicative genetic transformation of Aureobasidium pullulans. Curr. Genet. 29, 66-72.
    142. Triantafyllos Roukas, Maria Liakopoulou-Kyriakides. Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. Journal of Food Engineering,1999,40:89-94
    143. Ueda, S.,Fujita, K., Komatsu, K., Nakashima, Z.,(1963) Polysaccharide produced by the genus Pullularia.I.Production of polysaccharide by growing cells. Appl. Microbiol. 11,211-215
    144. Urek R O, Pazarlioglu N K. Purification of partial characterization of manganese peroxidase from immobilized Phanerochaeto chrysosporium, Proc. Biochem., 2004, 39: 2061-2068.
    145. Van den Eijnden D.H. and Joziasse D.H., Enzymes associated with glycosylation. Curr.Opin.Struct.Biol. 1993,3:711-721.
    146. Van Kranenburg, R., van Swam, I. I., Marugg, J. D., Kleerebezem, M.and de Vos. W. M. 1999. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J. Bacteriol. 181:338–340.
    147. van Kranenburg, R., Vos, H. R. van Swam, I. I.. Kleerebezem, M and.de Vos. W. M 1999. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression,and diversity. J. Bacteriol. 181:6347–6353.
    148. Velasco S.E.,Yebr M.J., Monedero V., Ibarburu I., Due?as M.T., Irastorza,A. Influence of the carbohydrate source onβ-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. International journal of food microbiology. 2007, 115:325-334.
    149. Venkatesan N., Vyas S.P.. Polysaccharide coated liposomes for oral immunization development and characterization. Int J Pharm. 2000, 203:169-177
    150. Vijayendra, S. V. N., Bansal, D., Prasad, M. S., Nand, K., Jaggery: a novel substrate for pullulan-production by Aureobasdium pullulans CFR-77. Process Biochenmistry, 2001, 37, 359-364.
    151. Wecker A, Onken U. Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnol. Lett., 1991, 13: 155 - 160.
    152. West, T.P.,Reed-Hamer, B.,(1991) Ability of Aureobasidium pullulans to synthesize pullulan upon selected sources of carbon and nitrogen. Microbios 67,117-124
    153. West,T.P., Reed-Hamer, B.(1993b) Polysaccharide production by a reduced pigmentation mutant of the fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 113,345-349.
    154. White, C.,Gadd. G.M.(1984). Isolation and purification of protoplasts from yeast-like cells hyphae and chlamydospores of Aureobasidium pullulans. J.Gen. Microbiol. 130, 1031-1034.
    155. Yanagida, A., Kanda, T., Tanabe, M., Matsudaira, F., J.G..O. Cordeiro, Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans Sreptococci. J.Agric.Food Chem. 2000,48:5666
    156. Yuen S. Pullulan and its applications. Process and Biochem,1974, 22:7-9
    157. Zhao Shuangzhi, Chi Zhenming, A new pullulan-producing yeast and medium optimization for its exopolysaccharide production, Journal of Ocean University of Qingdao, 2003, 2: 53-57
    158.陈春英,黄雪华,周井炎,徐辉碧,蒋岩,朱关福,孙定一.硫酸酯化箬叶多糖的结构修饰及其抗艾滋病病毒活性。药学学报.1998.33(4).264-268
    159.陈光,张真妮.淀粉发酵生产微生物多糖的研究现状.吉林农业大学学报, 2001, 23 (1): 111– 115
    160.方宣钧,出芽短梗霉菌株紫外诱变及其发酵条件优化,见:中国发酵工业协会主编,第二届发酵工程学术研讨会论文集。北京:中国轻工业出版社,1998:1-5
    161.郭学平等.透明质酸及其发酵生产概述.中国生化药物杂志, 1998, 19 (4): 209– 211
    162.洪厚胜.黄原胶工业生产的2种实用新技术.食品与发酵工业, 2000, 26 (3): 43-47
    163.吉武科.我国食品级黄原胶生产现状与发展前景.食品与发酵工业, 1990, (4): 76-78
    164.金其荣-普鲁兰多糖,见:中国发酵工业协会主编,淀粉衍生物新技术、新产品、新设备生产及应用技术交流展示会论文集。北京:中国轻工业出版社,2001,161。
    165.康建雄,唐赢中.普鲁兰的研究与开发进展.武汉城市建设学院学报, 1996, 13 (3): 60– 66
    166.赖萍,林跃鑫.天然多糖分子修饰研究进展.生命的化学.2003.23(3)183-186
    167.粱金虎.短梗霉多糖的性质和应用.生物工程学报, 1986, 27: 23 -27.
    168.梁忠岩苗春艳张翼伸.化学修饰对斜顶菌多糖抑瘤活性影响的研究.药物化学.1996.31(10).613-615
    169.李信,短梗霉胞外多糖发酵及其发酵动力学,微生物学杂志,1999,(4)8-10,14
    170.马海蓉,普鲁兰多糖生产菌种及其在农产品保鲜中的应用(综述)-河北省科学院学报,2000(2)15-18
    171.那淑敏,贾盘兴,余茂效.产无色胞外多糖菌株的筛选及产物鉴定[J].食品与发酵工业,1989,4:7-9
    172.秋宏伟,杨守志.短梗霉多糖发酵过程特征的研究.生物工程学报1990, 6(4): 332 - 337
    173.沈渤江,张天民.公鸡冠透明质酸的制备及理化性质.医药工业,1986, (7): 291 - 295.
    174.孙万儒-普鲁兰的底物流加补料发酵研究,见:中国发酵工业协会主编-第二届发酵工程学术研讨会论文集。北京:中国轻工业出版社,1998,529。
    175.谈家林.短梗霉多糖及其在食品工业中的应用[J].食品与发酵工业,1985,5:52-57
    176.陶乐平,丁在富,张部昌.气相色谱在多糖结构测定中的应用.色谱, 1994, 12 (5): 351 - 354
    177.王玲燕,李元.微生物胞外多糖生物合成研究进展.药物生物技术, 2002, 9 (6): 369-373
    178.王长海,李焰红,鞠宝等.短梗霉多糖在海产品保鲜方面的应用研究.烟台大学学报(自然科学与工程版), 1999, 12 (2): 148– 152
    179.王长海,短梗霉多糖在海产品保鲜方面的应用研究,见:中国发酵工业协会主编,第二届发酵工程学术研讨会论文集。北京:中国轻工业出版社,1998:520-523
    180.吴东儒.糖类的生物化学.北京:高等教育出版社, 1987 (第一版):544 - 546
    181.阎家麒等.化妆品用透明质酸诱变育种及发酵生产工艺研究.日用化学工业, 1994, (1): 7 - 9
    182.殷小梅,许时要.可食茁霉多糖膜的结构与性质研究[J].食品科学,1998,2:3-6
    183.张汉波,出芽短梗霉的原生质体形成及再生研究,云南大学学报,1999,21(3):202-204
    184.张丽萍,孙非,张翼伸.化学修饰对金顶侧耳多糖抗病毒(CB5)活性的影响.生物化学杂志. 1994.10(2)150-154
    185.赵双枝,新异淀粉高产酵母菌株和异淀粉过量发酵生产山东大学硕士生论文, 2003年
    186.张翼伸.多糖的构象研究.东北师大学报自然科学版, 1998, 2: 55-60.
    187.赵之伟,张雷,张汉波等.出芽短梗霉发酵产生普鲁兰糖的研究[J].工业微生物,1996,3:20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700