用户名: 密码: 验证码:
钙基载氧体在化学链燃烧技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包含CO_2在内的温室气体的排放是人类目前所必须面临的严峻问题之一。化学链燃烧技术是一种新型的、具有鲜明节能减排特色的燃烧技术,它具有CO_2内分离性质,无需外加CO_2分离装置即可捕获得到高纯度的CO_2气体。在化学链燃烧中,燃料不直接与空气接触,而是通过载氧体颗粒在空气反应器和燃料反应器之间的循环转化实现氧和热量的传递,完成燃料和空气的无火焰燃烧过程。这种新型的燃烧方式基于两步化学反应,实现了能量的梯级利用,具有更高的能量利用效率,同时,也抑制了反应中NOx气体的生成。
     载氧体的应用是化学链燃烧系统中的关键环节。目前,用于化学链燃烧系统中的传统载氧体主要是Ni、Fe、Cu和Co等金属的氧化物。这些载氧体颗粒具有良好的反应活性和循环特性,但单位质量载氧能力弱,价格昂贵且破碎后的颗粒物对环境存在二次污染。硫酸钙由于价格便宜,单位质量载氧能力强,对环境友好等特点,被视为很有发展前景的载氧体材料。
     本文采用Gibbs自由能最小化原理,探讨多种操作参数对CaSO_4向CaS的转化率、含硫气体的释放量和含碳产物沉积量的影响。模拟结果发现,反应温度的增大会抑制积碳的发生,但同时也会导致H2S气体向SO2气体的转化,给烟气脱硫过程增加了困难。操作压力的增加不仅会促进积碳的发生,破坏高温对积碳的抑制作用,也会导致高温区间内含硫气体释放量的增加,所以反应器内高压条件应尽量避免。对于氧原子过量系数,处在0.2~0.8范围内时,氧原子过量系数减小会使含硫气体释放量得到有效抑制,但对于0.9~1.4的区间,在温度低于700℃时,减小氧原子过量系数对含硫气体释放量影响很小。氧化反应器内,较高的反应温度会降低CaS向CaSO_4的转化率,尤其在氧原子过量系数较小时这种现象更为明显;反应器内的O2应保持略有过量,较大的氧原子过量系数会促进CaS向CaSO_4的转化率。
     采用浸渍法实现了Ni、Fe离子在CaSO_4载氧体颗粒表面的分散,浸渍后的载氧体同气体燃料和固体燃料的反应性能同浸渍前相比明显改善;CaSO_4载氧体对Ni、Fe离子的浸渍量越大,同气体燃料和固体燃料的反应性能越好。复合型载氧体同污泥半焦颗粒和玉米秸秆半焦颗粒的反应性能远远高于它同煤焦颗粒的反应性能,说明了污泥半焦颗粒尤其是玉米秸秆半焦颗粒更适合应用于固体燃料直接使用的化学链燃烧系统。通过向采用强酸处理过的CaSO_4载氧体中加入CaCO3纳米颗粒作为固硫剂,可大大改善钙基载氧体的循环性能。
     氮气气氛下,CaSO_4载氧体颗粒在反应温度为1250℃时呈现缓慢分解,在温度达到1300℃时分解速率明显加快。空气反应器中控制反应温度在1300℃以下可使CaSO_4载氧体的热分解反应被避免;在CaSO_4载氧体颗粒的热分解过程中,产物CaO的生长活化能低于成核活化能,产物核一经形成便可迅速成长,反应对应的活化能值随CaSO_4转化率的增大而单调减小。采用双外推法和Popescu法计算得到无任何副反应干扰、CaSO_4颗粒处于原始状态下的活化能值为992.15 kJ/mol,推导得CaSO_4颗粒的热分解机理最可能是成核与生长机理,其最概然机理函数为[ ? ln(1 ? X)]2。
     还原性气体分压对钙基载氧体还原过程中含硫气体释放量的影响很大,还原性气体分压越大,反应过程中含硫气体释放量越小。即使在1000℃或更高的反应温度,只要保持CO或H2的气体分压在50 kPa以上,可充分抑制反应过程中含硫气体的释放,甚至可使CaSO_4向CaS的转化率达到100 %。
     CaSO_4载氧体的循环流量对系统热效率、还原反应器出口气体中CO_2与水蒸汽体积浓度和系统自给热影响较大。CaSO_4载氧体的循环流量越大,还原反应器出口气体中CO_2与水蒸汽体积浓度越高,但随着CaSO_4载氧体的循环流量的增加,系统热效率增大的速率已越来越慢,当热效率达到40 %时,系统热效率的提升空间已较小。
Nowadays it is generally accepted that the increasing greenhouse gas emissions, the typical one being carbon dioxide, is one of the serious problems we must face. To solve the problem, chemical-looping combustion (CLC) technology has been proposed as a new technology which would satisfy the capture of CO_2 with few energy losses. It has the inherited characteristics of CO_2 separation. High pure CO_2 can be obtained and captured without any additional CO_2 separation units. In the CLC system, the fuel does not react with the air directly. Both the oxygen from the air to the fuel and the heat from the air reactor to the fuel reactor are transferred by the oxygen carrier to realize the flameless combustion between the fuel and air. Therefore, the formation of NOx gases in the system is efficiently inhibited. In addition, the CLC systems coupled with the gas turbine or some other integrated power systems would be more potentially efficient than the systems with conventional combustion technology.
     The choice of oxygen carrier is a key for the performance of the CLC system. The current oxygen carriers are metal oxides, such as the oxides of nickel, iron, copper and cobalt, are characterized by high reactivity and good regeneration stability. However, the costs of these metal-oxide oxygen carriers are high but their oxygen carrying ability are low per unit mass. In addition, some leakage of the metal oxide particles becomes second pollution sources to the environment. Therefore, it is necessary to find a new kind of oxygen carrier. Recently, calcium sulfate(CaSO_4) is considered as a novel oxygen carrier because it has some obvious advatanges. Firstly, CaSO_4 is cheaper due to vast gypsum resources all over the world. Secondly, compared with the metal oxides, CaSO_4 has a relatively high oxygen carrying capacity. Thirdly, as a nonmetal sulfate, it is much more friendly to the environment. Therefore, it is very suitable for the fluidized bed reactor of chemical-looping combustion system.
     Based on the minimization of the total Gibbs free energy for all species, the effects of many factors on the conversion of CaSO_4 to CaS, the amount of the released sulfurous gases and the deposited solid carbonaceous products are discussed. It is indicated from the simulated results that higher reacting temperature inhibits the deposition of carbon but promotes the conversion of H2S to SO2. However, the operating pressure contradicts the temperature for the effects on the amounts of the deposited carbon. The occurrence of deposited carbon is promoted at higher operating pressure. In addition, the higher operating pressure results in the more amounts of the released sulfurous gases. Therefore, the high operating pressure in the fuel reactor should be avoided when possible. Moreover, the effects of the oxygen excess ratio on the carbon deposition and sulfur release are not neglected. When the oxygen excess ratio increases from 0.2 to 0.8, the released amount of the sulfurous gases greatly grows. However, when the oxygen excess ratio rises from 0.9 to 1.4, the effects of reducing oxygen excess ratio on the released amount of the sulfurous gases is quite small, especially when the reacting temperature is less than 700℃. In the air reactor, the higher reacting temperature reduces the conversion of CaS to CaSO_4 especially when the oxygen excess ratio is smaller than 0.75. The oxygen in the reactor should remain a little excessive because the bigger oxygen excess ratio is helpful to the conversion of CaS to CaSO_4.
     Two kinds of compound oxygen carrier samples have been prepared by the incipient wet impregnation method with the saturated solution of nickel nitrate and iron nitrate respectively as the active-phase precursor on the surfaces of calcium sulfate particles. The reactivity of oxygen carrier with both the gaseous and solid fuels is much better than before impregnation. The higher impregnation amount improves obviously the reactivity of CaSO_4 oxygen carrier with gaseous and solid fuels. The reactivity of compound oxygen carrier with sludge char or corn straw char is much better than with coal char. This indicates that sludge char and corn straw char are more suitable in CLC system using solid fuels. In addition, it is found that after the pre-treatment of CaSO_4 oxygen carrier with strong acids, the addition of CaCO3 nanoparticles greatly improved the recycle ability of calcium based oxygen carrier.
     The thermal decomposition behavior of calcium based oxygen carrier in nitrogen atmosphere is also studied. CaSO_4 particles begin to decompose slowly when the reacting temperature achieves 1250℃. The decomposition rate obviously accelerates once the reacting temperature increases to 1300℃. In the air reactor, the decomposition of CaSO_4 can be avoided at the temperature lower than 1300℃. In the decomposition, the growth activated energy of produced CaO is lower than the nucleation activated energy of CaO. Therefore, once the nucleation of CaO occurs in the surface of the oxygen carrier, it can grow rapidly. The activated energy reduces monotonically with the increasing of conversion of CaSO_4. Through the double-extrapolated method and Popescu method, the activated energy of the decomposition of CaSO_4 without any disturbance of side reactions is calculated to be 992.15 kJ/mol. The most possible decomposition mechanism of CaSO_4 is nucleation and nuclei growth mechanism. The most likely mechanism function is characterized by [ ? ln(1 ? X)]2.
     It is observed that the partial pressure of the reductive gases has a significant effect on the amount of the released sulfurous gases. The high partial pressure of the reductive gases is beneficial to reduce the released amount of sulfurous gases. When the reacting temperature increase to 1000℃or higher, the release of sulfurous gases can be inhibited fully if the partial pressure of CO or H2 maintains above 50 kPa. In particular, the conversion of CaSO_4 to CaS can reach 100 %.
     The flow rate of circulating CaSO_4 oxygen carrier is important to the system heat efficiency, the concentration of CO_2 and H2O in the gases emitted from the fuel reactor and the heat integration of the system. The great flow rate of circulating CaSO_4 oxygen carrier increases the concentration of CO_2 and H2O in the gases from the fuel reactor. Similarly, the heat efficiency of the system is improved monotonically with the increasing of the flow rate of circulating CaSO_4. However, the increasing rate of the heat efficiency slows down when the flow rate of circulating CaSO_4 increases. When the heat efficiency reaches 40 %, its increasing range is quite slight.
引文
[1]方华书.二氧化碳与温室效应[J].福州师专学报(自然科学版). 2000, 20(6): 56-59.
    [2] Standing T. H. Climate change projections hinge on Global CO2, temperature data[J]. Oil and Gas Journal. 2001, 99(46): 22-28.
    [3]马一太,魏东,吕灿仁.温室气体减排与CO2资源化宏观研究与探讨[J].大连理工大学学报. 2001, 41(S1): 9-14.
    [4] Dorewiler U. P. Global warning, Science or Politics (part 1)-Which observations are correct?[J]. Hydrocarbon Process. 1998, 77(4): 143-152.
    [5]宋庆乃.全球变暖与农业生产[J].吉林农业. 2008. (5): 6-7.
    [6]张洪涛,文冬光,张家强. CO2地质埋存技术[C]. GCEP清洁煤技术国际研讨会CO2减排、富集、利用与埋存. 2005,北京.
    [7]贾德森?金著.大连工学院化工原理和化学工程教研所译.第2版[M].北京.化学工业出版社, 1987.
    [8] Dubois L., Thomas D. CO2 Absorption into aqueous solutions of monoethanolamine, methyl-diethanolamine, Piperazine and their Blends[J]. Chemical Engineering & Technology. 2009, 32(5): 710-718.
    [9] Bishnoi S., Rochelle T. Absorption of carbon dioxide in aqueous piperazine/ methyldiethanol-amine[J]. AIChE Journal. 2002, 48(12): 2788-2799.
    [10] Freeman S. A., Dugas R., Wagener D. H., Nguyen T., Oochelle G. T. Carbon dioxide capture with concentrated, aqueous piperazine[J]. International Journal of Greenhouse Gas Control. 2010, 4(2): 119-124.
    [11] Maurin G., Belmabkhout Y., Pirngruber G. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments[J]. Adsorption. 2007, 13(5-6): 453-460.
    [12]Shao W., Zhang L. Z., Li L. X., Lee R. L. Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures[J]. Adsorption. 2009, 15(5-6): 497-505.
    [13] Delgado J. A., Uguina M. A., Sotelo J. L., et al. Separation of carbon dioxide/methane mixtures by adsorption on a basic resin[J]. Adsorption. 2007, 13(5-6): 373-383.
    [14] Pamm B. M.气体吸收.刘风志等译.第2版[M].北京:化学工业出版社,1985.
    [15]薛定谔A. E.多孔介质中的渗流物理.王鸿勋,张朝琛,孙书琛译[M].北京:石油工业出版社,1982.
    [16]北川浩等.吸附的基础与设计.鹿政理等译[M].北京:化学工业出版社,1983.
    [17] Takamura Y. S., Narita J., Aoki S. Evaluation of dual-bed pressure swing adsorption for CO2recovery from boiler exhaust gas[J]. Separation & Purification Technology. 2001, 24(3): 519-522.
    [18] Yoshida M., Ritter J. A., Kodama A. Enriching reflux and parallel equalization PSA process for concentrating trace components in air[J]. Industrial & Engineering Chemistry Research. 2003, 42(8): 1795-1805.
    [19] Chengtung C., Lee K. C., Chaoyuh C. Concentration and recovery of carbon dioxide from flue gas by vacuum swing adsorption[J]. Journal of the Chinese Institute of Chemical Engineers. 2003, 34(1): 135-142.
    [20] Ebner A. D., Ritter J. A. Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture[J]. Journal of the Chinese Institute of Chemical Engineers. 2004, 50(1): 2418-2429.
    [21] David T. K., Paul A. W. Modeling and evaluation of dual-reflux rressure swing adsorption cycles[J]. Chemical Engineering Science. 2006, 61(22): 7223-7233.
    [22] Steven P. R., Amal M., Armin D. E. Heavy reflux PSA cycles for CO2 recovery from flue gas: Part 1. Performance evaluation[J]. Adsorption, 2008, 14(2-3): 399-413.
    [23] Alan M. W., Edward J. D., Bassam J. J. Recovering CO2 from large and medium size stationary combustor[J]. Journal of Air & Waste Management Association. 1991, 41(12): 449-454.
    [24]樊越胜,邹峥,高巨宝,曹子栋.富氧气氛中煤粉燃烧特性改善的实验研究[J].西安交通大学学报. 2006, 40(1): 18-21.
    [25]张利琴,宋蔷,吴宁,姚强,李水清.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报. 2009, 29(29): 35-40.
    [26] Maja B. T., Jacob B., Peter A. J., Peter G., Anker D. J. Oxy-fuel combustion of solid fuels[J]. Progress in Energy & Combustion Science. In Press, Available online 31 March 2010.
    [27] Teresa M., Peter G. Ammonia chemistry in oxy-fuel combustion of methane[J]. Combustion & Flame. 2009, 156(10): 1937-1949.
    [28] Jongsup H., Gunaranjan C., Brisson J. G., Randall F., Marco G., Ahmed F. G. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340.
    [29] Zafar Q., Mattisson T., Gevert B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4 [J]. Energy & Fuels, 2006, 20(1): 34-44.
    [30] Jin H. G., Okamoto T., Ishida M. Development of a novel chemical-looping combustion: synthesis of a looping material with double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6): l272-l277.
    [31] Rehan N., , Jens W., Bolland Olav. Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture[J]. Energy. 2007, 32(4): 360-370.
    [32] Nord L. O., Anantharaman R., Bolland, O. Design and off-design analyses of a precombustionCO2 capture process in a natural gas combined cycle power plant[J]. International Journal of Greenhouse Gas Control. 2009, 3 (4): 385-392.
    [33] Ishida M., Jin H. G. A novel chemical-looping combustor without Nox formation[J]. Industrial & Engineering Chemistry Research, 1996, 35 (7): 2469-2472.
    [34] Ryu H. J., Jin G. T., Yin C. K. Demonstration of inherent CO2 separation and no NOx emission in a 50 kW chemical-looping combustor: continuous reduction and oxidation experiment[C]. Proceedings of 7th International Greenhouse Gas Control Technologies. 2004, Vancouver, Canada.
    [35]何方,王华,戴永年.循环热载体无烟燃烧技术的试验研究[J].中国工程科学, 2004, 6(7): 65-69.
    [36] Jens W., Marie A., Jinyue Y. Comparison of nickel- and iron-based oxygen carriers in Chemical-looping combustion for CO2 capture in power generation[J]. Fuel. 2005, 84(7-8): 993-1006.
    [37] Pr?ll T., Bolhàr-Nordenkampf J., Kolbitsch P., Hofbauer H. Syngas and a separate nitrogen/argon stream via chemical looping reforming-A 140 kW pilot plant study[J]. Fuel. 2010, 89(6): 1249-1256
    [38]刘黎明,赵海波,郑楚光.化学链燃烧方式中氧载体的研究进展[J].煤炭转化, 2006, 7(3): 85-92.
    [39]秦翠娟,沈来宏,肖军,高正平.化学链燃烧技术的研究进展[J].锅炉技术. 2008, 39(5): 64-73.
    [40]刘杨先,张军,盛昌栋,张永春,袁士杰.化学链燃烧技术中载氧体的最新研究进展[J].现代化工. 2008, 28(9): 27-32.
    [41]刘玲玲,王树众,姜峰.化学链燃烧技术的研究现状及进展[J].现代化工. 2007, 27(8): 17-22.
    [42] Ishida M., Jin H., Okamoto T. A fundamental study of a new kind of medium material for chemical-looping combustion[J]. Energy & Fuels, 1996, 10(4): 958-963.
    [43] Jin H., Okamoto T., Ishida M. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6): 1272-1277.
    [44] Jin H., Ishida M. Reactivity study on a novel hydrogen fueled chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2001, 26(8): 889-894.
    [45] Ishida M., Yamamoto M., Ohba T. Experimental results of chemical-loping combustion with NiO/NiA12O4 particle circulation at 1200℃[J]. Energy Conversion Management. 2002, 43(9-12): 1469-1478.
    [46] Cho P., Mattisson T., Lyngfelt A. Carbon formation on nickel and iron oxide containingoxygen carriers for chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 668-676.
    [47] Mattisson T., Jardnas A., Lyngflt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical looping combustion[J]. Energy & Fuels. 2003, 17(3): 643-651.
    [48] Cho P, Mattisson T, Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide, nickel oxide and manganese oxide- containing oxygen carders for chemical looping combustion[J]. Industrial & Engineering Chemistry Research. 2006, 45(3): 968-977.
    [49] Zafar Q., Mattisson T., Gevert B. Integrated hydrogen and power production with CO2 capture using chemical looping reforming-redox reactivity of particles of CuO, some oxides of transition-state metals Ni- Cu- Fe- and Mn supported on SiO2 and MgA12O4[J]. Energy & Fuels, 2006, 20(1): 34-44.
    [50] Corbella B. M., Diego L. D., Garcla F. Characterization and performance in a multicycle test in a fixed bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane[J]. Energy & Fuels. 2006, 20(1): 148-154.
    [51] Mattisson T., Johansson M., Lyngfelt A. The use of NiO as an oxygen carrier in chemical-looping combustion[J]. Fuel. 2006, 85(5-6): 736-747.
    [52] Adànez J., Diego L. F., Garcia L. F. election of oxygen carriers for chemical-looping combustion[J]. Energy & Fuels, 2004, 18(2): 371-377.
    [53] Mattisson T., Johansson M., Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particles application to chemical-looping combustion[J]. Energy & Fuels. 2004, 18(3): 628-637.
    [54] García L. F., Diego L. F., Adanez J. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion[J]. Industrial & Engineering Chemistry Research. 2004, 43(26): 8168-8l77.
    [55] García L. F., Adanez J., Diego L. F. Effect of pressure on the behavior of copper-, iron-, and nickel- based oxygen carriers for chemical-looping combustion[J]. Energy & Fuels. 2006, 20(1): 26-33.
    [56] Diego L. F, Fran G. L., Juan A.. Development of Cu-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(13): 1749-1757.
    [57] Corbella B. M., Diego L. D., Garcla F. Characterization and performance in a multicycle test in a fixed bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane[J]. Energy & Fuels. 2006, 20(1): 148-154.
    [58] Mattisson T., Lyngfelt A., Cho P. The use of iron oxide as an oxygen carrier inchemical-looping combustion of methane with inherent separation of CO2 [J]. Fuel. 2001, 80(13): 1953-1962.
    [59] Zafar Q., Mattisson T., Gevert B. Redox investigation of some oxides of transition-state metals Ni-Cu- Fe-and Mn supported on SiO2 and MgA12O4[J]. Energy & Fuels, 2006, 20(1): 34-44.
    [60] Mattisson T., Johansson M., Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particles application to chemical-looping combustion [J]. Energy & Fuels, 2004, 18(3): 628-637.
    [61] Cho P., Mattisson T., Lyngfelt A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel. 2004, 83(9): 1215-1225.
    [62] Zafar Q., Mattisson T., Gevert B. Integrated hydrogen and power production with CO2 capture using chemical looping reforming-redox reactivity of particles of CuO, some oxides of transition-state metals Ni- Cu- Fe- and Mn supported on SiO2 and MgA12O4[J]. Energy & Fuels. 2006, 20(1): 34-44.
    [63] Cho P., Mattisson T., Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide, nickel oxide and manganese oxide- containing oxygen carders for chemical looping combustion[J]. Industrial & Engineering Chemistry Research. 2006, 45(3): 968-977.
    [64] Abad A., Mattisson T., Lyngfelt A. Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier[J]. Fuel, 2006, 85(9): 1174-1185.
    [65] Adanez J., Garcia L. F., de Diego L. E. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion[J]. Industrial and Engineering Chemistry Research, 2006, 45(8): 2617- 2625.
    [66] Hossain.M.M, Sedor.K.E, Lasa H. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal support interaction[J]. Chemical Engineering Science, 2007, 62(18-20): 5465- 5472.
    [67] M. Rydén, E. Cleverstam, M. Johansson, A. Lyngfelt, T. Mattisson. Fe2O3 on Ce-, Ca-, or Mg-stabilized ZrO2 as oxygen carrier for chemical-looping combustion using NiO as additive[J]. AIChE Journal. 2010. In press.
    [68] M. M. Hossain, H. de Lasa. Reduction and oxidation kinetics of Co-Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles[J]. Chemical Engineering Science. 2010. 65(1): 98-106.
    [69]郑瑛,保文,宋侃,等.化学链燃烧技术中新型氧载体CaSO4的特性研究[J].工程热物理学报, 2006, 27(3): 531-533.
    [70] Jerndal E., Mattisson A. Thermal analysis of chemical-looping combustion[J]. ChemicalEngineering Research and Design, 2006, 84(9): 795-806.
    [71]肖海平,周俊虎,刘建忠,范红宇,程军,岑可法. CaS氧化反应特性的热重研究[J].浙江大学学报. 2006, 40(6): 982-990.
    [72] Gregorio M.,Marta G. C., Antonio B.F. Kinetics of oxidation of CaS particles in the regime of low SO2 release[J]. Chemical Engineering Science. 1999, 54 (3): 77-90.
    [73] Hossain M. Fluidized bed chemical-looping combustion: development of a bimetallic oxygen carrier and kinetic modeling[D]. The University of Western Ontario, Ontario, Canada. 2007.
    [74] Ishida M., Jin H., Okamoto T. A fundamental study of a new kind of medium material for chemical-looping combustion[J]. Energy & Fuels. 1996, 10(4): 958-963.
    [75] Linderholm C., Abad A., Mattisson T., Lyngfelt A. 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. International journal of greenhouse gas control[J]. 2008, 2(4):520-530.
    [76] Garcia L. F., Diego L. F., Adanez J., Abad A., Gayan P. Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system[J]. Chemical Engineering Science, 2005, 60(3): 851-862.
    [77] Hossain M., de Lasa H. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle chemical-looping combustion[J]. AIChE Journal. 2007, 53 (7): 1817-1829.
    [78] Sedor K. E., Hossain M., de Lasa H. I. Reduction kinetics of a fluidizable nickel-aluminum oxygen carrier for chemical-looping combustion[J]. Canadian Journal of Chemical Engineering. 2008, 86(3): 323-334.
    [79] Sedor K. E., Hossain M., de Lasa, H. I. Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC)[J]. Chemical Engineering Science 2008, 63(11): 2994-3007.
    [80]肖海平,周俊虎,刘建忠,曹欣玉,范红宇,岑可法. CaSO4与CaS在N2气氛下反应动力学[J].化工学报. 2005, 56(7): 1322-1326.
    [81] Kamphuis B., Potma A. W., Prins W., Van P. M. The reductive decomposition of calcium sulphate. I. Kinetics of the apparent solid-solid reaction[J]. Chemical Engineering Science. 1993, 48 (1):105-116.
    [82] Davies N. H., Hayhurst A. N. On the formation of liquid melts of CaSO4 and their importance in the absorption of SO2 by CaO[J]. Combustion & Flame. 1996, 106(3): 359-362.
    [83] Zevenhoven M., Blomquist J. P., Skrifvars B. J., Backman R., Hupa M. The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion[J]. Fuel, 2000, 79(11): 1353-1361.
    [84] Lyngfelt A., Leckner B., Mattisson T. A fluidized bed combustion process with inherent CO2 separation: Application of chemical-looping combustion[J]. Chemical Engineering Science. 2001,56 (10): 3101-3113.
    [85] Lyngfelt A., Thunman H. Chemical-looping combustion: Design, construction and 100 h of operational experience of a 10kW prototype[C]. The CO2 Captures and Storage Project (CCP) for Carbon Dioxide Storage in Deep Geologic Formations for Climate Change Mitigation: Capture and Separation of Carbon Dioxide from Combustion Sources. Elsevier Science, London, 2004.
    [86] Lyngfelt A., Kronberger B., Adánez J. The Grace Project. Development of Oxygen Carrier Particles for Chemical-looping Combustion. Design and Operation of a 10 kW Chemical-looping Combustor[C]. The 7th International Conference on Greenhouse Gas Control Technologies,Vancouver, Canada, 2004.
    [87]李振山,韩海锦,蔡宁生.化学链燃烧的研究现状及进展[J].动力工程, 2006, 26(2): 538-543.
    [88] Johansson E., Mattisson T., Lyngfelt A. A 300W laboratory reactorsystemfor chemical-looping combustion with particle circulation[J]. Fuel, 2006, 85(10-11): 1428-1438.
    [89] Adánez J, García-Labiano F, de Diego L F, e.tal.Opimizing the fuel reactor for chemical-looping combustion[C]. The 17th International Fluidized Bed Combustion Conference. New York, 2003.
    [90] Johansson E, Kronberger B, Lêffler G, etal. A two compartment fluidized bed for CO2 capture by chemical-looping combustion[J]. Chemical Engineering & Technology, 2004, 27(12):1318-1326.
    [91] Wolf J. CO2 mitigation in advanced power cycles chemical looping combustion and steam-based gasification[D]. Royal Institute of Technology Department of Chemical Engineering and Technology Energy Processes, Sweden Universities, 2004.
    [92] Philipp K., Tobias P., Hermann H. Modeling of a 120 kW chemical-looping combustion reactor system using a Ni-based oxygen carrier[J]. Chemical Engineering Science, 2009, 64(1): 99-108.
    [93] Philipp K., Tobias P., Johannes B. N., Hermann H. Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit[J]. Energy Procedia, 2009, 1(1): 1465-1472.
    [94] Azis M. M., Jerndal E., Leion H., Mattisson T., Lyngfelt A. On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC)[J]. Chemical Engineering Research and Design, In Press, Available online 27 March 2010.
    [95] Rydén M., Lyngfelt A., Mattisson T., Chen D., Holmen A., Bj?rgum E. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1?xFeyCo1?yO3?δperovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4 [J]. International Journal ofGreenhouse Gas Control, 2008, 2(1): 21-36.
    [96] Gao Z. P., Shen L. H., Xiao J., Zheng M., Wu J. H. Analysis of reactivity of Fe-based oxygen carrier with coal during chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 513-520.
    [97] Mattisson T., Labiano F. G., Kronberger B., Lyngfelt A., Adánez J., Hofbauer H. Chemical-looping combustion using syngas as fuel[J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 158-169.
    [98] Linderholm C., Mattisson T., Lyngfelt A. Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel[J]. Fuel, 2009, 88(11): 2083-2096.
    [99] Gayán P., Forero C. R., de Diego L. F., Abad A., Labiano F. G., Adánez J. Effect of gas composition in chemical-Looping combustion with copper-based oxygen carriers: Fate of light hydrocarbons[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): Pages 13-22.
    [100] Deng Z. Y., Xiao R., Jin B. S., Song Q. L. Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrierp[J]. International Journal of Greenhouse Gas Control, 2009, 3(4): 368-375.
    [101] Forero C.R., Gayán P., de Diego L.F., Abad A., Labiano F. G., Adánez J. Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier[J]. Fuel Processing Technology, 2009, 90(12): 1471-1479.
    [102] Shen L. H., Zheng M., Xiao J., Xiao R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combustion & Flame. 2008, 154(3): 489-506.
    [103] Song Q. L., Xiao R., Deng Z. Y., Zheng W. G., Shen L. H. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor[J]. Energy & Fuels. 2008. 22(6), 3661-3672.
    [104] Song Q. L., Xiao R., Deng Z. Y., Zhang H. Y., Shen, L. H. Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor[J]. Energy Conversion and Management. 2008. 49(11): 3178-3187.
    [105] Song Q. L., Xiao R., Deng Z. Y., Shen L. H., Xiao J. Effect of temperature on reduction of CaSO4 oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor[J]. Industrial & Engineering Chemical Research. 2008. 47(21): 8148-8159.
    [106] H. Y. Sohn, B. S. Kim. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants. 1. Determination of process feasibility[J]. Industrial & Engineering Chemistry Research.2002, 41(13), 3081-3086.
    [107] H. Y. Sohn, B. S. Kim. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants. 2. Kinetics of the reduction of sulfur dioxide by calcium sulfide powder[J]. Industrial & Engineering Chemistry Research. 2002, 41(13), 3087-3091.
    [108] B. S. Kim, H. Y. Sohn. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants. 3. Kinetics of the hydrogen reduction of the calcium sulfate powder to calcium sulfide. Industrial & Engineering Chemistry Research[J]. 2002, 41(13), 3092-3096.
    [109] H. Y. Sohn, B. S. Kim. A New Process for converting SO2 to sulfur without generating secondary pollutants through reactions involving CaS and CaSO4[J]. Environmental Science & Technology. 2002, 36(13), 3020-3024.
    [110]肖海平,周俊虎,曹欣玉,范红宇. CaSO4在不同气氛下分解特性的实验研究[J].动力工程, 2004, 24 (6): 889-892.
    [111] Felix B., Dirk B. Bassanite (CaSO4·0.5H2O) dissolution and gypsum (CaSO4·2H2O) precipitation in the presence of cellulose ethers[J]. Journal of Crystal Growth. 2001, 233(4), 837-845.
    [112] Vasilije M., Borislav G., Davor L. Modeling of inherent SO2 capture in coal particles during combustion in fluidized bed[J]. Chemical Engineering Science. 2006, 61(5), 1676-1685.
    [113] Tarelho L. A., Matos M. A., Pereira F. J. The influence of operational parameters on SO2 removal by limestone during fluidised bed coal combustion[J]. Fuel Processing Technology. 2005, 86(12), 1385-1401.
    [114] Flynn J. H. Thermal analysis kinetics-past, present and future[J]. Thermochimica Acta, 1992, 203(1): 519-526.
    [115] Prasad T. P., Kanungo S. B., Ray H. S. Non-isothermal kinetics: some merits and limitations[J]. Thermochimica Acta, 1992, 203(1): 503-514.
    [116] Coats A. W., Redfern J. P. Thermogravimetric analysis[J]. A review. Analyst, 1963, 88(1053): 906-924.
    [117]胡荣祖,高胜利,赵风起,史启祯,张同来,张建军.热分析动力学.第2版[M].北京.科学出版社. 2008.
    [118] Vyazovkin S. Alternative description of process kinetics[J]. Thermochimica Acta. 1992, 211(1): Pages 181-187.
    [119] Chen H., Liu N. New procedure for derivation of approximations for temperature integral[J]. AIChE J. 2006, 52 (12): 4181-4185.
    [120] Cai J., Yao F., Yi W., He F. New temperature integral approximation for nonisothermalkinetics[J]. AIChE J. 2006, 52 (4): 1554-1557.
    [121] Coats A. W., Redfern J. P. Kinetic Parameters from Thermogravimetric Data[J]. Nature. 1964. 201, 68-69.
    [122] Agrawal R. K. A new equation for modeling nonisothermal kinetics[J]. Journal of Thermal Analysis, 1987, 32(1): 149-156.
    [123] Zsako J. Empirical formula for the exponential integral in non-isothermal kinetics[J]. Journal of Thermal Analysis, 1975, 8(3): 593-596.
    [124]潘云祥,管翔颖,冯增媛.用双外推法讨论固态草酸钴(Ⅱ)二水合物脱水过程的动力学机理[J].高等学校化学学报. 1999, 20(7): 1091-1096.
    [125]潘云祥,管翔颖,冯增媛.双外推法研究FeC2O4·2H2O脱水处理过程的动力学机理[J].物理化学学报. 1998, 14 (12): 1088-1093.
    [126]潘云祥,管翔颖,冯增媛.一种确定固相反应机理函数的新方法-固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J].无机化学学报. 1998, 15 (2): 247-251.
    [127] Ozawa T. A new method of analyzing thermogravimitric data[J]. Bulletin of the Chemical Society of Japan. 1965, 38(11):1881-1886.
    [128] Flynn J. H., Wall L. A. A quick, direct method for the determination of. activation enery from thermograimetric data[J]. Journal of Polymer Science Part B: Polymer Letters. 1966, 4(3): 323-328.
    [129] Fushimi C., Araki K., Yamaguchi Y., Tsutsumi A. Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution[J]. Industrial & Engineering Chemical Research. 2003, 42(17): 3929-3936.
    [130] Meng M., Hu H., Zhang Q., Li X., Wu, B. Pyrolysis behaviors of tumuji oil sand by thermogravimetry (TG) and in a fixed bed reactor[J]. Energy & Fuels. 2007, 21(4): 2245-2249.
    [131] Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions: A variant on the Ozawa-Flynn-Wall method[J]. Thermochimica Acta. 1996, 285(2): 309-323.
    [132] Anheden M., Svedberg G. Chemical-looping combustion combination with integrated coal gasification-a way to avoid CO2 emission from coal fired power plants without a significant decrease in net power efficiency[C]. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.1996, Washington D. C.
    [133] Jin H. G., Ishida M. A new type of coal gas fueled chemical-looping combustion[J]. Fuel, 2004, 83(17-18): 2411-2417.
    [134] Abad A., Garcia L. F., de Diego L., Gayan, P.,Adanez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carrier using syngas (CO+H2) for chemical looping combustion[J]. Energy & Fuels, 2007, 21(4): 1843-1853.
    [135] Siriwardane R., Poston J. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carriers supported bentonite[J]. Energy & Fuels, 2007, 21(3): 1582-1591.
    [136]陈钟秀,顾飞燕,胡望明.化工热力学.第2版[M].北京.化学工业出版社. 2001.
    [137] Wang, B. W., Yan, R., Lee, D. H, Liang, D. T. Thermodynamic investigation of carbon deposition and sulfur evolution in chemical looping combustion with syngas[J]. Energy & Fuels. 2008, 22(2): 1012-1020.
    [138] Lyngfelt A., Leckner B. Sulfur capture in circulating fluidized-bed boilers: decomposition of CaSO4 under locally reducing conditions[J]. Journal of the Institute of Energy. 1998, 71(1): 27-32.
    [139]肖海平,周俊虎,曹欣玉,范红宇,程军,岑可法. CaSO4在CO气氛下的平行竞争反应实验与模型研究[J].燃料化学学报. 2005, 33(2): 150-154.
    [140]范红宇.不同气氛下高温固硫产物硫酸钙和硫化钙相互转化机理研究[D].杭州:浙江大学, 2004.
    [141] Li H. J., Zhuang Y. H. Catalytic reduction of calcium sulfate to calcium sulfide by carbon monoxide[J]. Industrial & Engineering Chemistry Research. 1999, 38(9): 3333-3337.
    [142] Zadick T. W., Zavaleta R., Mccandless F. P. Catalytic reduction of calcium sulfate to calcium sulfide with carbon monoxide[J]. Industrial & Engineering Chemistry Research. 1972, 11(2): 283-287.
    [143] Bossio L. M., Squier S. E., Pulsifer A. H. Reductive decomposition of calcium sulfate utilizing carbon monoxide and hydrogen[J]. Chemical Engineering Science. 1985, 40(9): 319-324.
    [144] Oh J. S., Wheelock T. D. Reductive decomposition of calcium sulfate with carbon monoxide: Reaction mechanism[J]. Industrial & Engineering Chemistry Research. 1990, 29(4): 544-550.
    [145]陈汉平,赵向富,米铁,代正华.基于Aspen Plus平台的生物质气化模拟[J].华中科技大学学报:自然科学版. 2007, 35(9):49-52.
    [146]宋新南,徐惠斌,房仁军,王惠桐,顾加强.基于Aspen Plus的生物质燃烧NOx生成模拟[J].环境科学学报. 2009, 29(8): 1696-1700.
    [147]王彩红,林雄超,董敏,王永刚. Aspen Plus在化工实验教学和科研中的应用[J].化工时刊. 2009, 23(6): 73-75.
    [148]邢春发,崔秋凯,徐显明,王斯晗,张永军,张忠涛,王凤荣.应用Aspen Plus模拟天然气、空气、水蒸气制合成气反应[J].化工科技市场. 2008, 31(4): 22-23.
    [149]张巍巍,陈雪莉,王辅臣,代正华,于遵宏.基于Aspen Plus模拟生物质气流床气化工艺过程[J].太阳能学报. 2007, 28(12): 1360-1364.
    [150]林立. Aspen Plus软件应用于煤气化的模拟[J].上海化工. 2006, 31(8): 1360-1364.
    [151]屈一新.化工过程数值模拟及软件[M].北京:化学工业出版社. 2006.
    [152] Aspen Technology Inc. Aspen Plus 121 User Guide[M]. Cambridge, USA. 2003.
    [153]朱开宏.化工过程流程模拟[M].北京:中国石化出版社. 1993.
    [154] Shen L. H., Gao Y., Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fuidized beds[J]. Biomass and Bioenergy. 2008, 32(2): 120-127.
    [155] Shen L. H., Zheng M., Xiao J., Zhang H., Xiao R. Chemical looping combustion of coal in interconnected fluidized beds. Science in China Series E: Technological Sciences[J]. 2007, 50(2): 230-240.
    [156]金红光.新颖化学链燃烧与空气湿化燃气轮机循环[J].工程热物理学报. 2000, 21(2): 138-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700