用户名: 密码: 验证码:
高贝利特硫铝酸盐水泥的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥熟料生产的CO2排放约有65%来自石灰石的碳酸盐分解,仅有35%来自燃料的燃烧排放,基于材料本征的排放特点,通过优化工艺提高能效、辅助胶凝材料使用等措施减排的潜力日益减小,而从水泥基材料组成本身进行创新成为全球研究的焦点。
     本文通过对熟料矿物的形成温度、形成焓、单位矿物CO2排放量等多重因素进行低钙低碳优化设计,实现了不含高钙矿物-阿利特(C3S)、以贝利特(C2S)和硫铝酸盐(C4A3S)为主导矿物的低能耗、低CO2排放C2S-C4A3S-C4AF三元熟料体系(Belite Calcium Sulfo-Aluminate, BCSA)。通过矿物组成优化匹配及晶体的稳定与活化,制备出性能优于但能耗和排放远低于普通硅酸盐水泥的BCSA水泥。与普通硅酸盐水泥相比,BCSA水泥生产过程中可节约石灰石28%和标煤约16%以上,减少CO2排放20%以上,实现了通过水泥基材料创新达到节能降耗的目的。
     本文利用XRD、红外光谱IR和SEM等方法,围绕BCSA的矿物组成设计、离子掺杂作用机理、工业试生产及其水泥混凝土性能,主要研究了以下内容:
     (1)熟料低钙组成设计和高温矿相形成研究
     确定了熟料低钙低碳矿物组成的原则。由C2S-C4A3S-C4AF三元矿物组成的熟料体系里,CaA3S和C2S分别是熟料的早期强度和中后期强度的来源。
     研究了C2S、C4A3S和C4AF三种矿物的形成温度和最佳范围,阐明了三种矿物的共存温度区间1250-1350℃。研究了熟料的易烧性、主要熟料矿物C4A3S和C2S的形成和结晶发育状况、以及熟料的物理性能。研究表明,BCSA熟料的最佳烧成温度范围是1280-1320℃,在该温度范围内烧制的熟料具有良好的工作性和物理力学性能。
     (2) BCSA熟料矿物优化匹配和熟料/石膏作用机理
     确定了BCSA熟料矿物组成范围为C2S36-56%, C4A3S32-42%和C4AF5-9%。在上述矿物组成范围内,BCSA熟料具有最佳的物理性能,3天和28天抗压强度分别达到34.3MPa和55.1MPa。
     研究了BCSA熟料与石膏的相互作用机理。石膏掺量显著影响BCSA水泥的性能,确定了石膏最佳掺量范围为12.5-15%。石膏主要是与C4A3S发生反应形成钙矾石。在浆体结构中,钙矾石与其他水化产物一起形成密实的空间网架结构。
     (3)离子掺杂对熟料矿物晶体的稳定与活化机理研究
     p晶型C2S水化速率慢,早期强度低,一直影响着这种矿物在熟料中的作用。本文着重研究了提高β-C2S活性的方法和作用机理。研究表明,外掺离子Ba2+、P5+和Zn2+等离子均可进入p-C2S晶格,引起晶格畸变,并且在矿物表面发生富集,使得矿物晶体细化,增强了p-C2S的水化反应活性。同时发现在多种矿物共存的熟料体系中,部分外掺离子进入CSA矿物晶格中,引起晶格畸变,提高了CSA水硬性。β-C2S和C4A3S两种矿物共存时,外掺离子影响其活性的显著性依次为:Ba2+>P5+>Zn2+>B3+。
     掺入Ba2+的熟料制得的水泥,其28d抗压强度达到69.7MPa,比未掺杂空白样强度提高了15MPa(26.5%)。
     (4) BCSA水泥工业试生产关键技术的研究
     利用现有水泥工艺设备和工业原燃料,全球首次在带五级预热器窑的新型干法生产线上进行了BCSA水泥工业化试生产的关键技术研究,实现了该水泥在新型干法生产线的工业化试生产。确定了工业化制备的主要工艺参数,所生产水泥的3d强度达43.7MPa,28d强度达66.9MPa。
     (5) BCSA水泥混凝土力学性能及耐久性研究
     结果表明,BCSA水泥配制混凝土具有良好的力学性能(抗折抗压强度、劈拉强度、轴心抗压强度等)和耐久性能(包括抗渗性、抗冻性、氯离子渗透性、抗硫酸盐侵蚀性、抗碳化性能、体积稳定性等)。这些性能均优于普通水泥配制的混凝土性能。分析表明,BCSA水泥需水量少,浆体内部孔隙率较低,且水化产物中钙矾石形成过程伴随的微膨胀增加硬化浆体结构的致密度。这是BCSA水泥混凝土具有良好的力学性能和耐久性能的主要原因。
During the process of clinker production, roughly65%of the CO2emission is from the decomposition of limestone, and only around35%is from the combustion of fuels. Some levers were used to reduce the CO2emission, including increasing energy efficiency by optimizing processes, and increasing cementitious additions into the cement, etc. In terms of the fact that most of the emission is from limestone, there is less potential for conventional levers to mitigate CO2. Research on new cementitious binder has become a global focus.
     According to low calcium and low carbon design on clinker minerals composition, a type of C2S-C4A3S-C4AF clinker system (BCSA) with low energy consumption and low emission is developed. High energy consumption and high emission mineral C3S is replaced by low energy consumption and low emission minerals, belite (C2S) and sulphoaluminate (C4A3S). Through optimizing and activating the clinker minerals, the cement made of BCSA clinker can attain better properties with much less emission than OPC. Compared with OPC, BCSA cement consumes28%less limestone and16%less coal, and generates20%less CO2.
     Many aspects of the BCSA clinker are studied through the tests of XRD, Infrared, SEM, etc. in this paper. The following main parts are researched in this paper:
     (1) Low calcium design of clinker and clinkering of BCSA
     The new clinker system is based on low calcium and low carbon minerals principle. C4A3S and C2S are providing the early strength and later strength of the clinker respectively in the C2S-C4A3S-C4AF clinker system.
     The clinkering temperature ranges of the minerals are studied. Considering the formation of well crystallized β-C2S and C4A3S, as well as the nucleation quantity of crystals, the optimum temperature range is1280~1320℃to ensure better properties.
     (2) Optimization of clinker mineral composition and clinker-gypsum reaction mechanism
     It is defined that the ideal range for mineral composition of BCSA clinker is C2S36-56%, C4A3S32-42%and C4AF5-9%. The clinker can reach34.3MPa and55.1MPa respectively at3days and28days.
     The reaction mechanism between BCSA clinker and gypsum is studied. It is showed that the best range for gypsum content is12.5-15%. Gypsum reacts with C4A3S to form ettringite, and then the ettringite forms a compacted network with other hydrates.
     (3) Activating technologies for BCSA clinker minerals through ion doping
     Low hydration rate of β-C2S and low early strength has been bottleneck of the effect of C2S in the clinker. The measures to increase the reactivity of P-C2S and its mechanism are studied. It is shown that foreign ions of Ba2+, P5+and Zn2+have effects on stabilization of β-C2S and activation of both β-C2S and C4A3S. Distortion defects of the lattice are occurred by the foreign ions via entering into the lattice of the β-C2S crystal structure, thus to prevent the transformation from β-C2S to γ-C2S, and accelerate the nucleation of P-C2S. In addition, the foreign ions can easily concentrate on crystal boundary and prevent the growth of crystal grains, eventually enhance the reactivity of P-C2S. Further study shows that the foreign ions enter into the lattice of C4A3S and cause distortion, as a result, the reactivity of C4A3S is enhanced as well. The sequence of combined effects of different ions on the reactivity of β-C2S and C4A3S:Ba2+>P5+>Zn2+>B3+.
     The compressive strength of cement from Ba2+doped clinker can reach69.7MPa at28d, nearly15MPa higher than reference one.
     (4) Key technology for trial production of BCSA cement on a line with NSP process
     BCSA cement is produced using existing NSP process and equipment, conventional raw materials and fuel. It was the first time in the world to produce BCSA cement on a real line. Main parameters for production are researched during the trial production. The compressive strength of BCSA cement produced can reach43.7MPa at3d and66.9MPa at28d.
     (5) Mechanical properties and durability of BCSA concrete
     It is showed that BCSA-30concrete has good mechanical properties. And BCSA-30concrete has higher durability than OPC concrete in terms of frost resistance, sulphate resistance, drying shrinkage, etc. That is mainly due to the lower water demand, lower porosity, micro-expansion of ettringite and much denser hydration products.
引文
[I]P.K. Mehta, Energy, resources, and the environment-a review of the US cement industry[J], World Cem Technol,1978,9(5):144-160.
    [2]Chatterjee, A.K. High belite cements-Present status and future technological options:Partl[J], Cement and Concrete Research,268 Aug,1996,pp.1213.
    [3]Fukuda, Koiehiroandlto, Suketoshi. Journal of the Ameriean Ceramic society, v 82 n3 1999 American Ceramic Soc. pp.637-640.
    [4]刘秉金.高贝利特水泥的性能及其效益[J].吉林建材,1996(2):43-48.
    [5]Keith Quillin*. Performance of belite-sulfoaluminate cements[J], Cement and Concrete Research,2001(31):1341-1149.
    [6]A. Guerrero, S. Go-ni*, A. MacoAas. Durability of new fly ash-belite cement mortars in sulfated and chloride medium [J]. Cement and Concrete Research,2000,30:1231-1238.
    [7]A. Guerrero*, S. GonA i, A. MacoAas, M.P. LuxaAn. Effect of the starting fly ash on the microstructure and mechanical properties of fly ash-belite cement mortars[J]. Cement and Concrete Research,2000,30:553-559.
    [8]Ying-Liang Chen a,b, Chien-Jung Lin c, Ming-Sheng Ko d, Yi-Chieh Laie, Juu-En Chang a,b,*, Characterization of mortars from belite-rich clinkers produced from inorganic wastes. Cement Concrete Composition[J],2011(33):261-266.
    [9]A.Guerrero, S. Go-ni, V.R. Allegro. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack [J]. Journal of Hazardous Materials,161 (2009) 1250-1254.
    [10]A.OEztuE rk, Y. Suyadal, H. Oguz. The formation of belite phase by using phosphogypsum and oil shale[J]. Cement and Concrete Research,30 (2000):967-971.
    [11]A. Guerrero, S. Go-ni*, V.R. Allegro. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste:Influence of temperature[J]. Journal of Hazardous Materials,2009:1099-1022.
    [12]A. Guerrero, S. Goni, A. Macias, M.P. Luxan. Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars[J]. Cement and Concrete Research,29 (1999) 1753-1758.
    [13]K. Pimraksa, S. Hanjitsuwan, P. Chindaprasirt. Synthesis of belite cement from lignite fly ash. Ceramics International,35 (2009) 2415-2425.
    [14]Larbi Kacimi, Martin Cyr, Pierre Clastres. Synthesis of a'L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. Journal of Hazardous Materials,181 (2010) 593-601.
    [15]C.D. Popescu, M. Muntean, J.H. Sharp. Industrial trial production of low energy belite cement. Cement & Concrete Composites,25 (2003) 689-693.
    [16]Fabiano Raupp-Pereira, Richard James Ball, Joao Rocha, Joao A. Labrincha, Geoffrey C. Allen. New waste based clinkers:belite and lime formulations. Cement and Concrete Research,38 (2008) 511-521.
    [17]Antonio J.M. Cuberos, Angeles G. De la Torre, M. Carmen Martin-Sedefio, aureano Moreno-Real, Marco Merlini, Luis M. Ord6nez, Miguel. A.G. Aranda. Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints. Cement and Concrete Research,39 (2009) 833-842.
    [18]杨南如,钟白茜.活性β-C2S的研究[J].硅酸盐学报,1982,10(2):161.
    [19]D.C. Hughes, D. Jaglin, R.Kozl owski, D. Mucha. Roman cements-belite cements calcined . at low temperature. Cement and Concrete Research,39 (2009) 77-89.
    [2Q]隋同波,文寨军.低能源资源消耗、低环境负荷和高性能水泥——高贝利特水泥[J].中国建材,2009,9:62.
    [21]隋同波,刘克忠,王晶,等.高贝利特水泥的性能研究[J].硅酸盐学报,1999,27(4):488-492.
    [22]SUI Tongbo, GUO Suihua, LIU Kezhong, et al. Research on high belite cement, Part I[J], Beijing International Symposium on Cement and Concrete,1998,(10):26-29.
    [23]SUI Tongbo, LIU Kezhong, WANG Jing, et al, Research on high belite cement, Part II[J], Beijing International Symposium on Cement and Concrete,1998, (10):26-29.
    [24]S. Go-ni, A. Guerrero, M.P. Lorenzo. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. Journal of Hazardous Materials, B137 (2006) 1608-1617.
    [25]Tongbo SUI, Lei Fan, Zhai Jun, Jing Wang and Zhonglun Zhang. Study on the properties of High strength concrete using belite cement[J]. Journal of Advanced Concrete Technology. 2004,2(2):201-206.
    [26]Lerch, W and Bogue, R.H.J.Res.Natl Bur.Stand.12, pp645
    [27]朱清江.高强高性能混凝土的研制及应用[M],中国建材工业出版社,PP.165.
    [28]A.K.Chatterjee, High belite cements-Present status and future technological option[J],Cement and Concrete Research[J], Vol.26, No.8,1996, pp1214-1215.
    [29]W.C.Hansen, Proc.4th ICCC,Vol.2, Washington,1960, pp1800.
    [30]“混凝土新型胶凝材料的研究”科学技术成果鉴定证书,2000年6月。
    [31]Mori,H. and Sudoh, G. Effective utilization of gypsum for cement manufacturing[J]. Paper presented during US-Japan Science Seminar, San Francisco,10-13 September 1979.
    [32]S. Peysson, J. Pe'ra, M. Chabannet. Immobilization of heavy metals by calcium sulfoaluminate cement. Cement and Concrete Research,35 (2005) 2261-2270.
    [33]C.A. Luz, J. Pera, M. Cheriaf, J.C. Rocha. Behavior of calcium sulfoaluminate cement in presence of high concentrations of chromium salts[J]. Cement and Concrete Research,37 (2007) 624-629.
    [34]Celine Cau Dit Coumes, Simone Courtois, Sandrine Peysson, Jean Ambroise, Jean Pera. Calcium sulfoaluminate cement blended with OPC:A potential binder to encapsulate low-level radioactive slurries of complex chemistry[J]. Cement and Concrete Research,39 (2009) 740-747.
    [35]C.A. Luz, J.C. Rocha, M. Cheriaf, J. Pera. Use of sulfoaluminate cement and bottom ash in the solidification stabilization of galvanic sludge. Journal of Hazardous Materials, B136 (2006) 837-845.
    [36]C.A. Luz, J.C. Rocha, M. Cheriaf, J. Pera. Valorization of galvanic sludge in sulfoaluminate cement. Construction and Building Materials,23 (2009) 595-601.
    [37]G.R. Qian, J.Shi, Y.L. Cao, Y.F.Xu, P.C. Chui. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization solidification on heavy metals. Journal of Hazardous Materials,152(2008) 196-203.
    [38]G.Sudoh, T.Ohta and H.Harada. Proc.7th int.Con.Cem.Chem., Paris 1980,Vol, Ⅲ, p.V-152.
    [39]Deng Jun-An, Ge Wen-Min, Su Mu-Zehn and Li Xiu-Ying[J], Proc.7th Int.Con. Cem.Chem., Paris 1980, Vol. Ⅳ. p.V-381.
    [40]D. Kalogridis, G.Ch. Kostogloudis, Ch. Ftikos, Ch. Malami. A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement. Cement and Concrete Research,30 (2000) 1731-1740.
    [41]刁江京,辛志军,张秋英.硫铝酸盐水泥的生产与应用[M].中国建材工业出版社,2006,1:1-5.
    [42]Marie Michel, Jean-Francois Georgin, Jean Ambroise, Jean Pera. The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement. Construction and Building Materials,25 (2011) 1298-1304.
    [43]H.Y. Ghorab, E.A. Kishar, S.H. Abou Elfetouh. Studies on the stability of the calcium sulfoaluminate hydrates. Cement and Concrete Research, Vol.28, No.5, pp.763-771,1998.
    [44]Cecilie Evju, Staffan Hansen. The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate. Cement and Concrete Research, 35(2005)2310-2321.
    [45]Stephane Berger, Celine Cau Dit Coumes, Patrick Le Bescop, Denis Damidot. Hydration of calcium sulfoaluminate cement by a ZnCl2 solution:Investigation at early age. Cement and Concrete Research,39 (2009) 1180-1187.
    [46]Graziella Bernardo, Antonio Telesca, Gian Lorenzo Valenti. A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cement and Concrete Research,36 (2006) 1042-1047.
    [47]Frank Winnefeld, Barbara Lothenbach. Hydration of calcium sulfoaluminate cements-Experimental findings and thermodynamic modelling. Cement and Concrete Research,40 (2010) 1239-1247.
    [48]B.A.Clark, P.W. Brown. The formation of calcium sulfoaluminate hydrate compounds Part Ⅰ. Cement and Concrete Research,29 (1999) 1943-1948.
    [49]B.A.Clark, P.W. Brown. The formation of calcium sulfoaluminate hydrate compounds Part Ⅱ. Cement and Concrete Research,30 (2000) 233-240.
    [50]Haoxuan Li, Dinesh K. Agrawal, Jiping Cheng, Michael R. Silsbee. Microwave sintering of sulphoaluminate cement with utility wastes. Cement and Concrete Research,31 (2001) 1257-1261.
    [51]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M],北京工业大学出版社,1999,12:pp60.
    [52]Alaoui A. et al. New cements for sustainable development[J]. ICCC 2007,Montreal, Canada.
    [53]L. Jinyu, F. Yueming, Y. Jiazhi, The mechanical activation of belite[J], Proc.9th Int. Congr. Chem. Cem.3, NCB, New Delhi,1992, p.51.
    [54]吕辉,钟景裕,樊粤明.贝利特的机械力化学活性[J],华南理工大学学报,1996,23(3):116-123.
    [55]J. Stark, A. Muller, R. Seydel, K.Jost. Conditions of the existence of hydraulically active belite cement[J]. Proc.8th Int. Congr. Chem. Cem., Rio de Janeiro 2.
    [56]I. Mielke, A. Muller, J. Stark, Active belite cement[J], Proc.9th Int. Congr. Chem. Cem., New Delhi, India 2, NCB, New Delhi,1992,p.399.
    [57]H. Uchikawa, Management strategy in cement technology for the next century:part 3[J], World Cem., (1994) 47 (November).
    [58]P.K. Mehta, Investigation on energy-saving cements[J], World Cem Technol,1980,11 (4): 144-160.
    [59]Kusnetsova T V. State of the art and prospects of special cements[J]. International congress on chemistry of cement,8th, Rio.Brazuk,1986,1:283-291.
    [60]M Carmen Martin-Sedeno, Antonio J.M. Cuberos, Angeles G. De la Torre, Gema Alvarez-Pinazo. Aluminum-rich belite sulfoaluminate cements:Clinkering and early age hydration[J]. Cement and Concrete Research.2010,(40):359-369.
    [61]F.P. Glasser, L. Zhang. High-performance cement matrices based on calcium sulfoaluminate-Belite compositions. Cement and Concrete Research,31 (2001) 1881-1886.
    [62]Vladimir Zivica. Properties of blended sulfoaluminate belite cement. Construction and Building Materials,14 2000 433] 437.
    [63]N. Sherman, J. Beretkal, L. Santoro, G.L. Valenti. Long-term behavior of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate. Cement and Concrete Research, Vol.25. No.1, pp.113-126,1995.
    [64]张巨松,李好新,隋智通.高硅贝利特-硫铝酸盐水泥与矿渣复合的实验研究[J].沈阳建筑工程学院学报(自然科学版),2002,18(3):36-38.
    [65]要秉文,梅世刚,罗永会,吕臣敬.高贝利特硫铝酸盐水泥的熟料煅烧及其强度[J].硅酸盐通报.2008,27(3):601-605.
    [66]Zhngyuan LU, Kefeng Tan. Activity of P-C2S under different sintering conditions[J]. Cement and Concrete Research.1997,27(2):989-993.
    [67]方永浩,徐玲玲,杨南如.贝利特活化途径及高贝利特水泥[J].水泥工程,1998(2):26-33.
    [68]张雄.C2S转晶反应定量调控[J].硅酸盐学报,1995,23(6):680-684.
    [69]Cuberos AJ, De la Torre AG, Alvarez-Pinazo G, Martin-Sedeno MC, Schollbach K, Pollmann H, Aranda MA. Active iron-rich belite sulfoaluminate cements:clinkering and hydration[J]. Environ Sci Technol.2010,44(17):6855-62.
    [70]Irvin A. Chen, Maria C.G. Juenger. Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers. Cement & Concrete Composites,2012, (34):893-902.
    [71]Khadija Morsli, Angeles G. de la Torre, Mohammed Zahir, Miguel A.G. Aranda. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cement and Concrete Research,37 (2007) 639-646.
    [72]刘晓存,李艳君,朱宏军.铬渣配料制备贝利特-硫铝酸盐水泥[J].水泥·石灰,1992,(3):7-10.
    [73]李艳君,刘晓存,曹同芳,欧天安.Cr2O3、MgO对贝利特-硫铝酸钙水泥熟料矿物形成的影响[J].山东建材学院学报.1998,2(4):91-93.
    [74]刘晓存,李艳君,欧天安.Cr203及MgO对贝利特-硫铝酸钙水泥性能的影响[J].水泥工程,1998(5):15-17.
    [75]Xiaocun Liu, Yanjun Li. Effect of MgO on the composition and properties of alite-sulphoaluminate cement. Cement and Concrete Research,35 (2005) 1685-1687.
    [76]Xiaocun Liu, Yanjun Li, Ning Zhang. Influence of MgO on the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals in alite-sulphoaluminate cement. Cement and Concrete Research,32 (2002) 1125-1129.
    [77]张巨松,回志峰,高飞,等.晶型稳定剂对高硅贝利特硫铝酸盐水泥强度的影响[J].沈阳建筑大学学报(自然科学版),2005,21(1):38-42.
    [78]冯修吉,龙世宗.微量离子对β-C2S稳定性的影响及其机理研究[J].硅酸盐学报,1985,13(4):424-432.
    [79]冯修吉,汪澜,龙世宗,孙文华.掺杂p-C2S的晶粒尺寸和微观应力及其与水化活性的关系[J].硅酸盐学报,1988,16(6):552-556.
    [80]沈德勋,腾敏康,尹传元,冯修吉,龙世宗.用正电子湮没技术研究掺杂粉末p-C2S的缺陷[J],核技术,1989,12(5):288-291.
    [81]杨淑珍.掺杂对β-C2S结构和性能的影响[J].武汉工业大学学报,1991,2:59-65.
    [82]张巨松,回志峰,高飞,安会勇.晶型稳定剂对高硅贝利特硫铝酸盐水泥强度的影响[J].沈阳建筑大学学报,2005,21(1):38-42.
    [83]Irvin M.Pritts, Kenneth E.Daugherty. The Effect of Stabilizing Agents on the Hydration Rate of β-C2S[J]. Cem. Concr. Res.1976:6(6):783-796.
    [84]My.Y. Benarchid, J. Rogez*. The effect of Cr2O3 and P2O5 additions on the phase transformations during the formation of calcium sulfoaluminate C4A3S [J]. Cement and Concrete Research.2005(35):2074-2080.
    [85]冯修吉,廖广林.3CaO·3Al2O3·CaSO4的结构及水化速率的探讨[J].武汉工业大学学报,1988,10(3):1-6.
    [86]张文生,余其俊,冯修吉.含钡硫铝酸盐水泥熟料煅烧过程的研究[J].建筑材料学报,1998,1(2):182-185.
    [87]常钧,芦令超,刘福田,等.含钡硫铝酸钙水泥矿物的研究[J].硅酸盐学报,1999,27(6):644-650.
    [88]芦令超,张卫伟,轩红钟,程新.贝利躺卜硫铝酸钡钙水泥的锻烧及其性能[J].2008,36(S1):165-169.
    [89]张卫伟,芦令超,常钧.贝利特-硫铝酸钡钙水泥的制备技术与力学性能[J].硅酸盐通报,2007,26(2):344-400.
    [90]芦令超,张卫伟,轩红钟等.贝利特-硫铝酸钡钙水泥的煅烧及其性能[J].硅酸盐学报,2008,36(1):165-169.
    [91]E. Dourdounis, V. Stivanakis, G.N. Angelopoulos, E. Chaniotakis,E.Frogoudakis, D. Papanastasiou, D.C. Papamantellos. High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite. Cement and Concrete Research,34 (2004) 941-947.
    [92]G. Kakali, S. Tsivilis, K. Kolovos, N. Voglis, J. Aivaliotis, T. Perraki.E. Passialakou, M. Stamatakis. Use of secondary mineralizing raw materials in cement production. A case study of a wolframite-stibnite ore. Cement & Concrete Composites,27 (2005) 155-161.
    [93]P. Arjunan, Michael R. Silsbee, Della M. Roy*. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products[J]. Cement and Concrete Research.1999 (29):1305-1311.
    [94]张海文,兰明章.利用工业废渣烧制高贝利特硫铝酸盐水泥的探索性研究[J].新世界水泥导报.2002(1):25-29.
    [95]刘瑞红,华卫东,李发堂.固硫渣烧制贝利特硫铝酸盐水泥的研究[J].粉煤灰综合利用.2008,5:19-20.
    [96]黎奉武,黄少文,贾江涛.利用钙铝渣和低品位铝矾土制备贝利特硫铝酸盐水泥的研究[J].水泥,2012(6):10-12.
    [97]刘祥.砂岩代替部分粘土生产优质水泥[J].水泥技术,2002,01:70-71.
    [98]孙贵信.用砂岩配料生产高标号水泥熟料[J].建材工业信息,1998,3:12
    [99]Christopher Hall, Karen L. Scrivener. Oil well Cement Clinkers:X-ray Microanalysis and Phase Composition [J]. Advn Cem Bas Mat.1998,7:28-38.
    [100]F.M.Lea.水泥和混凝土化学(中译本),中国建筑工业出版社,北京,1974,pp104,223,264.
    [101]郭勇.铁铝酸盐水泥中铁相水化特征的研究[J].硅酸盐学报,1984,17(4):296-301.
    [102]J.Beretka, M.Marroccoli, N.Sherman, G.L.Valenti, The influence of C4A3S content and w/s ratio on the performance of calcium sulfoaluminate-based cements[J], Cem. Concr. Res. 26 (11) (1996) 1673-1681.
    [103]Maneesh Singh, P.C. Kapur, Pradip, Preparation of calcium sulphoaluminate cement using fertiliser plant wastes[J], Journal of Hazardous Materials,157 (2008) 106-113.
    [104]I. Janotkaa, L'. Krajcia, A. Rayb, S.C. Mojumdarc. The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with Portland cement. Cement and Concrete Research,33 (2003) 489-497.
    [105]J. Ambroise, J.F. Georgin, S. Peysson, J. Pera. Influence of polyether polyol on hydration and engineering properties of calcium sulfoaluminate cement. Cement & Concrete Composites,31 (2009)474-482.
    [106]I. Maki, K. Fukuda, T. Imura, H. Yoshida, S. Ito. Formation of belite clusters from quartz grains in portl and cement clinker. Cement and Concrete Research, Vol.25, No.4, pp. 835-840.1995.
    [107]张文生,郭随华,王宏霞,张洪滔,唐润荣,陈益民.硅酸盐水泥熟料的易磨性及其影响因素[J].水泥工程,204(1):11-18.
    [108]吕辉,钟景裕,樊粤明.贝利特的机械力化学活化[J].华南理工大学学报.1996,24(3):116-123.
    [109]冯修吉,龙世宗.微量离子对β-C2S稳定性的影响及其机理研究[J].硅酸盐学报,1985,13(4):424-432.
    [110]江虹.红外分析在水泥化学中的应用[J].贵州化工,2001,26(4):30-32.
    [111]欧阳骁.国家重要矿产的供需综合研究—以重晶石为例[J].现代商贸工业,2008,20(4):277-278.
    [112]巴布什金,马特维耶夫,硅酸盐热力学[M].中国建筑工业出版社,北京,1983,1:31.
    [113]中国建筑材料科学研究总院水泥研究院编著.水泥热工测量[M],中国建筑工业出版社.北京,1979,12:pp179-180.
    [114]马保国,田键.水泥热工过程与节能[M].化工工业出版社,北京,2010,1:pp:82-96.
    [115]H. F.W.Taylor, Cement Chemistry, Second edition, Aberdeen,1997.
    [116]Adam Neville. Consideration of durability of conerete structure:Past, present, and future[J]. Materials and Structure. March2001. PP:114-118.
    [117]顾世安,混凝土抗冻耐久性试验分析[J].低温建筑技术.2009,11:10-11.
    [118]V.Kasselouri, P.Tsakiridis. A study on the hydration products of a non-expansive sulfoaluminate cement [J]. Cement and Concrete Research,1995,25(8):1726-1736.
    [119]F.P. Glasser, L. Zhang, Hydration of calcium sulfoaluminate cement at less than 24 h, Adv. Cem. Res 11(1) (1999) 35-41.
    [120]F.P. Glasser, L. Zhang, Calculation of the chemical water demand for hydration of calcium sulfoaluminate cement, Proceedings of the 4th Beijing International Symposium on Cement and Concrete, vol.3, International Academic publishers, Beijing, 1998, pp.97-108.
    [121]蔡高创,王卫仑,徐磊.硫铝酸盐水泥抗氯离子渗透性试验研究[J].人民黄河,2010,32(1):94-95.
    [122]张海燕,李光宇,袁武琴.混凝土碳化试验研究[J].中国农村水利水电,2006,8:78-81.
    [123]龚洛书,柳春圃.混凝上的耐久性及其防护修补[M].建筑工业出版社,北京:中国,1990.
    [124]郭斌,闵盘荣,王国宾.水化硅酸钙的碳化作用[J].硅酸盐学报,1984:12(3):287-296.
    [125]冯志龙.混凝土的干缩机理研究[J].应用能源技术,2008(11):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700