用户名: 密码: 验证码:
钴镍基材料在碱性溶液中的储能性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一些Co-X(如Co-B、Co-Si、Co-P、Co-S、Co-BN等)材料被发现在碱性体系中具有较高的放电容量和较好的循环稳定性。非活性部分溶解在电解液碱性KOH溶液中,在原有的钴颗粒间形成了大量的空隙,这有利于增大材料与电解液的接触面积,提高了电化学反应的效率,进而对纯Co电极的电化学性能改善起到了非常重要的作用。非金属元素Se具有与上述B、Si、P、S等相似的性质,可以溶解在碱性电解液中,且它的导电性较好,是一种传统的半导体材料,可以推测它在电化学方面具有和上述元素相似的功用,但是目前关于Se在镍基碱性二次电池中的应用却未见报道。
     本文采用化学还原法制备了Co-Se复合物,并将其用作碱性二次电池负极材料。放电电流密度为50mAg-1时其放电容量高达380mAhg-1,且循环稳定性良好:130周后,放电容量依然达到356.5mAhg-1,放电容量保持率在93.62%。同等条件下Co电极的放电容量只有130mAhg-1。这主要是由于复合物中的Se提高了Co的分散性能,同时Se在电化学反应过程中逐渐溶解,使电极内产生空隙,增加了Co与电解液接触的面积,提高了电化学反应的效率,进而提高了Co的利用率。对Se在此过程中的作用和反应机理进行了深入探究。
     采用物理球磨的方法制备Co-Se-C复合材料并将其用作镍基碱性二次电池负极材料。加入的Se和CNTs较大程度的提高了Co的放电容量,最大放电比容量达到450mAhg-1,同时材料的活化周期明显缩短。这主要是由于Se和CNTs的协同作用,Se的溶解增加了电极活性物质与电解液的接触;而CNTs的引入增加了材料的导电性和韧性。
     Co304是一种P型半导体,且其中Co的价态较高,是一种潜在的多电子反应电极材料,我们预测它和CoO、Co(OH)2等一样,有望在镍基碱性二次电池中应用。
     本文中采用溶解热和高温煅烧两步法制备了不同形貌的C0304,并将其用作碱性二次电池负极材料。在100mAg-1的电流密度下,多面体C0304最高放电容量能够达到399.9mAh g-1。继续采用降低前驱体煅烧温度的方法,使得材料的比表面积增大,最大放电容量提高至490.2mAhg-1,且循环稳定性良好。对CO3O4电极在充放电过程中的电化学反应机理进行了研究,发现C0304在充电过程中先转化成Co(OH)2,然后继续转化成Co。放电容量主要来源于Co(OH)2与Co的转化。
     镍钴氧化物/氢氧化物等由于具有较高的理论放电比容量、价格低廉、电化学氧化还原可逆性好等优点成为较有前途的新型超级电容器材料,目前虽然相关报道较多,但是关于材料的特殊形貌制备和性能研究尚不成体系。本文将以Co3O4、α-Ni(OH)2材料作为研究对象,研究其作为超级电容器电极材料的电化学性能。
     采用碳球模板法一步低温水热合成空心C0304微米球。系统研究了在140℃较低温度下前躯体的碳化过程。同时也考察了反应物浓度、反应时间等因素对碳球尺寸、厚度等的影响。采用500℃空气煅烧得到纯度较高的空心Co3O4微米球。研究了C0304的比表面积、孔径等对电化学性能的影响。由于材料具有较大的比表面积和较合适的孔径,在被用作电容器材料时显示了较高的比电容和优异的循环性能。
     利用不同的醇和水作混合溶剂,采用溶剂热法制备了不同形貌和比表面积的α-Ni(OH)2。研究了醇的物理性质对材料形貌的影响。当用二缩三乙--醇和水做混合溶剂时,制备的纳米线堆积的α-Ni(OH)2微米球比表面积达到318.6m2g1。在未复合其他材料的情况下,其放电比容量达到1788.9F g-1(放电电流密度为0.5A g-1),且循环性能良好。这主要是由于组成材料的纳米线尺寸较小,这种结构有效缩短了质子扩散路径,离子扩散阻力也很大程度得到了降低。同时材料的比表面积很大,使得电解液能够渗入活性物质内部,活性物质有效接触面积增大,从而提高了电化学反应效率。
A series of Co-X materials, such as Co-B, Co-Si, Co-P, Co-S, Co-BN and so on, are reported to demonstrate high discharge capacity and excellent cycle stability in alkaline rechargeable batteries. The inactive part can dissolve in alkaline aqueous, resulting in the creation of newly built interspaces among the Co particles. These newly built interspaces can increase the contact area between the active electrode materials of the electrodes and alkaline electrolyte. Thus the efficiency of electrochemical reactions is enhanced, resulting in better electrochemical performance than pure Co. As we know, Selenium can also dissolve in alkaline solutions, which is similar with B, Si, P and S. Besides, the electric conductivity of selenium is better than the above-mentioned elements. It is expected that Se has similar functions in electrochemical application. However, report on its application in alkaline rechargeable batteries has not been found.
     Co-Se composite is prepared through a chemical-reduction method and used as the negative electrode material of alkaline rechargeable batteries. The Co-Se composite shows a maximum discharge capacity of380mAh g-1at a current density of50mA g-1. After130cycles, the discharge capacity can still remain at356.5mAh g-1, with a retention rate of93.62%. As a comparison, the discharge capacity of pure Co is only130mAh g-1. This phenomenon can be explained as follows:the incorporation of Se improves the dispersibility of Co in the electrode. In addition, Se dissolves in the alkaline electrolytes, leading to more interspaces in the electrode, which is beneficial for increasing the contact area between the active materials and the electrolytes, thus enhances the efficiency of electrochemical reactions. Effect and function mechanism of Se in the electrochemical process are investigated in-depth.
     Co-Se-C composite is prepared through ball-milling method and used as the negative electrode material of alkaline rechargeable batteries. The discharge capacity of Co is obviously improved after the incorporation of Se and CNTs. The maximum discharge capacity of it can reach450mAh g-1at the discharge current density of50 mA g-1. Besides, the cycle number needed to reach the maximum discharge capacity is decreased. This can be attributed to the synergetic effect of Se and CNTs. The dissolution of Se enhances the effective contact between the active material and the electrolytes; whereas the introduction of CNTs improves the conductivity and toughness of the material.
     Co3O4is an important P-type semiconductor, in which the average valence of Co is8/3. So it is a potential multi-electron electrode material in alkaline rechargeable batteries. It is expected to display excellent performance as Co(OH)2and CoO.
     Co3O4with different morphologies are prepared by a solvothermal/calcination method. Their electrochemical performances as electrode materials of alkaline rechargeable batteries are investigated. The maximum discharge capacity of Co3O4polyhedrons can reach399.9mAh g-1at the discharge current density of100mA g-1. By lowering the calcination temperature, the BET surface area of the sample is enlarged and the electrochemical discharge capacity is increased. The maximum discharge capacity reaches490.2mAh g-1. And the cycle performance is excellent. Reaction mechanism of Co3O4during electrochemical performance is discussed in detail. Co3O4first changes to Co(OH)2in the charged state and then to Co. Faradaic reaction between Co and Co(OH)2accounts for most of the discharge capacity.
     Owing to their relative high specific capacitance, excellent reversible redox behavior and low cost, Cobalt/Nickel oxides and hydroxides have been considered as new types of supercapacitor electrode materials. Although many reports have been focused on them, preparation of materials with particular morphologies and excellent electrochemical performances are not systematic. In this paper, we will focus our eyes on Co3O4and a-Ni(OH)2. After consciously manipulating materials with3D hierarchical structures, electrochemical performances of them in supercapacitors are investigated systematically.
     Co3O4micro hollow spheres are prepared using carbon spheres as templates through a one-pot hydrothermal carbonization and calcination method. Carbonization process of the precursor at a low hydrothermal temperature of140℃is investigated by FTIR and Raman spectra. Effects of the concentration of the starting materials and hydrothermal reaction time on the size and thickness of carbon spheres are studied. When calcined at500℃in air, Co3O4hollow spheres with high purity are obtained. The role of BET surface area and pore diameter of Co3O4on their electrochemical performances are discussed. Owing to the relative high surface area and moderate pore diameter, the Co3O4micro hollow spheres display higher specific capacitance and excellent cycle performance.
     a-Ni(OH)2with different morphologies and BET surface areas are prepared through a solvothermal method using different alcohols and water as the mixing solvent. Effects of physical characters of alcohols on the morphologies of the product are studied. a-Ni(OH)2microspheres constructed by nanowires with a BET surface area of318.6m2g-1are obtained using triethylene glycol and water as the mixed solvent. Owing to the high BET surface area and large pore volume, this sample displays a high specific capacity of1788.9F g-1at a current density of0.5A g-1. Besides, rate performance of this sample is also excellent. This can be attributed to the small size of the nanowires constructing the microspheres, which can effectively shorten the proton diffusion distance and lower the ion diffusion resistance. Besides, the large BET surface area of the sample can ensure a sufficient contact between the active materials of the electrode and the electrolytes, making the chemically active materials almost100%usable for the redox reaction.
引文
[1]Shukla, A. K., Venugopalan, S., Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources,2001,100(1-2):125-148
    [2]Tong, G. X., Liu, F. T., Wu, W. H., et al. Polymorphous α- and β-Ni(OH)2 complex architectures:morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. CrystEngComm,2012,14(18):5963-5973
    [3]王洁,金承和,江志裕Ni(OH)2电极在碱液中的电化学行为.电池,1989,2(75):36-41
    [4]Vijayamohanan, K., Balasubramanian, T. S., Shukla, A. K. Rechargeable alkaline iron electrodes. J. Power Sources,1991,34(3):269-285
    [5]Armstrong, R. D., Baurhoo, I. Solution soluble species in the operation of the iron electrode in alkaline solution. J. Electroanal. Chem.,1972,34(1):41-46
    [6]Souza, C. A. C., Carlos, I. A., Lopes, M., et al. Self-discharge of Fe-Ni alkaline batteries. J. Power Sources,2004,132(1-2):288-290
    [7]Hang, B. T., Yoon, S.-H., Okada, S., et al. Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes. J. Power Sources, 2007,168(2):522-532
    [8]Caldas, C. A., Lopes, M. C, Carlos, I. A. The role of FeS and (NH4)2CO3 additives on the pressed type Fe electrode. J. Power Sources,1998,74(1):108-112
    [9]林东风,蔡蓉,宋德瑛等.多因素对铁电极充电效率的综合影响.电池,2002,32(5):274-276
    [10]陈衍珍.锌镍电池新进展.电源技术,2000,24(2):120-123
    [11]Shivkumar, R., Paruthimal Kalaignan, G., Vasudevan, T. Studies with porous zinc electrodes with additives for secondary alkaline batteries. J. Power Sources,1998,75(1):90-100
    [12]玉正日,周震涛.干荷电式锌空气电池锌电极添加剂的研究.电源技术,2008,32(6):402-404
    [13]Lee, C. W., Sathiyanarayanan, K., Eom, S. W., et al. Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells. J. Power Sources,.2006,160(1):161-164
    [14]Zheng, Y., Wang, J. M., Chen, H., et al. Effects of barium on the performance of secondary alkaline zinc electrode. Mater. Chem. Phys.,2004,84(1):99-106
    [15]王建明,钱亚东,张莉等.可充锌电极存在的问题及解决途径.电池,1999,29(2):76—80
    [16]Ma, M., Tu, J. P., Yuan, Y. F., et al. Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J. Power Sources,2008,179(1):395-400
    [17]Yang, J. L., Yuan, Y. F., Wu, H. M., et al. Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochim. Acta,2010, 55(23):7050-7054
    [18]Kim, H.-S., Nishizawa, M., Uchida, I. Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim. Acta,1999,45(3):483-488
    [19]任可,雷永泉,陈立新等.Zr替代稀上对RE(NiCoMnTi)5贮氢合金相结构和性能的影响.金属学报,2000,36(8):854-858
    [20]Zhang, Y. H., Li, B. W., Ren, H. P., et al. Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55-xFex (x=0-0.4) electrode alloys. J. Alloys Compd.,2008,460(1-2): 414-420
    [21]Pan, H. G., Liu, Y. F., Gao, M. X., et al. A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. Int. J. Hydrogen Energy, 2003,28(1):113-117
    [22]白桃于,闻明科,韩树民等.酸化镀铜复合表面处理对AB3型贮氢合金电化学性能的影响.燕山大学学报,2009,33(1):15-20
    [23]Li, Y., Han, S. M., Li, J. H., et al. The effect of Nd content on the electrochemical properties of low-Co La-Mg-Ni-based hydrogen storage alloys. J. Alloys Compd.,2008,458(1-2):357-362
    [24]Trudeau, M. L., Dignard-Bailey, L., Schulz, R., et al. The oxidation of nanocrystalline FeTi hydrogen storage compounds. Nanostruct. Mater.,1992,1(6):457-464
    [25]Choi, W.-K., Tanaka, T., Miyauchi, R., et al. Electrochemical and structural characteristics of TiV2.1Ni0.3 surface-modified by ball-milling with MgNi. J. Alloys Compd.,2000,299(1-2): 141-147
    [26]Anik, M. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying. J. Alloys Compd.,2010,491(1-2):565-570
    [27]Gao, X. P., Yao, S. M., Yan, T. Y., et al. Alkaline rechargeable Ni/Co batteries:Cobalt hydroxides as negative electrode materials. Energy Environ. Sci.,2009,2(5):502-505
    [28]Chung, S. R., Wang, K. W., Perng, T. P. Electrochemical Hydrogenation of Crystalline Co Powder. J. Electrochem. Soc.,2006,153(6):A1128-A1131
    [29]Chung, S.-R., Wang, K.-W., Teng, M.-H., et al. Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder. Int. J. Hydrogen Energy,2009,34(3): 1383-1388
    [30]Zhao, X. Y., Ma, L. Q., Yao, Y, et al. Electrochemical energy storage of Co powders in alkaline electrolyte. Electrochim. Acta,2010,55(3):1169-1174
    [31]Wang, Q. H., Jiao, L. F., Du, H. M., et al. Chainlike structures assembled by Co hierarchitectures:synthesis and electrochemical properties as negative materials for alkaline secondary batteries. J. Mater. Chem.,2011,21(37):14159-14162
    [32]董桂霞,杜军,朱磊等.CoO作为电极材料的可能性.电源技术,2006,30(9):713-715
    [33]Li, L., Wang, Y. P., Wang, Y. J., et al. Mesoporous nano-Co3O4:A potential negative electrode material for alkaline secondary battery. J. Power Sources,2011,196(24):10758-10761
    [34]Han, S. M., Feng, Z. H., Hu, L., et al. Synthesis and electrochemical performance of β-Co(OH)2. Mater. Chem. Phys.,2010,124(1):17-20
    [35]Song, D. W., Xu, Y. N., An, C. H., et al. Recovered LiCoO2 as anode materials for Ni/Co power batteries. Phys. Chem. Chem. Phys.,2012,14(1):71-75
    [36]Xu, Y. N., Song, D. W., Li, J., et al. Electrochemical properties of LiCoO2+x% S mixture as anode material for alkaline secondary battery. Electrochim. Acta,2012,85:352-357
    [37]Liu, Y, Wang, Y J., Xiao, L. L., et al. Structure and electrochemical hydrogen storage behaviors of alloy Co2B. Electrochem. Commun.,2007,9(5):925-929
    [38]Liu, Y., Wang, Y. J., Xiao, L. L., et al. Structure and electrochemical behaviors of a series of Co-B alloys. Electrochim. Acta,2008,53(5):2265-2271
    [39]Wang, Y. P., Li, L., Wang, Y. J., et al. Crystalline CoB:Solid state reaction synthesis and electrochemical properties. J. Power Sources,2011,196(13):5731-5736
    [40]Peng, W. X., Jiao, L. F., Huan, Q. N., et al. Co2P:A facile solid state synthesis and its applications in alkaline rechargeable batteries. J. Alloys Compd.,2012,511(1):198-201
    [41]Lu, Z. W., Yao, S. M., Li, G. R., et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta,2008,53(5):2369-2375
    [42]Yao, S. M., Xi, K., Li, G. R., et al. Preparation and electrochemical properties of Co-Si3N4 nanocomposites. J. Power Sources,2008,184(2):657-662
    [43]Du, H. M., Jiao, L. F., Wang, Q. H., et al. Structure and electrochemical properties of ball-milled Co-carbon nanotube composites as negative electrode material of alkaline rechargeable batteries. J. Power Sources,2011,196(13):5751-5755
    [44]Cao, Y. L., Zhou, W. C., Li, X. Y., et al. Electrochemical hydrogen storage behaviors of ultrafine Co-P particles prepared by direct ball-milling method. Electrochim. Acta,2006, 51(20):4285-4290
    [45]Zhang, Y. H., Jiao, L. F., Yuan, H. T., et al. Effect of Si on electrochemical hydrogen storage properties of crystalline Co. Int. J. Hydrogen Energy,2008,33(4):1317-1322
    [46]Song, D. W., Wang, Y. J., Wang, Q. H., et al. Effect and function mechanism of amorphous sulfur on the electrochemical properties of cobalt hydroxide electrode. J. Power Sources,2010, 195(20):7115-7119
    [47]Mitov M, Popov A, Dragieva, I. Nanoparticles produced by borohydride reduction as precursors for metal hydride electrodes. J. Appl. Electrochem.,1999,29(1):59-63
    [48]Mitov M, Popov A, Dragieva, I. Possibilities for battery application of CoxByHz colloid particles. Colloids Surf., A,1999,149(1-3):413-419
    [49]Wang, Y. D., Ai, X. P., Yang, H. X. Electrochemical Hydrogen Storage Behaviors of Ultrafine Amorphous Co-B Alloy Particles. Chem. Mater.,2004,16(24):5194-5197
    [50]Song, D. W., Wang, Y. J., Wang, Y. P., et al. Preparation and characterization of novel structure Co-B hydrogen storage alloy. Electrochem. Commun.,2008,10(10):1486-1489
    [51]Lu, D. S., Li, W. S., Jiang, X., et al. Magnetic field assisted chemical reduction preparation of Co-B alloys as anode materials for alkaline secondary battery. J. Alloys Compd.,2009, 485(1-2):621-626
    [52]He, G., Jiao, L. F., Yuan, H. T., et al. Preparation and electrochemical hydrogen storage property of alloy CoSi. Electrochem. Commun.,2006,8(10):1633-1638
    [53]He, G., Jiao, L. F., Yuan, H. T., et al. Effect of synthesis method on the structure and electrochemical behaviour of Co-Si particles. Int. J. Hydrogen Energy,2007,32(15): 3416-3419
    [54]Wang, Y., Lee, J. M., Wang, X. An investigation of the origin of the electrochemical hydrogen storage capacities of the ball-milled Co-Si composites. Int. J. Hydrogen Energy,2010,35(4): 1669-1673
    [55]Song, D. W, Wang, Q. H., Wang, Y. P., et al. Liquid phase chemical synthesis of Co-S microspheres with novel structure and their electrochemical properties. J. Power Sources, 2010,195(21):7462-7465
    [56]Conway, B. E. Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage. J. Electrochem. Soc.,1991,138(6):1539-1548
    [57]Burke, A. Ultracapacitors why, how, and where is the technology J. Power Sources,2000, 91(1):37-50
    [58]Probstle, H., Schmitt, C., Fricke, J. Button cell supercapacitors with monolithic carbon aerogels. J. Power Sources,2002,105(2):189-194
    [59]Gamby, J., Tabema, P. L., Simon, P., et al. Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources,2001,101(1):109-116
    [60]Pandolfo, A. G, Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources,2006,157(1):11-27
    [61]陈英放,李媛媛,邓梅根.超级电容器的原理及应用.电子元件与材料,2008,27(4):6-9
    [62]Convey, B. E., Electrochemical supercapacitors:Scientific fundamentals and Technological ApplicationsNew York:Academic/Plenum Publishers,1999.
    [63]Zheng, J. P., Cygan, P. J., Jow, T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc.,1995,142(8):2699-2703
    [64]Zhao, X., Sanchez, B. M., Dobson, P. J., et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale,2011,3(3):839-855
    [65]Long, J. W., Belanger, D., Brousse, T., et al. Asymmetric electrochemical capacitors-Stretching the limits of aqueous electrolytes. MRS Bull.,2011,36(7):513-522
    [66]Yuan, C. Z., Zhang, X. G, Wu, Q. F., et al. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics, 2006,177(13-14):1237-1242
    [67]Gallegos, A. K. C., Rinc6n, M. E. Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells. J. Power Sources, 2006,162(1):743-747
    [68]Pasquier, A. D., Plitz, I, Gural, J., et al. Power-ion battery:bridging the gap between Li-ion and supercapacitor chemistries. J. Power Sources,2004,136(1):160-170
    [69]张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展.电子元件与材料,1999,19(1):34-37
    [70]朱磊,吴伯荣,陈晖等.超级电容器研究及其应用.稀有金属,2003,27(3):385-390
    [71]Hall, P. J., Mirzaeian, M., Fletcher, S. I., et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci.,2010,3(9): 1238-1251
    [72]Conway, B. E., Birss, V, Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage J. Power Sources,1997,66(1-2):1-14
    [73]Wang, G. P., Zhang, L., Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev.,2012,41(2):797-828
    [74]贺福.碳(炭)材料与超级电容器.高科技纤维与应用,2005,30(3):13-19
    [75]Amatucci, G. G., Badway, F., Du Pasquier, A., et al. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc.,2001,148(8):A930-A939
    [76]Zhang, J. T., Zhao, X. S. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem,2012,5(5):818-841
    [77]邢宝林,黄光许,谌伦建等.超级电容器电极材料的研究现状与展望.材料导报A:综述篇,2012,26(10):21-25
    [78]Inagaki, M., Konno, H., Tanaike, O. Carbon materials for electrochemical capacitors. J. Power Sources,2010,195(24):7880-7903
    [79]任军,徐斌,张世超等.PVDC基活性炭的制备与电容性能.电池,2008,38(3):136-138
    [80]Wen, Z. B., Qu, Q. T., Gao, Q., et al. An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin. Electrochem. Commun.,2009,11(3): 715-718
    [81]He, X. J., Geng, Y. J., Qiu, J. S., et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors Carbon, 2010,48(5):1662-1669
    [82]Kim, C, Choi, Y.-O., Lee, W.-J., et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim. Acta,2004,50(2-3):883-887
    [83]Leitner, K., Lerf, A., Winter, M., et al. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. J. Power Sources,2006,153(2):419-423
    [84]Xu, B., Wu, F., Chen, R. J., et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J. Power Sources,2010,195(7):2118-2124
    [85]Oda, H., Yamashita, A., Minoura, S., et al. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J. Power Sources,2006,158(2):1510-1516
    [86]Hwang, S.-W., Hyun, S.-H. Capacitance control of carbon aerogel electrodes. J. Non-Cryst. Solids,2004,347(1-3):238-245
    [87]Niu, C. M., Sichel, E. K., Hoch, R., et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett,1997,70(11):1480-1484
    [88]Frackowiak, E., Metenier, K., Bertagna, V., et al. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett,2000,77(15):2421-2423
    [89]Raymundo-Pinero, E., Cazorla-Amoros, D., Linares-Solano, A., et al. High surface area carbon nanotubes prepared by chemical activation. Carbon,2002,40(9):1597-1617
    [90]Ye, J.-S., Liu, X., Cui, H. F., et al. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun,2005,7(3):249-255
    [91]Chen, Q.-L., Xue, K.-H., Shen, W., et al. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochim Acta,2004,49(24):4157-4161
    [92]Frackowiak, E., Jurewicz, K., Delpeux, S., et al. Nanotubular materials for supercapacitors. J Power Sources,2001,97-98(822-825
    [93]An, K. H, Kim, W. S., Park, Y. S., et al. Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Mater.,2001,13(7):497-500
    [94]An, K. H., Kim, W. S., Park, Y. S., et al. Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Funct. Mater.,2001, 11(5):387-392
    [95]Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669
    [96]Stoller, M. D., Park, S., Zhu, Y. W., et al. Graphene-Based Ultracapacitors. Nano Lett.,2008, 8(10):3498-3502
    [97]Vivekchand, S. R. C, Rout, C. S., Subrahmanyam, K. S., et al. Graphene-based electrochemical supercapacitors. J. Chem. Sci.,2008,120(1):9-13
    [98]Lv, W., Tang, D. M., He, Y. B., et al. Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage. ACS Nano,2009,3(11): 3730-3736
    [99]Wang, Y., Shi, Z. Q., Huang, Y, et al. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C,2009,113(30):13103-13107
    [100]Chen, S., Zhu, J. W., Wang, X. One-Step Synthesis of Graphene-Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties. J. Phys. Chem. C,2010,114(27): 11829-11834
    [101]Xia, X. H., Tu, J. P., Mai, Y. J., et al. Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J.,2011,17(39):10898-10905
    [102]Lu, T., Zhang, Y. P., Li, H. B., et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim. Acta,2010,55(13): 4170-4173
    [103]Zhang, K., Zhang, L. L., Zhao, X. S., et al. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater.,2010,22(4):1392-1401
    [104]Wang, D. W., Feng Li, Zhao, J. P., et al. Fabrication of Graphene Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High Performance Flexible Electrode. ACS Nano,2009,3(7):1745-1752
    [105]Li, H. L., Wang, J. X., Chu, Q. X., et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources,2009,190(2):578-586
    [106]Mastragostino, M., Arbizzani, C., Soavi, F. Polymer-based supercapacitors. J. Power Sources, 2001,97-98:812-815
    [107]Roberts, M. E., Wheeler, D. R., McKenzie, B. B., et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J. Mater. Chem.,2009,19(38):6977-6979
    [108]Kim, I.-H., Kim, K.-B. Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications. J. Electrochem. Soc.,2006, 153(2):A383-A389
    [109]Wu, N. L., Kuo, S. L., Lee, M. H. Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J. Power Sources,2002,104(1):62-65
    [110]Fu, R. Q., Ma, Z. R., Zheng, J. P. Proton MMR and Dynamic Studies of Hydrous Ruthenium Oxide. J. Phys. Chem. B,2002,106(14):3592-3596
    [111]Egashira, M., Matsuno, Y, Yoshimoto, N., et al. Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt. J. Power Sources,2010,195(9):3036-3040
    [112]Grupioni, A. A. F., Arashiro, E., Lassali, T. A. F. Voltammetric characterization of an iridium oxide-based system:the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode Electrochim. Acta,2002,48(4):407-418
    [113]Pang, S.-C., Anderson, M. A., Chapman, T. W. Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. J. Electrochem. Soc.,2000,147(2):444-450
    [114]Hong, M. S., Lee, S. H., Kim, S. W. Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor. Electrochem. Solid-State Lett.,2002,5(10): A227-A230
    [115]Brousse, T., Toupin, M., Dugas, R., et al. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc.,2006, 153(12):A2171-A2180
    [116]Mathieu Toupin, Thierry Brousse, Belanger, D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater.,2004,16(16): 3184-3190
    [117]Ghodbane,O., Pascal, J. L., Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces,2009,1(5): 1130-1139
    [118]Qu, Q. t., Qu, P., Wang, B., et al. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C,2009, 113(31):14020-14027
    [119]Subramanian, V., Zhu, H. W., Vajtai, R., et al. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. J. Phys. Chem. B,2005,109(43):20207-20214
    [120]Wang, X., Li, Y. D. Rational synthesis of a-MnO2 single-crystal nanorods. Chem. Commun., 2002, (7):764-765
    [121]Hill, L. I., Verbaere, A., Guyomard, D. Nanofibrous α-, β-, γ-and αγ-Manganese Dioxides Prepared by the Hydrothermal-Electrochemical Technique. J. Electrochem. Soc.,2003,150(8): D135-D148
    [122]Komaba, S., Ogata, A., Tsuchikawa, T. Enhanced supercapacitive behaviors of birnessite. Electrochem. Commun.,2008,10(10):1435-1437
    [123]Rajendra Prasad, K., Miura, N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun.,2004,6(10):1004-1008
    [124]Chang, J.-K., Lee, M.-T., Huang, C.-H., et al. Physicochemical properties and electrochemical behavior of binary manganese-cobalt oxide electrodes for supercapacitor applications. Mater. Chem. Phys.,2008,108(1):124-131
    [125]Nakayama, M., Tanaka, A., Sato, Y., et al. Electrodeposition of Manganese and Molybdenum Mixed Oxide Thin Films and Their Charge Storage Properties. Langmuir,2005,21(13): 5907-5913
    [126]Chen, Y.-S., Hu, C.-C. Capacitive Characteristics of Binary Manganese-Nickel Oxides Prepared by Anodic Deposition. Electrochem. Solid-State Lett.,2003,6(10):A210-A213
    [127]Wen, J. G., Ruan, X. Y, Zhou, Z. T. Preparation and electrochemical performance of novel ruthenium-manganese oxide electrode materials for electrochemical capacitors. J. Phys. Chem. Solids,2009,70(5):816-820
    [128]Subramanian, V., Zhu, H. W., Wei, B. Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun.,2006,8(5):827-832
    [129]Liu, J. W., Essner, J., Li, J. Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays. Chem. Mater.,2010,22(17): 5022-5030
    [130]Lee, C. Y., Tsai, H. M., Chuang, H. J., et al. Characteristics and Electrochemical Performance of Supercapacitors with Manganese Oxide-Carbon Nanotube Nanocomposite Electrodes. J. Electrochem. Soc.,2005,152(4):A716-A720
    [131]Yan, J., Fan, Z. J., Wei, T., et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon,2010,48(13):3825-3833
    [132]Toupin, M., Brousse, T., Belanger, D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater.,2002,14(9): 3946-3952
    [133]Chang, J.-K., Hsu, S.-H., Tsai, W.-T., et al. A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance. J. Power Sources,2008,177(2):676-680
    [134]Nakayama, M., Kanaya, T., Inoue, R. Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochem. Commun.,2007, 9(5):1154-1158
    [135]Barbero, C, Planes, G. A., Miras, M. C. Redox coupled ion exchange in cobalt oxide films Electrochem. Commun.,2001,3(3):113-116
    [136]Gao, Y. Y., Chen, S. L., Cao, D. X., et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources,2010,195(6):1757-1760
    [137]Kandalkar, S. G., Lee, H.-M., Chae, H., et al. Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications. Mater. Res. Bull.,2011,46(1):48-51
    [138]Zheng, M. B., Cao, J., Liao, S. T., et al. Preparation of Mesoporous Co3O4 Nanoparticles via Solid-Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors. J. Phys. Chem. C,2009,113(9):3887-3994
    [139]Aghazadeh, M. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J. Appl. Electrochem.,2012,42(2):89-94
    [140]Wang, D. W., Wang, Q. H., Wang, T. M. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg. Chem,2011,50(14):6482-6892
    [141]Chang, J.-K., Wu, C.-M., Sun, I. W. Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J. Mater. Chem.,2010,20(18):3729-3735
    [142]Cao, L., Xu, F., Liang, Y. Y, et al. Preparation of the novel nanocomposite Co(OH)2/Ultrastable Y Zeolite and its application as a supercapacitor with high energy density. Adv. Mater.,2004,16(20):1853-1857
    [143]Gupta, V., Kusahara, T., Toyama, H., et al. Potentiostatically deposited nanostructured a-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochem. Commun.,2007,9(9):2315-2319
    [144]Wu, M. S., Huang, Y. A., Jow, J. J., et al. Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances. Hnt. J. Hydrogen Energy,2008, 33(12):2921-2926
    [145]Gupta, V., Kawaguchi, T., Miura, N. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites. Mater. Res. Bull.,2009,44(1):202-206
    [146]Nam, K.-W., Kim, K.-H., Lee, E.-S., et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J. Power Sources, 2008,182(2):642-652
    [147]Wang, Y. G, Xia, Y. Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta,2006,51(16): 3223-3227
    [148]Liu, K.-C., Anderson, M. A. Porous Nickel Oxide Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc.,1996,143(1):124-130
    [149]Wu, M. S., Huang, Y. A., Yang, C. H., et al. Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int. J. Hydrogen Energy,2007,32(17):4153-4159
    [150]Fan, Z., Chen, J. H., Cui, K. Z., et al. Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites. Electrochim. Acta,2007,52(9):2959-2965
    [151]Lee, J. Y., Liang, K., An, K. H., et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth. Met.,2005,150(2):153-157
    [152]Nam, K.-W., Lee, E.-S., Kim, J.-H., et al. Synthesis and Electrochemical Investigations of Ni1-xO Thin Films and Ni1-xO on Three-Dimensional Carbon Substrates for electrochemical Capacitors. J. Electrochem. Soc.,2005,152(11):A2123-A2129
    [153]Wang, D. W., Li, F., Liu, M., et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed.,2008,47(2): 373-376
    [154]Hu, Y. N., Tolmachev, Y. V., Scherson, D. A. Rotating ring-disk studies of oxidized nickel hydrous oxide:oxygen evolution and pseudocapacitance. J. Electroanal. Chem.,1999,468(2): 64-69
    [155]Lang, J. W., Kong, L. B., Wu, W. J., et al. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem.,2008, 13(2):333-340
    [156]Zhang, J., Kong, L. B., Cai, J. J., et al. Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous Mesoporous Mater., 2010,132(1-2):154-162
    [157]Liang, Y. Y., Bao, S. J., Li, H. L. Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J. Solid State Electrochem.,2006,11(5):571-576
    [158]Tang, Z., Tang, C. H., Gong, H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Adv. Funct. Mater,2012,22(6): 1272-1278
    [159]Singh, D. Characteristics and Effects of y-NiOOH on Cell Performance and a Method to Quantify It in Nickel Electrodes. J. Electrochem. Soc.,1998,145(1):116-120
    [160]刘元刚,唐致远,徐强等.a-Ni(OH)2的研究进展.化学进展,2006,18(7-8):883-888
    [161]Rajendra Prasad, K., Miura, N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochem. Commun., 2004,6(8):849-852
    [162]Lee, H. Y, Goodenough, J. B. Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution. J. Solid State Chem.,1999,148(1):81-84
    [163]Kim, I.-H., Kim, J.-H., Cho, B.-W., et al. Synthesis and Electrochemical Characterization of Vanadium Oxide on Carbon Nanotube Film Substrate for Pseudocapacitor Applications. J. Electrochem. Soc.,2006,153(6):A989-A996
    [164]Zhao, X., Johnston, C., Grant, P. S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J. Mater. Chem.,2009,19(46): 8755-8760
    [165]Zhao, X., Johnston, C., Crossley, A., et al. Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J. Mater. Chem.,2010,20(36):7637-7644
    [166]Barrett, E. P., Joyner, L. G., Halenda, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc.,1951,73(1):373-380
    [167]Zhao, X. Y., Ma, L. Q., Shen, X. D. Co-based anode materials for alkaline rechargeable Ni/Co batteries:a review. J. Mater. Chem.,2012,22(2):277-285
    [168]Wang, Q. H., Jiao, L. F., Du, H. M., et al. Facile synthesis and electrochemical properties of Co-S composites as negative materials for alkaline rechargeable batteries. Electrochim. Acta, 2011,56(3):1106-1110
    [169]Johnson, J. A., Saboungi, M.-L., Thiyagarajan, P., et al. Selenium Nanoparticles:A Small-Angle Neutron Scattering Study. J. Phys. Chem. B,1999,103(1):59-63
    [170]Zhang, H. Y., Chen, Y. T., Zhu, Q. F., et al. The effects of carbon nanotubes on the hydrogen storage performance of the alloy electrode for high-power Ni-MH batteries. Int. J. Hydrogen Energy,2008,33(22):6704-6709
    [171]Liu, Z. T., Li, X., Liu, Z. W., et al. Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies. Powder Technol.,2009,189(3):514-519
    [172]Abouimrane, A., Dambournet, D., Chapman, K. W., et al. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc.,2012,134(10):4505-4508
    [173]Haran, B. S., Popov, B. N., White, R. E. Studies on Electroless Cobalt Coatings for Microencapsulation of Hydrogen Storage Alloys. J. Electrochem. Soc.,1998,145(9): 3000-3007
    [174]Dresselhaus, M. S., Dresselhaus, G., Saito, R., et al. Raman spectroscopy of carbon nanotubes. Phys. Rep.,2005,409(2):47-99
    [175]Rao, A. M., Richter, E., Bandow, S., et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science,1997,275(5297):187-191
    [176]Liu, Z. Y., Xu, S. J., Xiao, B. L., et al. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites Part A,2012,43(12): 2161-2168
    [177]Lv, J., Tu, J. P., Zhang, W. K., et al. Effects of carbon nanotubes on the high-rate discharge properties of nickel/metal hydride batteries. J. Power Sources,2004,132(1-2):282-287
    [178]Tronel, F., Guerlou-Demourgues, L., Menetrier, M., et al. New Spinel Cobalt Oxides, Potential Conductive Additives for the Positive Electrode of Ni-MH Batteries. Chem. Mater.,2006, 18(25):5840-5851
    [179]Frey, S., Keipert, S., Chazalviel, J.-N., et al. Electrochemical formation of porous silica: toward an understanding of the mechanisms. Phys. Status Solidi A 2007,204(5):1250-1254
    [180]Kresge, C. T., Leonowicz, M. E., Roth, W. J., et al. ordered mesoporous molecular sieves synthesized by a liquid-crystal emplate mechanism. Nature,1992,359:710-712
    [181]Yu, C. C., Zhang, L. X., Shi, J. L., et al. A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties. Adv. Funct. Mater.,2008,18(10):1544-1554
    [182]Xu, Z. P., Zeng, H. C. Control of Surface Area and Porosity of Co3O4 via Intercalation of Oxidative or Nonoxidative Anions in Hydrotalcite-like Precursors. Chem. Mater.,2000, 12(11):3459-3465
    [183]Li, C. C., Yin, X. M., Wang, T. H., et al. Morphogenesis of Highly Uniform CoCO3 Submicrometer Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications. Chem. Mater.,2009,21(20):4984-4992
    [184]Cong, H. P., Yu, S. H. Shape Control of Cobalt Carbonate Particles by a Hydrothermal Process in a Mixed Solvent:An Efficient Precursor to Nanoporous Cobalt Oxide Architectures and Their Sensing Property. Cryst. Growth Des.,2009,9(1):210-217
    [185]Cao, F., Wang, D. Q., Deng, R. P., et al. Porous Co3O4 microcubes:hydrothermal synthesis, catalytic and magnetic properties. CrystEngComm,2011,13(6):2123-2129
    [186]Vazquez-Vazquez, C., Blanco, M. C., Lopez-Quintela, M. A., et al. Characterization of La0.67Ca0.33MnO3±δ particles prepared by the sol-gel route. J. Mater. Chem.,1998,8(4): 991-1000
    [187]Zhong, L. S., Hu, J. S., Liang, H. P., et al. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater.,2006,18(18): 2426-2431
    [188]Wiley, B., Herricks, T., Sun, Y. G., et al. Polyol Synthesis of Silver nanoparticles use of chloride and oxygen to promote the formation of single crystal trucated cubes and tetrahedrons. Nano. Lett.,2004,4(9):1733-1739
    [189]Zhou, Y. X., Yao, H. B., Zhang, Q., et al. Hierarchical FeWO4 Microcrystals Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties. Inorg. Chem.,2009,48(3): 1082-1090
    [190]Yan, C. L., Xue, D. F. Morphosynthesis of Hierarchical Hydrozincite with Tunable Surface Architectures and Hollow Zinc Oxide. J. Phys. Chem. B,2006,110(23):11076-11080
    [191]Wang, X. B., Cai, W. P., Lin, Y. X., et al. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem.,2010,20(39):8582-8590
    [192]Liu, B., Yang, H. Q., Zhao, H., et al. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sens. Actuators, B,2011,156(1): 251-262
    [193]Radoslovich, E. W,, Raupach, M., Slade, P. G., et al. Crystalline Cobalt, Zinc, Manganese,and iron alkoxides of glycerol. Aust. J. Chem.,1970,23(10):1963-1971
    [194]Chakroune, N., Viau, G., Ammar, S., et al. Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide:CoⅡ(C2H4O2). New J. Chem.,2005,29(2): 355-361
    [195]Wu, W., Zhang, S. F., Zhou, J., et al. Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres:a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. Chem. Eur. J.,2011,17(35): 9708-9719
    [196]Penn, R. L. Kinetics of Oriented Aggregation. J. Phys. Chem. B,2004,108(34):12707-12712
    [197]Yu, S. H., Colfen, H., Markus, A. Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate. J. Phys. Chem. B,2003,107(30):7396-7405
    [198]Cao, A. M., Hu, J. S., Liang, H. P., et al. Hierarchically Structured Cobalt Oxide (Co3O4) The Morphology Control and Its Potential in Sensors. J. Phys. Chem. B,2006,110(32): 15858-15863
    [199]Saravanan, K., Ananthanarayanan, K., Balaya, P. Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci.,2010,3(7):939-948
    [200]Chung, S. R., Wang, K. W., Sheen, S. R., et al. Electrochemical Reduction and Hydrogenation of Co Oxides. Electrochem. Solid-State Lett.,2007,10(7):A155-A158
    [201]Zeng, H. C., Tung, S. K. Synthesis of Lithium Niobate Gels Using a Metal Alkoxide-Metal Nitrate Precursor. Chem. Mater.,1996,8(11):2667-2672
    [202]Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem.,2006,16(7):649-662
    [203]Yu, C. C., Dong, X. P., Guo, L. M., et al. Template-Free Preparation of Mesoporous Fe2O3 and Its Application as Absorbents. J. Phys. Chem. C.,2008,112(35):13378-13382
    [204]Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al. Reporting Physisorption data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem.,1985,57(4):603-619
    [205]Cao, L., Lu, M., Li, H. L. Preparation of Mesoporous Nanocrystalline Co304 and Its Applicability of Porosity to the Formation of Electrochemical Capacitance. J. Electrochem. Soc.,2005,152(5):A871-A875
    [206]Mahon, P. J., Paul, G. L., Keshishian, S. M., et al. Measurement and modelling of the high-power performance of carbon-based supercapacitors. J. Power Sources,2000,91(1): 68-76
    [207]Bonnefoi, L., Simon, P., Fauvarque, J. F., et al. Electrode compositions for carbon power supercapacitors J. Power Sources,1999,80(1-2):149-155
    [208]Liu, T. C., Pell, W. G., Conway, B. E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuOz supercapacitor electrodes. Electrochim. Acta, 1997,42(23-24):3541-3552
    [209]Cao, L., Xu, F., Liang, Y. Y., et al. preparation of the novel nanocomposite Co(OH)2 ultrastable Y Zeolite and its application as a supercapacitor with high energy density. Adv. Mater.,2004,16(20):1853-1857
    [210]Yuan, C. Z., Zhang, X. G, Su, L. H., et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem.,2009,19(32):5772-5777
    [211]Zhang, H., Cao, G. P., Wang, Z. Y, et al. Growth of Manganese Oxide nanoflowers on vertically aligned CNTs arrays for high rate electrochemical capacitive energy storage. Nano Lett.,2008,8(9):2664-2668
    [212]Xu, C. L., Zhao, Y. Q., Yang, G. W., et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun.,2009, (48): 7575-7577
    [213]Kalakodimi, R. P., Norio, M. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochem. Commun.,2004,6(8): 849-852
    [214]Bastakoti, B. P., Huang, H. S., Chen, L. C., et al. Block copolymer assisted synthesis of porous alpha-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chem. Commun.,2012,48(73):9150-9152
    [215]Meher, S. K., Rao, G. R. Ultralayered Co3O4 for High-Performance Supercapacitor Applications. J. Phys. Chem. C,2011,115(31):15646-15654
    [216]曹林,周盈科,陆梅等.纳米氧化钴的制备及其超电容特性.科学通报,2003,48(7):668-670
    [217]Yuan, C. Z., Yang, L., Hou, L. R., et al. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci., 2012,5(7):7883-7887
    [218]Hu, J., Chen, M., Fang, X. S., et al. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev.,2011,40(11):5472-5491
    [219]Lai, X. Y., Halpert, J. E., Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications:From simple to complex systems. Energy Environ. Sci.,2012,5(2): 5604-5618
    [220]Lai, X. Y., Li, J., Korgel, B. A., et al. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed.,2011,50(12): 2738-2741
    [221]Titirici, M.-M., Antonietti, M., Thomas, A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. Chem. Mater.,2006,18(16):3808-3812
    [222]Sun, X. M., Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed.,2004,43(5):597-601
    [223]Sun, X. M., Liu, J. F., Li, Y. D. Oxides@C Core-Shell Nanostructures:One-Pot Synthesis, Rational Conversion, and Li Storage Property. Chem. Mater.,2006,18(15):3486-3494
    [224]Sun, X. M., Liu, J. F., Li, Y. D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J.,2006,12(7):2039-2047
    [225]Yang, H. X., Qian, J. F., Chen, Z. X., et al. Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. J. Phys. Chem. C,2007,111(38):14067-14071
    [226]Falco, C., Baccile, N., Titirici, M.-M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem., 2011,13(11):3273-3281
    [227]Kruse, A., Dinjus, E. Hot compressed water as reaction medium and reactant Properties and synthesis reactions. J. Supercrit. Fluids,2007,39(3):362-380
    [228]Kruse, A., Dinjus, E. Hot compressed water as reaction medium and reactant 2. Degradation reactions. J. Supercrit. Fluids,2007,41(3):361-379
    [229]Ryu, J., Suh, Y. W., Suh, D. J., et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon,2010,48(7):1990-1998
    [230]Titirici, M. M., Antonietti, M., Baccile, N. Hydrothermal carbon from biomass:a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem., 2008,10(11):1204-1212
    [231]Gomez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., et al. FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrolysis,1996,36(1):71-80
    [232]Lua, A. C., Yang, T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci.,2004,274(2):594-601
    [233]Sevilla, M., Fuertes, A. B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J.,2009,15(16): 4195-4203
    [234]Wu, Y. J., Zheng, M. T., Xie, C. L., et al. Synthesis of NiO Hollow Spheres Using Colloidal Carbon Spheres as Template. Chin. J..Inorg. Chem.,2011,27(12):2477-2452
    [235]Li, C. C., Yin, X. M., Chen, L. B., et al. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem. Eur. J.,2010,16(17):5215-5221
    [236]Ferrari, A. C., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B:Condens. Matter,2000,61(20):14095-14107
    [237]Schwan, J., Ulrich, S., Batori, V., et al. Raman spectroscopy on amorphous carbon films. J. Appl. Phys.,1996,80(1):440-447
    [238]Cui, X. j., Antonietti, M., Yu, S. H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small,2006,2(6): 756-759
    [239]Yu, S. H., Cui, X. J., Li, L. L., et al. From starch to metal carbon hybrid nanostructures hydrothermal metal-catalysed carbonization. Adv. Mater.,2004,16(18):1636-1640
    [240]Manafi, S., Nadali, H., Irani, H. R. Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett.,2008,62(26):4175-4176
    [241]Zhou, J. B., Tang, C., Cheng, B., et al. Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes. ACS Appl. Mater. Interfaces,2012, 4(4):2174-2179
    [242]Nata, I. F., Lee, C. K. Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chem.,2010,12(8):1454-1459
    [243]Demir-Cakan, R., Baccile, N., Antonietti, M., et al. Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. Chem. Mater.,2009,21(3):484-490
    [244]Liu, M. Z., Wang, C., Wang, X. Interface-facilitated hydrothermal synthesis of sub-micrometre graphitic carbon plates. J. Mater. Chem.,2011,21(39):15197-15200
    [245]Yao, C. H., Shin, Y., Wang, L. Q., et al. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System. J. Phys. Chem. C,2007,111(42):15141-15145
    [246]Sun, X. M., Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed., 2004,43(29):3827-3831
    [247]Jiang, H., Zhao, T., Li, C. Z., et al. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J. Mater. Chem.,2011,21(11):3818-3823
    [248]Yu, J. G., Yu, X. X., Huang, B. B., et al. Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres. Cryst. Growth Des., 2009,9(3):1474-1480
    [249]Zhu, L. P., Xiao, H. M., Zhang, W. D., et al. Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route. Cryst. Growth Des.,2008,8(4):1113-1118
    [250]Liu, X. M., Fu, S. Y, Zhu, L. P. High-yield synthesis and characterization of monodisperse sub-microsized CoFe2O4 octahedra. J. Solid State Chem.,2007,180(2):461-466
    [251]Palmas, S., Ferrara, F., Vacca, A., et al. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochim. Acta,2007,53(2):400-406
    [252]Jiang, J. H., Kucernak, A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim. Acta,2002,47(15):2381-2386
    [253]Kong, L. B., Lang, J. W., Liu, M., et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J. Power Sources,2009, 194(2):1194-1201
    [254]Qian, J. F., Zhou, M., Cao, Y. L., et al. Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4. J. Phys. Chem. C,2010,114(8):3477-3482
    [255]Zhao, D. D., Zhou, W. J., Li, H. L. Effects of Deposition Potential and Anneal Temperature on the Hexagonal Nanoporous Nickel Hydroxide Films. Chem. Mater.,2007,19(16):3882-3891
    [256]Zhou, W. J., Zhang, J., Xue, T., et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem.,2008,18(8):905-910
    [257]Kong, L. B., Liu, M. C., Lang, J. W., et al. Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior. J. Solid State Electrochem., 2010,15(3):571-577
    [258]Kotz, R., Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta,2000,45(15-16):2483-2498
    [259]Sugimoto, W., Iwata, H., Yasunaga, Y., et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed., 2003,42(34):4092-4096
    [260]Yang, G. W., Xu, C. L., Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun.,2008, (48):6537-6539
    [261]孔令斌,吴维金,郎俊伟等.Ni(OH)2-USY分子筛复合材料的制备及其超级电容性能.兰州理工大学学报,2009,35(5):27-31
    [262]Luo, Z. J., Wang, K., Li, H. M., et al. One-dimensional β-Ni(OH)2 nanostructures:Ionic liquid etching synthesis, formation mechanism, and application for electrochemical capacitors. CrystEngComm,2011,13(23):7108-7113
    [263]Xu, L. P., Ding, Y. S., Chen, C. H., et al.3D Flowerlike a-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chem. Mater.,2008,20(1):308-316
    [264]Ren, Y, Gao, L. From Three-Dimensional Flower-Like a-Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers:Microwave-Assisted Fabrication and Supercapacitor Properties. J. Am. Ceram. Soc.,2010,93(11):3560-3564
    [265]Cao, M. H., He, X. Y, Chen, J., et al. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:A Nanomaterial for Alkaline Rechargeable Batteries. Cryst. Growth Des., 2007,7(1):170-174
    [266]Jeevanandam, P., Koltypin, Y, Gedanken, A. Synthesis of Nanosized a-Nickel Hydroxide by a Sonochemical Method. Nano Lett.,2001,1(5):263-266
    [267]Portemer, F., Delahaye-Vidal, A., Figlarz, M. Characterization of Active Material Deposited at the Nickel Hydroxide Electrode by Electrochemical Impregnation. J. Electrochem. Soc.,1992, 139(3):671-678
    [268]Lee, J. W., Ahn, T., Soundararajan, D., et al. Non-aqueous approach to the preparation of reduced graphene oxide/alpha-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun.,2011,47(22):6305-6307
    [269]Mavis, B., Akinc, M. Cyanate Intercalation in Nickel Hydroxide Chem. Mater.,2006,18(22): 5317-5325
    [270]Taibi, M., Ammar, S., Jouini, N., et al. Layered nickel hydroxide salts:synthesis, characterization and magnetic behaviour in relation to the basal spacing. J. Mater. Chem., 2002,12(11):3238-3244
    [271]Wang, H., Fan, G. L., Zheng, C, et al. Facile Sodium Alginate Assisted Assembly of Ni-Al Layered Double Hydroxide Ind. Eng. Chem. Res.,2010,49(6):2759-2767
    [272]Xu, Z. P., Zeng, H. C. Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chem. Mater.,1999,11(1):67-74
    [273]Vaysse, C., Guerlou-Demourgues, L., Delmas, C. Thermal Evolution of Carbonate Pillared Layered Hydroxides with (Ni, L) (L=Fe, Co) Based Slabs:Grafting or Nongrafting of Carbonate Anions? Inorg. Chem.,2002,41(25):6905-6913
    [274]Liu, B. H., Yu, S. H., Chen, S. F., et al. Hexamethylenetetramine Directed Synthesis and Properties of a New Family of a-Nickel Hydroxide Organic-Inorganic Hybrid Materials with High Chemical Stability.pdf. J. Phys. Chem. B 2006,110(2):4039-4046
    [275]Chisem, I. C., Jones, W. Ion-exchange properties of lithium aluminium layered double hydroxides. J. Mater. Chem.,1994,4(11):1737-1744
    [276]Fu, G. R., Hu, Z. A., Xie, L. J., et al. Electrodeposition of Nickel Hydroxide Films on Nickel Foil and Its Electrochemical Performances for Supercapacitor. Int. J. Electrochem. Sci.,2009, 4 (8):1052-1062
    [277]Deabate, S., Fourgeot, F., Henn, F. X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. J. Power Sources,2000,87(1-2): 125-136
    [278]Li, X. W., Xiong, S. L., Li, J. F., et al. Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. J. Mater. Chem.,2012,22(28):14276-14283
    [279]Ayudhya, S. K. N., Tonto, P., Mekasuwandumrong, O., et al. Solvothermal Synthesis of ZnO with Various Aspect Ratios Using Organic Solvents. Cryst. Growth Des,2006,6(11): 2446-2450
    [280]Banfield, J. F., Welch, S. A., Zhang, H. Z., et al. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science,2000,289(5480):751-754
    [281]Zhang, J., Sun, L. D., Yin, J. L., et al. Control of ZnO Morphology via a Simple Solution Route Chem. Mater.,2002,14(10):4172-4177
    [282]Wang, L., Zhao, Y, Lai, Q. Y, et al. Preparation of 3D rose-like NiO complex structure and its electrochemical property. J. Alloys Compd.,2010,495(1):82-87
    [283]Li, B. J., Ai, M., Xu, Z. Mesoporous beta-Ni(OH)2:synthesis and enhanced electrochemical performance. Chem Commun 2010,46(34):6267-6269
    [284]Yu, X. Y, Xu, R. X., Gao, C., et al. Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As(III) removal. ACS Appl. Mater. Interfaces,2012,4(4):1954-1962
    [285]Lu, Z. Y, Chang, Z., Zhu, W., et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun.,2011,47(34): 9651-9653
    [286]Hu, C. C., Chang, K. H., Lin, M. C., et al. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett.,2006,6(12): 2690-2695
    [287]Guo, Y. G., Hu, J. S., Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Adv. Mater.,2008,20(15):2878-2887
    [288]Hu, G. X., Li, C. X., Gong, H. Capacitance decay of nanoporous nickel hydroxide. J. Power Sources,2010,195(19):6977-6981
    [289]Xu, M. W., Bao, S. J., Li, H. L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor. J. Solid State Electrochem.,2006,11(3):372-377
    [290]Liu, Z. L., Tay, S. W., Li, X. Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte. Chem. Commun.,2011,47(46): 12473-12475
    [291]Gamby, J., Taberna, P. L., Simon, P., et al. Studies and charaterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources,2001,101(1):109-116
    [292]Zhu, J. W., Chen, S., Zhou, H., et al. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res.,2011, 5(1):11-19
    [293]Chen, S., Zhu, J. W., Zhou, H., et al. One-step synthesis of low defect density carbon nanotube-doped Ni(OH)2 nanosheets with improved electrochemical performances. RSC Adv., 2011,1(3):484-489
    [294]Zhang, S. S., Xu, K., Jow, T. R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta,2004,49(7):1057-1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700