用户名: 密码: 验证码:
基于模型化合物的煤表面活性基团低温氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤自燃是煤炭工业中普遍存在的一种严重灾害,研究煤自燃的特性和机理对防治灾害降低损失具有重要的意义。煤的低温氧化是煤自燃发展过程中的一个重要阶段,是影响煤炭自燃发生和发展的关键阶段。而煤是一种由相似但不相同分子结构构成的复杂有机矿物燃料,其结构异常复杂,并含有多种易氧化的活性基团。直接研究其中某种活性基团氧化过程中的结构变化往往达不到预期的效果。因此,可采用模型化合物,将复杂大分子体系分解为简单小分子结构,从而研究复杂煤分子中表面活性基团的低温氧化特性。
     根据煤化学和煤的大分子模型理论,煤氧复合过程中,煤分子中的含氧官能团、侧链和桥键等活性基团易被氧化,即煤氧化自热效应的导因,而煤中芳香环的化学性质相对稳定,较难参与氧化反应,且苯环数目对活性基团的特性影响不大。因此,本文选择用芳环与某些煤中代表性的活性基团组成煤自燃模型化合物:苯乙醚、苯乙醛、苯丙醇、苯甲酸、二苯基甲烷、二苯基硫醚进行模拟实验研究。
     对6种模型化合物进行“气-液”和“气-固”反应条件下的程序升温氧化实验。通过对不同温度下的各类氧化产物进行气相色谱、红外光谱以及色谱-质谱联用分析。发现模型化合物的低温氧化与煤的低温氧化类似,其氧化过程中存在临界温度,即温度超过一定值时,模型化合物的氧化活性会迅速增强;模型化合物的低温氧化是一个多步的复杂反应,包含对氧气的化学吸附和中间产物生成这一过程。通过对模型化合物氧化产物的定性分析发现其主要成分包含CO、CO2、苯、苯酚及其它各类氧化的中间产物或副产物,也与煤自燃产物相一致。在此基础上,对各模型化合物氧化反应历程进行了分析。
     通过模型化合物的耗氧特性,分析了模型化合物氧化过程中的活化能及指前因子等氧化动力学参数;结果表明,6种模型化合物中苯乙醛(—CHO)和二苯基甲烷(—CH2—)的活化能较小,氧化活性较强。但因醛基—CHO在煤中的含量较低,故煤中的亚甲基桥键—CH2—对煤的自燃特性具有重要影响。通过TG/DTA技术研究了模型化合物在低温氧化过程中的放热特性,发现煤自燃模型化合物在低温氧化最初阶段有微幅的增重,随着温度的进一步升高进而迅速失重,并最终维持稳定。相比之下,模型化合物的DTA曲线在整个低温氧化过程中存在不止一个吸/放热峰,表明模型化合物的中活性结构的在不同温度阶段有复杂的热变化。
     通过对煤中活性官能团氧化特性的分析,选取植酸、2,6-二叔丁基对甲酚、没食子酸正丙酯等五种抗氧化剂进行模型化合物的低温氧化抑制实验,并应用于煤样自燃抑制实验。结果表明,2,6-二叔丁基对甲酚和植酸在160℃之后对煤的氧化有良好的抑制效果。同时,通过各抗氧化剂对煤自燃阻化实验结果分析其氧化抑制机理。
Spontaneous combustion of coal (SCC) is a serious hazard in the the coalindustry. The study on characteristics and mechanism of spontaneous combustion ofcoal has a critical significance for the preventing and reducing losses on this disaster.Low-temperature oxidation is an important stage for coal spontaneous combustion,which controls the occurrence and development of spontaneous combustion. As aresult, the research targeting at low-temperature oxidation of coal plays a key role inprevention of self-heating hazards. It’s well known that coal is a complexorganic-fossil-fuel which constituted by similar but different molecular structures.Generally, the coal is considered as the porous polymer with large internal surfacearea. Given this property, direct investigation into the internal structural changes ofcoal during the low-temperature oxidation period is often difficult to succeed.
     According to theories on Coal Chemistry, in the combining process of oxygenand coal, O-containing functional groups, such as side-chains and bridging bonds aresusceptible to be oxidized, while the chemical properties of aromatic rings arerelatively stable. As a consequence, the model compounds which contained a benzenering and a representative group of coal were used in this paper for studyingspontaneous combustion properties of coal. In order to simplify the complexity ofbiological macromolecules into small molecules of simple structure and study theiroxidation performance, the model compounds: phenetole, phenylacetaldehyde,phenylpropanol, benzoic acid, diphenylmethane and diphenylsulfide are adopted asthe substitute material for simulating the oxidation properties of active groups in coal.
     The programmed-heating experiments of six kinds of model compounds werecarried out. The results show that the phenylacetaldehyde and diphenyl methane havehigher oxidative activity than others. In the light of data on GC, FTIR and GC/MS,the outcome shows that there is a critical temperature in low-temperature oxidation ofmodel compounds. The oxidative activity of model compounds will sharply increaseonce the temperature over a certain value. Besides, there is a time delay between themaximum O2consumption and the generation of oxidation products, which alsoindicate that, like self-ignite of coal, the oxidation of model compounds is acomplicated reaction with multiple steps. The oxidation products of modelcompounds contain CO, CO2, benzene, phenol and other intermediate products. Thereaction pathways of model compounds were inferred on the basis of the compositionof oxidation products.
     Oxidation kinetics such as activation energy and pre-exponential factor wereanalyzed, according to the O2consumption rate of model compounds. In addition,their thermal characteristics were analyzed by the TG/DTA. Similar with the coal, theweight of model compounds will slightly increase at initial period. Then the TG curveappears a significant decrease with the temperature rising continuously, and finallykeep stable. It is worth noting that more than one peak were shown in the DTA curveduring the low-temperature process, which suggested that the oxidation of modelcompounds has complicated thermal-variation in different temperature stage.
     On the basis of oxidation properties of active groups in coal, five differentantioxidants (BHT, propyl gallate, phytic, sodium benzoate and ascorbic acid) wereemployed for inhibiting the low-temperature oxidation of model compounds, and alsoapplied to the coal samples. The outcomes indicate that the BHT and phytic have welleffect on the inhibition of coal oxidation. Further, the inhibition mechanism ofantioxidants was analyzed.
引文
[1]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [2] FIERRO V, MIRANDA J L, ROMERO C, et al. Prevention of spontaneous combustion in coal stockpiles:Experimental results in coal storage yard[J]. Fuel Processing Technology,1999,59(1):23-37.
    [3]曾强.新疆地区煤火燃烧系统热动力特性研究[D].中国矿业大学,2012.
    [4] PONE J D N, HEIN K A A, STRACHER G B, et al. The spontaneous combustion of coal and its by-products inthe Witbank and Sasolburg coalfields of South Africa[J]. International Journal of Coal Geology,2007,72(2):124-140.
    [5] SAHU H B, MAHAPATRA S S, PANIGRAHI D C. Fuzzy c-means clustering approach for classification ofIndian coal seams with respect to their spontaneous combustion susceptibility[J]. Fuel Processing Technology,2012,104:115-120.
    [6] SAHU H B, MAHAPATRA S S, SIRIKASEMSUK K, et al. A discrete particle swarm optimization approachfor classification of Indian coal seams with respect to their spontaneous combustion susceptibility[J]. FuelProcessing Technology,2011,92(3):479-485.
    [7] CHATTERJEE R S, WAHIDUZZAMAN M, SHAH A, et al. Dynamics of coal fire in Jharia Coalfield,Jharkhand, India during the1990s as observed from space[J]. CURRENT SCIENCE,2007,92(1):61-68.
    [8] GUHA A, KUMAR K V, KAMARAJU M. A satellite-based study of coal fires and open-cast mining activity inRaniganj coalfield, West Bengal[J]. CURRENT SCIENCE,2008,95(11):1603-1607.
    [9] ROSEMA A, GUAN H, VELD H. Simulation of spontaneous combustion, to study the causes of coal fires inthe Rujigou Basin[J]. Fuel,2001,80(1):7-16.
    [10] HOWER J C, O'KEEFE J, HENKE K R, et al. Gaseous emissions and sublimates from the Truman Shepherdcoal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire[J].INTERNATIONAL JOURNAL OF COAL GEOLOGY,2013,116:63-74.
    [11] GIBBONS T B. Recent Advances in Steels for Coal Fired Power Plant: A Review[J]. TRANSACTIONS OFTHE INDIAN INSTITUTE OF METALS,2013,66(5-6SI):631-640.
    [12] SMITH M A, GLASSER D. Spontaneous combustion of carbonaceous stockpiles. Part I: the relativeimportance of various intrinsic coal properties and properties of the reaction system[J]. Fuel,2005,84(9):1151-1160.
    [13] SUJANTI W, ZHANG D. A laboratory study of spontaneous combustion of coal: the influence of inorganicmatter and reactor size[J]. Fuel,1999,78(5):549-556.
    [14] WANG D, DOU G, ZHONG X, et al. An experimental approach to selecting chemical inhibitors to retard thespontaneous combustion of coal[J]. Fuel,2014,117, Part A:218-223.
    [15] FEI Y, AZIZ A A, NASIR S, et al. The spontaneous combustion behavior of some low rank coals and a rangeof dried products[J]. Fuel,2009,88(9):1650-1655.
    [16] KRISHNASWAMY S, AGARWAL P K, GUNN R D. Low-temperature oxidation of coal.3. Modellingspontaneous combustion in coal stockpiles[J]. Fuel,1996,75(3):353-362.
    [17] CHEN B, DIAO Z J, LU H Y. Using the ReaxFF reactive force field for molecular dynamics simulations of thespontaneous combustion of lignite with the Hatcher lignite model[J]. FUEL,2014,116:7-13.
    [18]石婷,邓军,王小芳,等.煤自燃初期的反应机理研究[J].燃料化学学报,2004,32(06):652-657.
    [19] ZUBí EK V, ADAMUS A. Susceptibility of coal to spontaneous combustion verified by modified adiabaticmethod under conditions of Ostrava–Karvina Coalfield, Czech Republic[J]. Fuel Processing Technology,2013,113:63-66.
    [20] DOU G, WANG D, ZHONG X, et al. Effectiveness of catechin and poly(ethylene glycol) at inhibiting thespontaneous combustion of coal[J]. Fuel Processing Technology,2014,120:123-127.
    [21] ADAMUS A, ANCER J, GU ANOVá P, et al. An investigation of the factors associated with interpretationof mine atmosphere for spontaneous combustion in coal mines[J]. Fuel Processing Technology,2011,92(3):663-670.
    [22]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003,22(04):455-459.
    [23]葛岭梅,薛韩玲,徐精彩,等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001,24(03):23-28.
    [24]邓存宝,王继仁,叶兵,等.煤表面对单氧分子的物理吸附机理[J].中国矿业大学学报,2008(02):171-175.
    [25]陆伟,王德明,戴广龙,等.煤物理吸附氧的研究[J].湖南科技大学学报(自然科学版),2005(04):6-10.
    [26]吴强,陈文胜.煤自燃的热重分析研究[J].中国安全生产科学技术,2008(01):71-73.
    [27]王毅,赵阳升,冯增朝.褐煤煤层自燃火灾发展进程中孔隙结构演化特征[J].煤炭学报,2010(09):1490-1495.
    [28]张玉贵.镜煤和丝炭自燃倾向性研究[J].煤矿安全,1991(12):20-22.
    [29]罗海珠,钱国胤.煤吸附流态氧的动力学特性及其在煤自燃倾向性色谱吸氧鉴定法中的应用[J].煤矿安全,1990(06):1-11.
    [30]马汉鹏,陆伟,王德明,等.煤自燃过程物理吸附氧的研究[J].煤炭科学技术,2006(07):26-29.
    [31]路长,余明高,陈亮,等.煤的受热氧化及其对物理吸附氧气的影响[J].煤炭学报,2008(09):1025-1029.
    [32]戚绪尧.煤中活性基团的氧化及自反应过程[D].中国矿业大学,2011.
    [33]王继仁,刘仲田,邓汉忠,等.煤表面对多个氧分子的多层吸附机理研究[J].计算机与应用化学,
    [34]邓存宝,王继仁,邓汉忠,洪林,陆卫东.氧在煤表面_CH_2_NH_2基团上的化学吸附[J].煤炭学报,2009(09):654-673.
    [35]邓存宝,邓汉忠,王继仁,等.煤表面含P侧链基团对氧分子的物理吸附机理[J].煤炭转化,2008(01):1-5.
    [36]许涛.煤自燃过程分段特性及机理的实验研究[D].中国矿业大学,2012.
    [37]彭本信.应用热分析技术研究煤的氧化自燃过程[J].煤矿安全,1990(04):1-12.
    [38]徐精彩,贺敦良.煤炭表面反应热与自燃性关系探讨[J].煤矿安全,1990(06):19-24.1990(06):19-24.
    [39]徐精彩,薛韩玲,文虎,等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001(02):34-39.
    [40]文虎,许满贵,李莉,等.煤自燃的热量积聚过程及影响因素分析[J].辽宁工程技术大学学报,2003(02):151-154.
    [41]刘剑,赵凤杰.粒度对煤的白燃倾向性表征影响[J].辽宁工程技术大学学报,2006,1(25):1-3.
    [42]刘剑,赵凤杰.升温速率对煤的自燃倾向性表征影响的研究[J].煤矿安全,2006(05):4-6.
    [43]张嬿妮,邓军,罗振敏,等.煤自燃影响因素的热重分析[J].西安科技大学学报,2008(02):388-391.
    [44]戴广龙,王德明,陆伟,等.煤的绝热低温自热氧化试验研究[J].辽宁工程技术大学学报,2005(04):485-488.
    [45]李庚,徐明厚,于敦喜,等.燃烧过程中孔隙变化对煤粒破碎影响的研究[J].热能动力工程,2004(06):553-557.
    [46]薛冰,李再峰,陈兴权,等.低阶煤在干燥氧气下低温氧化过程的机理研究[J].煤炭转化,2006,29(02):12-15.
    [47]张玉贵,唐修义,何萍.煤的分子结构与煤的自燃倾向性[J].煤矿安全,1992(05):1-4.
    [48]邓存宝,王继仁,张俭,等.煤自燃生成乙烯反应机理[J].煤炭学报,2008,33(03):299-303.
    [49]邓汉忠,王继仁,邓存宝. O2在—CH2—CH2OH基团上的化学吸附[J].煤炭转化,2007,30(04):29-33.
    [50]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007(09):939-944.
    [51]胡善亭,潘治贵,周春光,等.鸡西煤的红外光谱和差热分析研究[J].煤炭科学技术,1996(04):53-55.
    [52]张国枢,谢应明,顾建明.煤炭自燃微观结构变化的红外光谱分析[J].煤炭学报,2003(05):473-476.
    [53]张辛亥,罗振敏,张海珩.煤自燃性的红外光谱研究[J].西安科技大学学报,2007(02):171-174.
    [54]杨永良,李增华,尹文宣,等.易自燃煤漫反射红外光谱特征[J].煤炭学报,2007(07):729-733.
    [55]余明高,贾海林,于水军,等.乌达烟煤微观结构参数解算及其与自燃的关联性分析[J].煤炭学报,2006(05):610-614.
    [56]肖旸,王振平,马砺,等.煤自燃指标气体与特征温度的对应关系研究[J].煤炭科学技术,2008,36(06):47-51.
    [57]马汉鹏,陆伟,王宝德.煤自燃过程指标气体产生规律的系统研究[J].矿业安全与环保,2007,34(06):4-6.
    [58]刘璐,梅国栋.基于灰色关联分析的煤自然发火气体预报指标研究[J].陕西煤炭,2008(01):33-36.
    [59]王福生,朱令起,张嘉勇,等.应用气体分析法建立煤自然发火预报系统[J].煤矿安全,2006(11):9-11.
    [60] MATHEWS J P, CHAFFEE A L. The molecular representations of coal-A review[J]. FUEL,2012,96(1):1-14.
    [61] I. W. Wender I. Catalytic synthesis of chemicals from coal.[J]. Catalysis Reviews: Science and Engineering1976,14:97-129.
    [62] Berkowitz N. Coal aromaticity and average molecular-structure[C]. In: Ebert LB, editor. Advances in chemistryseries, polynuclear aromatic compounds. American Chemical Society;1988. p.217–33.
    [63] Wolfrum EA. Correlation between petrographic properties, chemical structure, and technological behavior ofRhenish brown coal[C]. In: Schobert HH, editor. The chemistry of low-rank coals. ACS symposium series;264.Washington, DC: American Chemical Society;1984. p.15–37.
    [64] Millya N, Zingaro RA. Some structural features of a Wilcox lignite[C]. In: Schobert HH, editor. The chemistryof low-rank coals. ACS symposium series;264. Washington, DC: American Chemical Society;1984. p.133–44.
    [65] LISHTVAN I I, STRIGUTSKII V P, YANUTA Y G, et al. Transformation of the polyconjugation systems ofhumic acids in the course of the metamorphism of caustobioliths[J]. SOLID FUEL CHEMISTRY,2012,46(3):153-158.
    [66] PATRAKOV Y F, SEMENOVA S A, FEDOROVA N I, et al. Modification of the organic matter of browncoals with nitrous oxide[J]. SOLID FUEL CHEMISTRY,2012,46(3):159-163.
    [67] JIMENEZ F, MONDRAGON F, LOPEZ D. Structural changes in coal chars after pressurized pyrolysis[J].JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS,2012,95:164-170.
    [68] FABIANSKA M J, KURKIEWICZ S. Biomarkers, aromatic hydrocarbons and polar compounds in theNeogene lignites and gangue sediments of the Konin and Turoszow Brown Coal Basins (Poland)[J].INTERNATIONAL JOURNAL OF COAL GEOLOGY,2013,107(SI):24-44.
    [69] DEVIC G J, POPOVIC Z V. Biomarker and micropetrographic investigations of coal from the Krepoljin BrownCoal Basin Serbia[J]. INTERNATIONAL JOURNAL OF COAL GEOLOGY,2013,105:48-59.
    [70] LIEVENS C, CI D H, BAI Y, et al. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS[J].FUEL PROCESSING TECHNOLOGY,2013,116:85-93.
    [71] WANG Z C, HU J C, SHUI H F, et al. Study on the structure and association of asphaltene derived fromliquefaction of lignite by fluorescence spectroscopy[J]. FUEL,2013,109:94-100.
    [72] MATHEWS J P, CHAFFEE A L. The molecular representations of coal-A review[J]. FUEL,2012,96(1):1-14.
    [73] GUO J J, ZHU C, HE Q Q, et al. Infrared Spectra and Pyrolysis of Selected Molecular Models of Coal: Insightfrom Density Functional Calculations[J]. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY,2013,32(6):863-870.
    [74] LIU X Q, XUE Y, TIAN Z Y, et al. Adsorption of CH4on nitrogen-and boron-containing carbon models ofcoal predicted by density-functional theory[J]. APPLIED SURFACE SCIENCE,2013,285(B):190-197.
    [75] Kumagai H, Chiba T, Nakamura K. Change in physical and chemical characteristics of brown coal along withprogress of moisture release[J]. PreprPap-Am Chem Soc Div Fuel Chem1999;44:633-7].
    [76] PATRAKOV Y F, KAMYANOV V F, FEDYAEVA O N. A structural model of the organic matter of Barzasliptobiolith coal[J]. FUEL,2005,84(2-3):189-199.
    [77] JH S. From coal to single stage and two-stage products: a reactive model of coal structure.[J].1984:63,1187-1196.
    [78] M N, K M, T I, et al. A study on unit structures of bituminous Akabira coal[J]. Fuel Processing Technology,1992:31.
    [79] HATCHER P G, LERCH III H E, VINCENT VERHEYEN T. Organic geochemical studies of thetransformation of gymnospermous xylem during peatification and coalification to subbituminous coal[J].International Journal of Coal Geology,1989,13(1–4):65-97.
    [80] Van Krevelen DW. Coal science and technology[M]. New York: Elsevier,1981.
    [81] Given PH. Structure of bituminous coals-evidence from distribution of hydrogen[J]. Nature1959;184(4691):980-1.
    [82] RA. M. Coal structure-Coal handbook[M]. New York: Marcel Dekker,1981.
    [83] L C, PB. H. A contribution to the structure of coals from X-ray diffraction studies.[J].1960: A252-A557.
    [84] WR L, AE. S. Some discussion on possible coal structures[J].1961:39,147-153.
    [85] WH W. Conversion of bituminous coals to liquids and gases[M]. Reidel Publishing Company,1984:124,325.
    [86] SPIRO CL K P. Space-filling models for coal.2. Extension to coals of various rank.[J].1982:61,1180-1187.
    [87] P P, JP M, HH. S. Structural determinations of Pennsylvania anthracites.[J].1999:44,567-570.
    [88] SRIDAR R, BHOWAL A, GARLAPATI C. A new model for the solubility of dye compounds in supercriticalcarbon dioxide[J]. Thermochimica Acta,2013,561:91-97.
    [89] FALLAH R N, AZIZIAN S, REGGERS G, et al. Effect of aromatics on the adsorption of thiophenic sulfurcompounds from model diesel fuel by activated carbon cloth[J]. Fuel Processing Technology,2014,119:278-285.
    [90] SHOJAEI A F, REZVANI M A, LOGHMANI M H. Comparative study on oxidation desulphurization of actualgas oil and model sulfur compounds with hydrogen peroxide promoted by formic acid: Synthesis andcharacterization of vanadium containing polyoxometalate supported on anatase crushed nanoleaf[J]. FuelProcessing Technology,2014,118:1-6.
    [91] WANG S, FAN X, ZHENG A, et al. Evaluation of atmospheric solids analysis probe mass spectrometry for theanalysis of coal-related model compounds[J]. Fuel,2014,117, Part A:556-563.
    [92] VíT Z, KALU A L, GULKOVá D. Comparison of nitrogen tolerance of PdMo/Al2O3and CoMo/Al2O3catalysts in hydrodesulfurization of model compounds[J]. Fuel,2014,120:86-90.
    [93] LI Z, ZONG Z, YAN H, et al. Alkanolysis simulation of lignite-related model compounds using densityfunctional theory[J]. Fuel,2014,120:158-162.
    [94] LIU F, XIE L, GUO H, et al. Sulfur release and transformation behaviors of sulfur-containing modelcompounds during pyrolysis under oxidative atmosphere[J]. Fuel,2014,115:596-599.
    [95] YAN Q, GAO X, HUANG L, et al. Occurrence and fate of pharmaceutically active compounds in the largestmunicipal wastewater treatment plant in Southwest China: Mass balance analysis and consumptionback-calculated model[J]. Chemosphere,.
    [96] LASOGGA L, BRICKS J, MERK V, et al. Electric field effects on donor–acceptor dyes: A model compoundstudy using UV/vis absorption and Raman spectroscopy[J]. Chemical Physics Letters,2014,592:1-6.
    [97] RIVERA-RIVERA L A, SCOTT K W, MCELMURRY B A, et al. Compound model-morphed potentialscontrasting OC–79Br35Cl with the halogen bonded OC–35Cl2and hydrogen-bonded OC–HX(X = 19F,35Cl,79Br)[J]. Chemical Physics,2013,425:162-169.
    [98] NIE S, LIU X, WU Z, et al. Kinetics study of oxidation of the lignin model compounds by chlorine dioxide[J].Chemical Engineering Journal,.
    [99] GüVENATAM B, KUR UN O, HEERES E H J, et al. Hydrodeoxygenation of mono-and dimeric ligninmodel compounds on noble metal catalysts[J]. Catalysis Today,.2006,34(7):125-131.
    [100] ANIS S, ZAINAL Z A. Study on kinetic model of microwave thermocatalytic treatment of biomass tar modelcompound[J]. Bioresource Technology,2014,151:183-190.
    [101] WANG C A, DU Y, CHE D. Reactivities of coals and synthetic model coal under oxy-fuel conditions[J].Thermochimica Acta,2013,553:8-15.
    [102] MAFFEI T, FRASSOLDATI A, CUOCI A, et al. Predictive one step kinetic model of coal pyrolysis for CFDapplications[J]. Proceedings of the Combustion Institute,2013,34(2):2401-2410.
    [103] ZENG-HUA L, YA-LI W, NA S, et al. Experiment study of model compound oxidation on spontaneouscombustion of coal[J]. Procedia Earth and Planetary Science,2009,1(1):123-129.
    [104] HAIBIN L, ZHENFU L, YUEMIN Z, et al. Cleaning of South African coal using a compound dry cleaningapparatus[J]. Mining Science and Technology (China),2011,21(1):117-121.
    [105] ZHAO W, YAO L, LIN J, et al. Electrolytic reduction of Nantong coal and model compounds with oxygenicfunctional groups in an aqueous NaCl solution[J]. Journal of China University of Mining and Technology,2008,18(1):112-115.
    [106] ARENILLAS A, PEVIDA C, RUBIERA F, et al. Characterisation of model compounds and a synthetic coal byTG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):747-763.
    [107] IKEDA E, MACKIE J C. Thermal decomposition of two coal model compounds—pyridine and2-picoline.Kinetics and product distributions[J]. Journal of Analytical and Applied Pyrolysis,1995,34(1):47-63.
    [108] WANG S, ZHANG F, CAI Q, et al. Catalytic steam reforming of bio-oil model compounds for hydrogenproduction over coal ash supported Ni catalyst[J]. International Journal of Hydrogen Energy,2014,39(5):2018-2025.
    [109] WEI X, OGATA E, ZONG Z, et al. Advances in the study of hydrogen transfer to model compounds for coalliquefaction[J]. Fuel Processing Technology,2000,62(2–3):103-107.
    [110] HEI R D, SWEENY P G, STENBERG V I. Mechanism of the hydrogen-sulphidepromoted cleavage of the coalmodel compounds: diphenyl ether, diphenylmethane and bibenzyl[J]. Fuel,1986,65(4):577-585.
    [111] RATHSACK P, OTTO M. Classification of chemical compound classes in slow pyrolysis liquids from browncoal using comprehensive gas-chromatography mass-spectrometry[J]. Fuel,2014,116:841-849.
    [112] LESTER T W, POLAVARAPU J, MERKLIN J F. Formation and destruction of H2S in the short residencetime pyrolysis of pulverized coal and model compounds[J]. Fuel,1982,61(6):493-498.
    [113] SAKAWA M, UNO T, HARA Y. Influence of aluminium chloride on carbonization of coal model compoundsand coal derivatives[J]. Fuel,1983,62(5):571-574.
    [114] MONDRAGON F, KAMOSHITA R, KATOH T, et al. Coal liquefaction by the hydrogen produced frommethanol:2. Model compound studies[J]. Fuel,1984,63(5):579-585.
    [115] SHIMIZU K, MIKI K, SAITOU I. Acid-catalysed depolymerization of coal model compounds andsubbituminous coal in a superacid-isopentane medium[J]. Fuel,1997,76(1):23-27.
    [116] CASSIDY P J, JACKSON W R, LARKINS F P. Hydrogenation of brown coal: IV Model compound studiesand mechanistic considerations[J]. Fuel,1983,62(12):1404-1411.
    [117] OLAH G A, HUSAIN A. Superacid coal chemistry.2. Model compound studies under conditions ofHF:BF3:H2catalysed mild coal liquefaction[J]. Fuel,1984,63(10):1427-1431.
    [118] MONDRAGON F, OUCHI K. Coal liquefaction by in-situ hydrogen generation.:2. Zinc-water modelcompound reactions[J]. Fuel,1984,63(7):973-977.
    [119] CURTIS C W, GUIN J A, KWON K C. Coal solvolysis in a series of model compound systems[J]. Fuel,1984,63(10):1404-1409.
    [120] HILLEBRAND W, HODEK W, K LLING G. Steam cracking of coal-derived oils and model compounds:2.Cracking of hydrogenated coal-derived oils[J]. Fuel,1984,63(6):762-766.
    [121] WANG S, FAN X, ZHENG A, et al. Evaluation of atmospheric solids analysis probe mass spectrometry for theanalysis of coal-related model compounds[J]. Fuel,2014,117, Part A:556-563.
    [122] LARSEN J W, LEE D. Reactions of coal in acidic phenol. Model compound studies[J]. Fuel,1983,62(4):463-466.
    [123] CHAMBERS JR. R R, HAGAMAN E W, WOODY M C. Selective functionalization of coal model compoundsbased on benzylic hydrogen pKa differences: alkylation[J]. Fuel,1986,65(7):895-898.
    [124] WANG Z, WANG Z, SHUI H, et al. Catalysis of/ZrO2in the reactions of coal-related model compounds[J].Fuel,2010,89(9):2477-2482.
    [125] ARENILLAS A, PEVIDA C, RUBIERA F, et al. Surface characterisation of synthetic coal chars made frommodel compounds[J]. Carbon,2004,42(7):1345-1350.
    [126] DOOLAN K R, MACKIE J C. Kinetics of rapid pyrolysis of a calcium-exchanged brown coal and of a calciummodel compound[J]. Symposium (International) on Combustion,1985,20(1):1463-1469.
    [127] WORNAT M J, SAROFIM A F, LAFLEUR A L. The pyrolysis of anthracene as a model coal-derived aromaticcompound[J]. Symposium (International) on Combustion,1992,24(1):955-963.
    [128] MAFFEI T, FRASSOLDATI A, CUOCI A, et al. Predictive one step kinetic model of coal pyrolysis for CFDapplications[J]. Proceedings of the Combustion Institute,2013,34(2):2401-2410.
    [129] GOU X, ZHOU J, LIU J, et al. Effects of Water Vapor on the Pyrolysis Products of Pulverized Coal[J].Procedia Environmental Sciences,2012,12, Part A:400-407.
    [130] JIN X, LI E, PAN C, et al. Interaction of coal and oil in confined pyrolysis experiments: Insight from the yieldand composition of gas hydrocarbons[J]. Marine and Petroleum Geology,2013,48:379-391.
    [131] LIU F, LI W, LI B, et al. Sulfur transformation during pyrolysis of Zunyi coal by atmospherepressure-temperature programmed reduction-mass spectrum[J]. Journal of Fuel Chemistry and Technology,2008,36(1):6-9.
    [132] BRAEKMAN-DANHEUX C. Pyrolysis—gas chromatography—mass spectrometry of model compounds fromcoal hydrogenates: Part III. Sulphur compounds[J]. Journal of Analytical and Applied Pyrolysis,1985,7(4):315-322.
    [133] WANG M, HU Y, WANG J, et al. Transformation of sulfur during pyrolysis of inertinite-rich coals andcorrelation with their characteristics[J]. Journal of Analytical and Applied Pyrolysis,2013,104:585-592.
    [134] CHRISTIANSEN J V, FELDTHUS A, EGSGAARD H, et al. Flash pyrolysis of coal sub-structures adsorbedon a carbosieve[J]. Journal of Analytical and Applied Pyrolysis,1993,24(3):311-323.
    [135] MULLENS S, YPERMAN J, REGGERS G, et al. A study of the reductive pyrolysis behaviour of sulphurmodel compounds[J]. Journal of Analytical and Applied Pyrolysis,2003,70(2):469-491.
    [136] SUELVES I, LáZARO M J, MOLINER R. Synergetic effects in the co-pyrolysis of samca coal and a modelaliphatic compound studied by analytical pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2002,65(2):197-206.
    [137] ARENILLAS A, PEVIDA C, RUBIERA F, et al. Characterisation of model compounds and a synthetic coal byTG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):747-763.
    [138] SHI L, LIU Q, GUO X, et al. Pyrolysis behavior and bonding information of coal-A TGA study[J]. FuelProcessing Technology,2013,108:125-132.
    [139] XU L, YANG J, LI Y, et al. Behavior of organic sulfur model compounds in pyrolysis under coal-likeenvironment[J]. Fuel Processing Technology,2004,85(8–10):1013-1024.
    [140] LIU F, LI B, LI W, et al. Py-MS Study of Sulfur Behavior during Pyrolysis of High-sulfur Coals underDifferent Atmospheres[J]. Fuel Processing Technology,2010,91(11):1486-1490.
    [141] VUORI A. Pyrolysis studies of some simple coal related aromatic methyl ethers[J]. Fuel,1986,65(11):1575-1583.
    [142] Ben M. Benjamin. New chemical structural features of coal [J]. Fuel,1984,63(7):888-890.
    [143] RATHSACK P, OTTO M. Classification of chemical compound classes in slow pyrolysis liquids from browncoal using comprehensive gas-chromatography mass-spectrometry[J]. Fuel,2014,116:841-849.
    [144] LESTER T W, POLAVARAPU J, MERKLIN J F. Formation and destruction of H2S in the short residencetime pyrolysis of pulverized coal and model compounds[J]. Fuel,1982,61(6):493-498.
    [145] ROBERTS R M, SWEENEY K M. Low-temperature pyrolysis of Texas lignite, basic extracts and some relatedmodel compounds[J]. Fuel,1984,63(7):904-908.
    [146] RATHSACK P, KROLL M M, OTTO M. Analysis of high molecular compounds in pyrolysis liquids from agerman brown coal by FT-ICR-MS[J]. Fuel,2014,115:461-468.
    [147] LI C, TAN L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III.Further discussion on the formation of HCN and NH3during pyrolysis[J]. Fuel,2000,79(15):1899-1906.
    [148] SONCINI R M, MEANS N C, WEILAND N T. Co-pyrolysis of low rank coals and biomass: Productdistributions[J]. Fuel,2013,112:74-82.
    [149] PARK D K, KIM S D, LEE S H, et al. Co-pyrolysis characteristics of sawdust and coal blend in TGA and afixed bed reactor[J]. Bioresource Technology,2010,101(15):6151-6156.
    [150] LI L, TAKARADA T. Conversion of nitrogen compounds and tars obtained from pre-composted pig manurepyrolysis, over nickel loaded brown coal char[J]. Biomass and Bioenergy,2013,56:456-463.
    [151]赵科,谭厚章,周屈兰,等.煤的模型化合物热解过程中HCN、NH_3的逸出规律[J].热能动力工程,2004(03):246-248.
    [152]赵俐娟,凌丽霞,章日光,等.煤相关含氧模型化合物苯甲醚热解机理的量子化学研究[J].化工学报,2008(08):2095-2102.
    [153]贾建波,曾凡桂,李美芬,等.煤中芳核侧链模型化合物丁基蒽的初次热解[J].化工学报,2009(12):3082-3088.
    [154]杨晓林,杨惠星,韩德刚.与煤结构和煤液化有关的五个模型化合物热解反应动力学的研究[J].物理化学学报,1986(03):199-206.
    [155] ZHAI Z, WANG Z, WANG L. Quantitative structure–property relationship study of GC retention indices forPCDFs by DFT and relative position of chlorine substitution[J]. Journal of Molecular Structure: THEOCHEM,2005,724(1–3):115-124.
    [156] WANG Z, WANG Z, SHUI H, et al. Catalysis of/ZrO2in the reactions of coal-related model compounds[J].Fuel,2010,89(9):2477-2482.
    [157] SHUI H, CHEN Z, WANG Z, et al. Kinetics of Shenhua coal liquefaction catalyzed by/ZrO2solid acid[J]. Fuel,2010,89(1):67-72.
    [158] WANG Z, SHUI H, ZHU Y, et al. Catalysis of solid acid for the liquefaction of coal[J]. Fuel,2009,88(5):885-889.
    [159]易平贵,刘俊峰,赵红钢,等.煤及其模型化合物电解氧化脱硫的热力学分析[J].煤炭转化,1997(04):27-33.
    [160]尤百玲,赵乐平,庞宏,等.烃及含硫模型化合物在ZSM-5催化剂上的催化转化性能[J].当代化工,2006(03):206-211.
    [161]陈忠,袁帅,王增莹,等.煤的模型化合物混合燃料气流床气化过程中NH_3的生成率[J].煤炭学报,2008(09):1053-1057.
    [162]赵宗彬,李文,李保庆,等.钠、钙、铁对模型化合物热解及燃烧过程中氮逸出规律的影响[J].燃料化学学报,2002(04):294-299.
    [163]胡英俊,邹德蕴,朱丕凯,等.基于BP神经网络的煤层自燃预测[J].安全与环境学报,2007(01):125-128.
    [164]邬剑明,王俊峰.基于神经网络的煤层自然发火的非线性预测[J].中国安全科学学报,2004(05):15-17.
    [165]王国旗,张辛亥,肖旸.采用前向多层神经网络预测煤的自然发火期[J].湖南科技大学学报(自然科学版),2008(02):19-22.
    [166]陆卫东,王继仁,单亚飞,等.基于L-MBP神经网络的煤自然发火期预测[J].辽宁工程技术大学学报,2006(06):815-818.
    [167]肖红飞,田云丽,周利华.基于MATLAB工具箱的开采煤层自燃危险性预测[J].中国安全科学学报,2005(10):7-10.
    [168]陈长华.基于模糊渗流理论的采场自然发火位置预测模型及其相似模拟研究[D].辽宁工程技术大学,2004.
    [169]王蓬,魏引尚,常心坦.采空区自燃“三带”的灰色关联分析与预测研究[J].煤矿安全,2008(05):8-11.
    [170]卢守善,宋玉方.柴里煤矿自然发火的预测预报[J].煤矿安全,1995(08):12-13.
    [171] Jun Xie,Sheng Xue,Weimin Cheng. Early detection of spontaneous combustion of coal in underground coalmines with development of an ethylene enriching system[J]. International Journal of Coal Geology,2011,85:123–127
    [172]王俊峰.煤地下自燃时覆岩中氡气运移规律及应用研究[D].太原理工大学,2010.
    [173]余明高,晁江坤,贾海林.综放面采空区自燃“三带”的综合划分方法与实践[J].河南理工大学学报,2013,15(4),876-879.
    [174]张辛亥,席光,徐精彩,等.基于流场模拟的综放面自燃危险区域划分及预测[J].北京科技大学学报,2005(06):641-644.
    [175]刘小杰.兴阜矿3318工作面采空区自燃三带数值模拟[D].辽宁工程技术大学,2009.
    [176]李庆军,万清生,周金生,等.东荣三矿综一轻放面自燃危险性预测[J].煤矿安全,2006(09):21-23.
    [177]罗新荣,蒋曙光,李增华,等.采场自燃发火危险预测方法与控制原理研究[J].中国矿业,2000(02):88-93..
    [178]蒋曙光,张人伟,陈开岩.监测温度和气体确定采空区自燃“三带”的研究[J].中国矿业大学学报,1998(01):58-61.
    [179]徐精彩,张辛亥,邓军,等.常村煤矿2106综放面采空区“三带”规律及自燃危险性研究[J].湖南科技大学学报(自然科学版),2004(03):1-4.
    [180]苏全治.综采面采空区自燃“三带”变化规律研究[D].太原理工大学,2012.
    [181] GUHA A, KUMAR K V. Structural Controls on Coal Fire Distributions-Remote Sensing Based Investigationin the Raniganj Coalfield, West Bengal[J]. JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA,2012,79(5):467-475.
    [182] GUPTA N, SYED T H, ATHIPHRO A. Monitoring subsurface coal fires in Jharia coalfield using observationsof land subsidence from differential interferometric synthetic aperture radar (DInSAR)[J]. JOURNAL OFEARTH SYSTEM SCIENCE,2013,122(5):1249-1258.
    [183] ZHANG J H, KUENZER C, TETZLAFF A, et al. Thermal characteristics of coal fires2: Results ofmeasurements on simulated coal fires[J]. JOURNAL OF APPLIED GEOPHYSICS,2007,63(3-4):135-147.
    [184] ZHANG J H, KUENZER C. Thermal surface characteristics of coal fires1results of in-situ measurements[J].JOURNAL OF APPLIED GEOPHYSICS,2007,63(3-4):117-134.
    [185] CHATTERJEE R S. Coal fire mapping from satellite thermal IR data-A case example in Jharia Coalfield,Jharkhand, India[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2006,60(2):113-128.
    [186] KUENZER C, ZHANG J, LI J, et al. Detecting unknown coal fires: synergy of automated coal fire risk areadelineation and improved thermal anomaly extraction[J]. INTERNATIONAL JOURNAL OF REMOTESENSING,2007,28(20):4561-4585.
    [187] PRAKASH A, FIELDING E J, GENS R, et al. Data fusion for investigating land subsidence and coal firehazards in a coal mining area[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2001,22(6):921-932.
    [188] KUENZER C, HECKER C, ZHANG J, et al. The potential of multidiurnal MODIS thermal band data for coalfire detection[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2008,29(3):923-944.
    [189] ZHANG J, WAGNER W, PRAKASH A, et al. Detecting coal fires using remote sensing techniques[J].INTERNATIONAL JOURNAL OF REMOTE SENSING,2004,25(16):3193-3220.
    [190] KUENZER C, ZHANG J Z, SUN Y L, et al. Coal fires revisited: The Wuda coal field in the aftermath ofextensive coal fire research and accelerating extinguishing activities[J]. INTERNATIONAL JOURNAL OFCOAL GEOLOGY,2012,102:75-86.
    [191] PRAKASH A, SCHAEFER K, WITTE W K, et al. A Remote Sensing and GIS Based Investigation of a BorealForest Coal Fire[J]. INTERNATIONAL JOURNAL OF COAL GEOLOGY,2011,86(1SI):79-86.
    [192] IDE T S, CROOK N, ORR F M. Magnetometer measurements to characterize a subsurface coal fire[J].INTERNATIONAL JOURNAL OF COAL GEOLOGY,2011,87(3-4):190-196.
    [193] STRACHER G B, TAYLOR T P. Coal fires burning out of control around the world: thermodynamic recipe forenvironmental catastrophe[J]. INTERNATIONAL JOURNAL OF COAL GEOLOGY,2004,59(1-2):7-17.
    [194] WEI Z, CHEN Y H, CAI H C, et al. Extracting thermal anomalies of underground coal fire from multi-temporaldaytime images[C]. IGARSS:2007IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSINGSYMPOSIUM, VOLS1-12: SENSING AND UNDERSTANDING OUR PLANET,2007:3732-3735.
    [195] YANG B, CHEN Y H, LI J, et al. Simple normalization of multi-temporal thermal IR data and applied researchon the monitoring of typical coal fires in northern China[J]. IGARSS2005: IEEE International Geoscience andRemote Sensing Symposium, Vols1-8, Proceedings,2005:5725-5728.
    [196]习风科.辅扇对均压防灭火的应用[J].煤矿安全,1989(05):21-30.
    [197]蒋时才,井清武弘,驹井武.煤层自燃发火模拟试验和氮气灭火效果考察[J].煤炭工程师,1991(05):2-7.
    [197]俞学平,高正强,汤晓东,等.提高注氮防灭火效果的技术应用研究[J].矿业安全与环保,2007(02):31-32.
    [198]文虎,赵庆贤,马砺,等.运河矿1303综放面煤层自燃灭火启封技术[J].煤炭科学技术,2004(04):98-103.
    [199]李庆源,张峰,孔维一.自燃采空区注氮过程标志性气体分布特征研究[J].河南理工大学学报(自然科学版),2012(04):382-386.
    [200]杨志功,穆守丽.综采放顶煤工作面采空区注氮防灭火工艺的实践[J].煤矿安全,2008(05):30-34.
    [201]李宗翔,李海洋,贾进章. Y形通风采空区注氮防灭火的数值模拟[J].煤炭学报,2005(05):51-55.
    [202]徐精彩,邓军.凝胶防灭火技术在南屯矿缩放面的应用[J].焦作矿业学院学报,1995,15(4):43-49.
    [203] Gary J. Colaizzi.Prevention, control and/or extinguishment of coal seam fires using cellular grout[J]. InternationalJournal of Coal Geology,2004(59):75–81
    [204]秦波涛,王德明,陈建华,等.高性能防灭火三相泡沫的实验研究[J].中国矿业大学学报,2005(01):14-18.
    [205]周福宝,宋体良,王德明,等.特大型火区的地面钻孔注三相泡沫灭火技术[J].煤炭科学技术,2005(07):1-3.
    [206]徐永亮.防治煤自燃的悬砂胶体研究[D],中国矿业大学,2011.
    [207]田兆君.煤矿防灭火凝胶泡沫的理论与技术研究[D],中国矿业大学,2009.
    [208]邓军,杨漪,唐凯.线性P(NIPA-co-SA)水凝胶制备及温敏性能[J],煤炭学报,2014(01):154-160
    [209]石婷,邓军,王小芳,等.煤自燃初期的反应机理研究[J].燃料化学学报,2004,32(6):652-657.
    [210]李会荣.煤局部结构芳香环氧化反应机理的数值实验[D],西安科技大学,2006.
    [211]虞继舜.煤化学[M].北京:冶金工业出版社,2000:162.
    [212]钟蕴英,崔开仁,王慧中.煤化学[M].徐州:中国矿业大学出版社,1989:165.
    [213]葛岭梅,薛韩玲,徐精彩等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001,24:23-28.
    [214]严荣林,钱国胤.煤的分子结构与煤氧化自燃的气体产物[M].煤炭学报,1995,20:58-64.
    [215]向梅,杨迎,文振翼.芳香环数对煤氧化性影响的分析[J].煤炭技术,2005,24(12):85-88.
    [216]柳庸行.气象色谱在环境监测分析中的应用[M].北京:中国环境出版社,1989.
    [217]刘宏民.实用有机光谱解析[M].郑州:郑州大学出版社,2008
    [218]杨永良.煤最短自然发火期测试及煤堆自燃防治技术研究[D],徐州:中国矿业大学,2009.
    [219]陆立明.热分析应用基础[M].上海:东华大学出版社,2010
    [220]杨运良,于水军,张如意等.防止煤炭自燃的新型阻化剂研究[J].煤炭学报,1999,24(2):163-166.
    [221]战婧.添加剂对煤中低温氧化影响及其机理研究[D],合肥:中国科学技术大学,2012.
    [222]王亚丽.煤自燃模型化合物氧化实验研究[D],徐州:中国矿业大学,2010.
    [223]宋娜.基于模型化合物的煤活性基团氧化机理研究[D],徐州:中国矿业大学,2011.
    [224]李增华.煤炭自燃的自由基反应机理[J],中国矿业大学学报,1996,25(3):111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700