用户名: 密码: 验证码:
含瓦斯煤体振动增透技术试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤层气储量大、煤层气储层渗透率低、煤层气开采利用程度很小、矿井瓦斯灾害事故频发。利用地球物理探测方法不能直接找出突出煤层中瓦斯富集区,但是可以利用地球物理探测方法找出相关的地质构造,从而推断瓦斯富集区的位置。然而物探方法只能找出瓦斯的可能富集区,不能应用于瓦斯抽采工艺。
     因此提高含瓦斯煤体渗透性、研究更加完善的煤层气开采理论和提高低渗透煤层煤层气产量的措施,对我国煤层气开采及煤矿安全生产都有重要的现实意义。
     本文通过高频振动场影响瓦斯渗流和解吸特性的原理,设计了一种用于对有限体积含瓦斯煤体进行高频振动、促进瓦斯解吸并改变煤体渗透率的瓦斯抽采振动系统。该振动系统以高频振动电机为核心,由激振系统、循环水流降温系统、能量传递系统、吸附解吸测试系统、加压系统、气体供给系统及数据采集系统等多个系统组成。
     本文主要介绍振动增透系统对含瓦斯煤体渗透性、瓦斯解吸量的影响。模拟了煤岩样品的压实、煤层瓦斯气运移、煤与瓦斯突出以及不同振动条件下的煤的渗透性变化、微观结构变化,并探讨不同频率、振幅、振动时间等条件下瓦斯的解吸特征。
     本文研究了振动场作用下煤体中瓦斯的吸附解吸过程以及煤体的渗透性变化,并对实验过程中伴随的煤岩总压力、瓦斯压力、瓦斯解吸速度、煤体温度及振动参数等参数进行了数据采集和分析。研究结果表明:在煤体瓦斯自由解吸过程中,煤岩总压力和瓦斯压力随时间近似按照负指数规律减小,瓦斯解吸速度随时间按照对数规律减小,但在解吸初期解吸速率存在一个升高过程;煤体瓦斯在放散过程中对深部高应力区的卸载作用或应力释放效应明显强于低应力区;高频振源装置产生的动力激波效应,使煤体内能增加、瓦斯分子动能增加,有利于瓦斯的解吸和运移;声波在传播过程中有部分能量转化为热能,使游离瓦斯体积膨胀,并使煤体中的吸附瓦斯解吸,从而增加了煤体内部的瓦斯压力,促进了瓦斯向煤体外的空间运移。
     此外,实验结果还表明在高频振动场作用下,瓦斯解吸量显著增加,渗透率也明显增大,能够实现对含瓦斯煤体振动增透解吸的目标。随着注气压力的增大,渗透率K是下降的,而且振动后K的这种下降趋势更明显。瓦斯自由解吸阶段,解吸量与时间曲线的斜率是逐渐降低的,并逐渐趋于一个稳定值。每个振动解析过程中,解吸速率是快速降低的,但在解吸初始阶段存在一个明显的先升高后缓慢降低的过程。同样在振动促进瓦斯解吸的实验中也发现解吸速率存在这一规律。
     图41表9参60
The coal gas reserves of China is large, the permeability of coal gas reservoir is low, the exploitation and using level of coal gas is in a small degree, and the coal gas disasters and accidents could be seen frequently. We can't directly find out the coal gas rich region in the outburst coal seam with geophysical exploration methods, but we can find out the related Geological structure with geophysical exploration methods,and thus find out the position of the coal gas rich region. Yet,we could only find out the coal gas rich region which has a high gas content with geophysical exploration methods. These geophysical exploration methods can't be used in gas extraction process.
     So, we should improve the permeability of coal seam, study on the theory of finding a more effective coal gas exploration method and find out measures to improve the methane production of low permeability coal bed.It has very important practical significance in improving coal gas exploration and coal mine safety in production.
     With the principle that high frequency vibration field could influence the characteristics of gas seepage and desorption,the author designed a vibration system that could supply high frequency vibration field and improve the quantity of gas desorption and change the permeability of coal mass. This vibration system make the high frequency vibration motor as the core, and it consists of the excitation system, circulation water cooling system, energy transfer system, absorption and desorption test system, compression system, gas supply system, data acquisition system, etc.
     This paper mainly introduce the influence of the vibration system to the permeability and of coal mass and the quantity of gas desorption. It has simulated the compaction of coal samples, the migration of coalbed gas, coal and gas outburst and the changes of permeability and microcosmic structure in different vibration condition.we have disscussed the gas desorption characteristics in the condition of different frequency, amplitude and vibration time.
     This paper researched the coal gas adsorption and desorption process and the changes of permeability in the vibration field.A set of large-scale simulation system is developed to simulate the action of gas adsorption and desorption under the vibration field. The corresponding total pressure, gas pressure, the effective stress, gas emission speed, coal temperature, times consumed, and vibration parameters were recorded and analyzed. Experimental results show that:In the process of gas desorption, total stress and gas pressure decreases with time in accordance with the law of exponent, gas emission speed decreases with time according to the logarithmic law. In the process of coal gas relief, the unloading effect or stress releasing effect in the high stress area are stronger than that in low stress area,and there is a rising in desorption speed in the initial desorption process. High frequency waves produced dynamic effect to increases coal mass and coal gas molecular energy and promotes gas desorption and migration. In the process of sound propagation, part of the energy converted into heat. The free gas volume swelled and coal gas pressure increased, and gas desorption and migration is promoted.
     Besides,experimental result also shows that under the action of high-frequency vibration field,a significant increase in the amount of methane desorption has been seen and the permeability has also increased significantly.The goal of increasing the permeability and desorption quantity could be achieved by the vibration to the gas-containing coal. With the increase of gas injection pressure, the permeability K is dropping, and the downtrend of K is more obvious after the vibration.In the process of gas free desorption, the slope of the curve to the gas free desorption quantity and time reduces gradually, and gradually tends to be a stable value.In each vibration desorption process, the desorption speed reduces quickly, but there is an obvious process that the free desorption speed firstly increase and then reduce in the initial desorption stage.Also we could find the same phenomenon of desorption speed in the experiments of vibration promoting gas desorption.
     Figure 41 table 9 reference 60
引文
[1]贺天才,秦勇等.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2007.
    [2]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [3]琚宜文,姜波等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [4]易俊,鲜学福,姜永东,薛占新.煤储层瓦斯激励开采技术及其适应性[J].中国矿业,2005,14(2):26-29.
    [5]张子敏.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
    [6]Sommerton.W.J, Soylemezoglu.I.M, Dudley.R.C.Effect of stress on permeability of coal[J]. Int J Rock Mech Min Sci and Geomech Abstr,1975,12(2):129-145.
    [7]Brace.W.F.A note on permeability change in geologic material due to stress[J]. Pageoph, 1978,116(4/5):627-632.
    [8]Enever.J.R.E, Hening.A. The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservovir mode.Proceedings of the 1997 International Coalbed Methane Symposium Tuscalosa, University of Alatama,1997:13-22.
    [9]Somerton.W.H. Effect of stress on permeability of coal[J].Int.J.Rock.Mech.Min. Sci.1974,(12): 129-145.
    [10]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的试验研究[J].岩土工程学报,1995.
    [11]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [12]唐巨鹏,潘一山,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1564—1567.
    [13]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [14]车长波,杨虎林,李富兵等.我国煤层气资源勘探开发前景[J].中国矿业,2008,17(5):1-4.
    [15]张力,郭勇义,吴世跃.块煤瓦斯吸附动力过程的实验研究[J].煤矿安全,2000,(9):17-18.
    [16]张小东,张子戌.煤吸附瓦斯机理研究的新进展[J].中国矿业,2008,17(6):70-72.
    [17]仇海生等.碎屑状煤芯瓦斯解吸规律研究[J].中国矿业,2007,16(12):119-123.
    [18]张晓东,桑树勋,秦勇,张井,唐家祥.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.
    [19]郝吉生,袁崇孚,张子戌.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报(自然科学版),2000,19(6):403-406.
    [20]牛国庆,颜爱华,刘明举.煤吸附解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003,31(4):47-49.
    [21]富向,王魁军,杨天鸿.构造煤的瓦斯放散特征[J].煤炭学报,2008,33(7):775-779.
    [22]任伟杰,潘一山.振动频率对煤体裂隙发展影响的试验研究[J].辽宁工程技术大学学报(自然科学版).1998,17(6):555-558.
    [23]聂百胜,何学秋,王恩元,张力,冯志华,薛二龙.功率声波影响煤层甲烷储运的初步探讨[J].辽宁工程技术火学学报(自然科学版)2001,20(6):773-776.
    [24]邵长金,罗荣章,孙仁远等.利用物理场提高原油产量的基础研究[J].石油学报,1997,18(3):63-70.
    [25]任伟杰,袁旭东,潘一山.功率超声对煤岩力学性质影响的实验研究[J].辽宁工程技术大学学报,2001,20(6):773-746.
    [26]李以农,闻邦椿,李竟志.可控震源振动采油机理及实验研究[J].振动与冲击,2000,19(3):5-10
    [27]金友煌,蒋华义,殷树根.振动采油机理的微观实验研究[J].石油钻采工艺,1997,19(增刊):28-31.
    [28]韩军.人工振动(弹性波)增产工艺技术在低渗透油田的应用[J].190-194.
    [29]姜永东,鲜学福,易俊,刘占芳,郭臣业.声震法促进煤中甲烷气解吸规律的实验及机理[J].煤炭学报,2008,33(6):675-680.
    [30]李以农,闻邦椿,李竟志.可控震源振动采油机理及实验研究[J].振动与冲击,2000,19(3):5-10.
    [31]杨玲,郭福民.油藏人工振动增产技术室内机理初探[J].西北大学学报(自然科学版),2006,36(5):803-806.
    [32]Arkady Gilman and Roger Beckie.Flow of Coal-Bed Methane to a Gallery[J]. Department of Earth and Ocean Sciences, University of British Columbia.2000.41:1-16.
    [33]Sharpalani, Souyang. A new laboratory technique to estimate gas diffusion characteristics of coal[J]. USA International Coal Bed Methane Symposium.1999.142-143.
    [34]Peides. A new method for calculating the gas permeability of a coal seam[J]. International Journal of Rock Mechanics & Mining Science.1990.27(3):175-187.
    [35]LIU Jian, LUO Yong, LIU Ze-gong, SHI Bi-ming.Study on the law of methane seepage in the wall of drainage roadway in mining seam-group[J]. Journal of Coal Science & Engineering. Vol.11,2005,pp.64-66.
    [36]徐英娜,赵贵金,孙爱军,孙晓峰.自振采油技术的理论分析与应用[J].西南石油学院学 报,2001,21(3):58-61.
    [37]李骥,张焱,安九泉,张红梅,孙良田.振动场作用对原油渗流的影响[J].油气采收率技术,2000,7(3):46-50.
    [38李胜彪,杨玲,刘东奇,梁庚生.油藏人工振动增产技术机理研究[J].江汉石油学院学报,2004,26(3):100-101.
    [39]何易.物理法采油中振动频率与地质条件的关系研究[J].石油机械,2003,31(9):9-11.
    [40]周万山,李迎环,王玉铃.声波技术在石油开采中的应用[J].特种油气藏,2002,9(2):74-76.
    [41]孙仁远,成国祥.人工振动对多孔介质中液体流动的影响[J].水动力学研究与进展,2004,19(4):552-557.
    [42]王萍,蒲春生,孟德嘉,王峰.国内外振动采油技术的研究及展望[J].石油矿场机械,2005,34(5):28-30.
    [43]陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附甲烷机理研究进展[J].煤炭转化,2003,26(4):5-10.
    [44]雷光伦.国内外振动采油技术的发展简介[J].钻采工艺,2002,46-48.
    [45]王蓓,孔鹏,张玉雪.地震波提高原油采收率的机理评价[J].国外油田工程,2007,23(11):10-13.
    [46]李庆云,舒勇,尚朝辉,贾耀勤,张茂森.低渗油藏双源振动及冲击波解堵技术应用[J].钻采工艺,2004,27(3):105-106.
    [47]时宇,蒲春生,杨正明,塔耀晶.低频波动条件下流体平面渗流模型研究[J].特种油气藏,2005,15(3):69-72.
    [48]琚宜文,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [49]程五一,张序明,吴福昌.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社,2005.
    [50]焦作矿业学院地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    [51]王兆丰,等.瓦斯地质研究与应用[M].北京:煤炭工业出版社,2003.
    [52]张子戌,张子敏,王兆丰.瓦斯地质与瓦斯防治进展[M].北京:煤炭工业出版社,2007.
    [53]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [54]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [55]黄景城.煤层气译文集[M].郑州:河南科学技术出版社,1990.
    [56]苏现波,等.煤层气地质学与勘探开发[M].北京-科学出版社,2001.
    [57]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [58]许江,等.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004.
    [59]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005.
    [60]梁冰,孙可明.1低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700