用户名: 密码: 验证码:
原位生长纳米纤维改性C/C复合材料的微观结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用催化化学气相法(CCVD)在预制体内炭纤维表面原位生长纳米炭纤维(CNF)或纳米碳化硅纤维(SiCNF),随后采用化学气相渗透法(CVI)增密热解炭,制备了纳米纤维改性C/C复合材料,系统地研究了原位生长纳米纤维改性C/C复合材料(NF-C/C)的微观结构及导热、力学、氧化和摩擦磨损性能,并对比研究了CNF和SiCNF两种不同结构的纳米纤维改性对C/C复合材料的结构和性能的影响机理。主要研究内容和结果如下:
     1.原位生长纳米纤维影响了炭纤维皮层结构的变化。在制备催化剂时,镍颗粒通过扩散进入炭纤维皮层,导致周围的碳原子重新排列,形成大微晶尺寸的高度有序石墨层,提高了炭纤维的石墨化度。在CCVD过程中,镍颗粒通过碳原子或碳化硅的内扩散从炭纤维皮层脱出。碳原子进入炭纤维皮层后修复炭纤维皮层的结构,并逐渐沉积在炭纤维表面形成中织构热解炭(MT-PyC);碳化硅进入炭纤维皮层后,导致周围碳原子更加有序地排列。
     2.纳米纤维诱导形成高织构热解炭(HT-PyC),并导致炭纤维与炭基体之间形成了一层界面层。包覆在CNF表面的PyC以HT-PyC的形式存在,并且在炭纤维与基体之间形成一层依次由MT-PyC、 CNF+HT-PyC组成的界面层;而包覆在SiCNF表面的PyC以MT-PyC和HT-PvC两种形式存在,MT-PyC介于SiCNF和HT-PvC之间,并在炭纤维与基体之间形成了一层由MTYUPvC、SiCNF以及HT-PyC组成的界面层
     3.原位生长纳米纤维改变了热解炭的生长方向以及界面的结构,导致了NF-C/C复合材料具有更优的导热性能。不同的纳米纤维对C/C复合材料在不同方向上导热性能的影响不同。相对于平行方向的导热,CNF明显提高了C/C复合材料在垂直方向的导热性能;而相对于垂直方向的导热性能,SiCNF改性C/C复合材料在平行方向的导热性能提高更为显著。
     4.通过影响炭纤维、界面和热解炭的结构,纳米纤维改性提高了C/C复合材料的硬度和弯曲强度、层间剪切强度、压缩强度及冲击韧性等力学性能。此外,纳米纤维改变了热解炭的生长方向,导致NF-C/C复合材料在不同方向上力学性能的差异。相对于平行炭纤维方向,纳米纤维改性后C/C复合材料在垂直炭纤维方向的力学性能提高更为显著。
     5.纳米纤维改性对炭纤维及C/C复合材料的氧化性能的影响不同。CNF改性炭纤维因其比表面积增大、活性点增加,从而加速了氧化;而SiCNF氧化形成的SiO2保护了炭纤维,减缓了炭纤维的氧化。CNF诱导热解炭有序沉积,降低了C/C复合材料的活性,减缓了复合材料的氧化,并在短时间氧化后复合材料保持了较高的力学性能。SiCNF改性增加了炭纤维皮层碳原子的活性,导致氧化从炭纤维皮层开始,在炭纤维与基体之间形成裂纹,提供了氧的扩散通道,加速了复合材料的氧化,并导致短时间氧化后复合材料的力学性能迅速下降。
     6.综合不同纳米纤维含量对改性C/C复合材料的导热、力学及氧化等性能的影响,当CNF含量为5wt%、SiCNF含量为9wt%时,纳米纤维改性C/C复合材料具有最佳的综合性能。
     7.纳米纤维改性导致C/C复合材料的摩擦系数随摩擦速度的变化更为明显。纳米纤维通过影响摩擦膜的形成和破坏过程来影响复合材料的摩擦机理,从而改变复合材料的摩擦系数、影响复合材料的摩擦行为。纳米纤维还改变了C/C复合材料在摩擦过程中主要的磨损形式,从而减少了复合材料的磨损。
     综上所述,利用CCVD/CVI法可以制备出微观结构可控、力学及导热性能优异的高强度高模量C/C复合材料,为C/C复合材料的进一步扩展应用范围打下了坚实的基础。
Carbon nanofibers (CNF) or silicon carbide nanofibers (SiCNF) were prepared in situ on the fiber surface of preform by catalytic chemical vapor deposition (CCVD). The preform with nanofibers was then densified to obtain carbon/carbon composites with nanofibers (NF-C/C composites) via chemical vapor infiltration (CVI). The microstructure, thermo-physical properties, mechanical properties, oxidation behavior and tribological behavior were investigated. The main research contents and results are as follows.
     1. The microstructure in the skin region of carbon fibers is changed during the preparation of catalysts and nanofibers. During the preparation of the catalysts, nickel particles diffuse into the skin region of carbon fiber. The carbon atoms around nickel particles rearrange and form layers of highly ordered graphite. Consequently the graphitization degree of carbon fiber is improved. During the CCVD process, the carbon atoms diffuse into the skin region of carbon fiber and nickel particles are released from carbon fiber. Then the carbon atoms are gradually deposited on the surface of carbon fiber to form the middle-texture pyrocarbon (MT-PyC). The diffusion of SiC molecules leads to more orderly arrangement of the carbon atoms around SiC in the skin region of carbon fiber.
     2. During the CVI process, nanofibers induce the formation of high-texture (HT) PyC, and result in the formation of the interface layer between carbon fiber and matrix. PyC coverd on CNFs is HT-PyC, and there is a interface layer between fiber and matrix consists of MT-PyC and CNF+HT-PyC. MT-PyC is first covered on the SiCNF surface, which is followed by HT-PyC. The interface layer between carbon fibers and matrix is composed by SiCNFs, MT-PyC and HT-PyC.
     3. The in situ grown NF leads to the change of growth direction of PyC and the interfacial structure, which results in the better thermal conductivity of the NF-C/C composites compared with C/C composites. Modified with different nanofibers, the thermal conductivity of C/C composites is different in different direction. The thermal conductivity of CNF-C/C composites increases more significantly in the direction perpendicular to carbon fiber than the direction parallel to fiber. However, the thermal conductivity of SiCNF-C/C composites increases more significantly in the parallel direction than in the perpendicular direction.
     4. Modified by nanofibers, the hardness, flexural strength, interlaminar shear strength, compressive strength and impact toughness of C/C composites is significantly improved. In addition, the growth direction of PyC which was changed by NF made different changes of the mechanical properties of NF-C/C composites in different directions. The mechanical properties of NF-C/C composites have been improved more significantly in the perpendicular direction compared with the parallel direction.
     5. The effects of nanofibers on the oxidation behavior of carbon fibers and C/C composites are different. The in situ grown CNFs lead to the increase of the specific surface area and the active sites of carbon fiber, which can accelerate the oxidation of carbon fiber. On the other hand, the oxidation of SiCNFs forms a layer of SO2which can protect the carbon fiber from oxidation. Moreover, CNFs induce to orderly deposition of PyC, which decreases the activity of NF-C/C composites. Therefore, the oxidation of CNF-C/C composites becomes slowly. At the same time, CNF-C/C composites retain a high percentage of mechanical properties after oxidation in short time. The existence of SiCNF improves the activity of carbon fibers. As a result, the oxidation of SiCNF-C/C composites was initiated from the skin region of carbon fiber which leads to the formation of cracks between carbon fiber and matrix. C/C composites can be oxidized quicker as oxygen can diffuse from the cracks. Meanwhile, the mechanical properties of SiCNF-C/C is deteriorated markedly.
     6. Taking the reasonable consideration of the effect of nanofiber content on the thermal conductivity, mechanical properties and oxidation behavior of C/C composites, the NF-C/C composites with5wt%CNF or9wt%SiCNF have the best performances.
     7. The existence of nanofibers changes the friction coefficient with the increase of the friction speed more obviously. The nanofibers change of friction coefficient and the friction curve of C/C composites through affecting the formation and destruction of the frictional films during the friction process. Meanwhile, the main wear mode of C/C composites modified by nanofiber was changed, and the wear of the NF-C/C composites decreases.
     In a word, the CNF-C/C and SiCNF-C/C composites can be prepared by CCVD/CVI technique, with the microstructure of composites being controlled and the excellent properties of thermal conductivity and mechanical; it was benefit to expand application of C/C composites in the further.
引文
[1]Fitzer E. The future of carbon-carbon composites. Carbon,1987,25(2):163-166.
    [2]高燕,宋怀河,陈晓红.C/C复合材料的研究进展.材料导报,2002,16(7):44-47.
    [3]黄启忠.高性能炭/炭复合材料的制备、结构与应用[M].长沙:中南大学出版社,2010.
    [4]罗瑞盈.航空刹车及发动机用炭/炭复合材料的研究应用现状.炭素技术,2001,4:27-29.
    [5]Schmidt D L, Davidson K E, and Theibert L S. Unigue application of carbon/carbon composites materials. SAMPE J,1999,35(3):27-39.
    [6]Buckley J D. carbon/carbon materials and composites[M]. Park Ridge:Noyes 1993:71-104.
    [7]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004:1-54.
    [8]毕燕洪,罗瑞盈,李进松,等.预制体结构对炭/炭复合材料氧化行为的影响.航空学报,2006,27(6):1217-1222.
    [9]王蕾.快速CVI法制备平板C/C复合材料[D].长沙:中南大学,2009.
    [10]范本勇,陈宁,张宝东,等.CVI法制备先进陶瓷基复合材料.现代陶瓷技术,2004,25(3).
    [11]李贺军.炭/炭复合材料.新型炭材料,2001,16(2):124-136.
    [12]Bertrand S, Lavaud J F, Hadi R E, et al. The thermal gradient—pulse flow CVI process:A new chemical vapor infiltration technique for the densification of fibre preforms. J. Euro. Ceram. Soci,1998,18(7):857-870.
    [13]Tang Z H, Qu D N, Xiong J, et al. Effects of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process. Carbon,2003,41(14): 2703-2710.
    [14]Rovillain D, Trinquecoste M, Bruneton E, et al. Film boiling chemical vapor infiltration:An experimental study on carbon/carbon composite materials. Carbon,2001,39(9):1355-1365.
    [15]Wang J P, Qian J M, Qiao G J, et al. Improvement of film boiling chemical vapor infiltration process for fabrication of large size C/C composite. Mater. Lett,2006,60(9-10):1269-1272.
    [16]Farhan S, Li K Z, and Guo L J. Novel thermal gradient chemical vapor infiltration process for carbon-carbon composites. New Carbon Materials, 2007,22(3):247-252.
    [17]Chen J X, Xiong X, Huang Q Z, et al. Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites. Transactions of Nonferrous Metals Society of China,2007,17(3):519-522.
    [18]Zeng X R, Zou J Z, Qian H X, et al. Microwave assisted chemical vapor infiltration for the rapid fabrication of carbon/carbon composites. New Carbon Materials,2009,24(1):28-32.
    [19]Zhang M Y, Wang L P, Huang Q Z, et al. Rapid chemical vapor infiltration of C/C composites. Transactions of Nonferrous Metals Society of China,2009, 19(6):1436-1439.
    [20]Zhang Y F and Luo R Y. Influence of infiltration pressure on densification rate and micro structure of pyrocarbon during chemical vapor infiltration. New Carbon Materials,2012,27(1):42-48.
    [21]Wu X, Luo R, Zhang J, et al. Kinetics of thermal gradient chemical vapor infiltration of large-size carbon/carbon composites with vaporized kerosene. Materials Chemistry and Physics,2009,113(2-3):616-621.
    [22]Li A, Norinaga K, Zhang W, et al. Modeling and simulation of materials synthesis:Chemical vapor deposition and infiltration of pyrolytic carbon. Compos. Sci. Techn.,2008,68(5):1097-1104.
    [23]Langhoff T A and Schnack E. Modelling chemical vapour infiltration of pyrolytic carbon as moving boundary problem. Chemical Engineering Science,2008,63(15):3948-3959.
    [24]Guan K, Cheng L, Zeng Q, et al. Modeling of pore structure evolution within the fiber bundle during chemical vapor infiltration process. Chemical Engineering Science,2011,66(23):5852-5861.
    [25]Michio I and Kang F Y. Carbon materials science and engineering-from fundamentals to applications[M]. Beijing:Tsinghua University,2006.
    [26]黄伯云,熊翔.高性能炭/炭航空制动材料的制备技术[M].长沙:湖南科技出版社,2007.
    [27]许林.炭纤维表面处理及结构与性能的研究[D].长沙:中南大学,2008.
    [28]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [29]Perret R, Ruland W. Small-angle X-ray scattering studies on carbon fibers. Carbon,1969,7(6):723-724.
    [30]Diefendorf R J, Tokarsky E. High-performance carbon fibers. Polymer Engineering and Science,1975,15(3):384-389.
    [31]Johnson D J. Direct lattice resolution of layer planes in polyacrylonitrile based carbon fibres. Composites,1970,1(5):323.
    [32]Johnson D J, Crawford D, and Oates C. The fine structure of a range of pan-based carbon fibres. Carbon,1972,10(3):330.
    [33]Dobb M G, Guo H, Johnson D J, et al. Structure-compressional property relations in carbon fibres. Carbon,1995,33(11):1553-1559.
    [34]Johnson D J, Tomizuka I, and Watanabe O. The fine structure of pitch-based carbon fibres. Carbon,1975,13(6):529-534.
    [35]王增辉,高晋生.碳素材料[M].上海:华东化工学院出版社,1991.
    [36]Lieberman M L and Pierson H O. Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites. Carbon,1974,12(3): 233-241.
    [37]Pu T Y and Peng W Z. Microstructures in 3D carbon-Carbon composites. Ceramics International,1998,24(8):605-609.
    [38]苏君明.高效高冲质比C/C喷管的应用与进展.新型炭材料,1996,11(3):18-23.
    [39]Lacoste M, Lacombe A, Joyez P, et al. Carbon/Carbon extendible Nozzles. Acta Astronautica,2002,50(6):357-367.
    [40]罗瑞盈.碳/碳复合材料制备工艺及研究现状.兵器材料科学与工程,1998,21(1):64-70.
    [41]朱良杰,廖东娟.炭/炭复合材料在美国导弹上的应用.宇航材料工艺,1993,4(12):10-13.
    [42]Stimson I L and Fisher R. Design and engineering of carbon brakes. Transactions of the Royal Society London A,1980,294:583-590.
    [43]廖寄乔.热解炭微观结构对C/C复合材料性能影响的研究[D].长沙:中南大学,2003.
    [44]Hsu S E, Wu H D, Wu T M, et al. Oxidation protection for 3D carbon/carbon composites. Acta Astronautica,1995,35(1):35-41.
    [45]冉丽萍,易茂中,王朝胜,等.炭/炭复合材料密封性能的研究.机械工程材料,2006,30(11):29-32.
    [46]黄荔海,李贺军,刘浩.碳/碳复合材料密封性能分析.材料科学与工程学报,2006,24(6):826-829.
    [47]李翠云,李辅安.碳/碳复合材料的应用研究.化工新型材料,2006,34(3):18-20.
    [48]Sheehan J E, Buesking K W, Sulllivan B J. carbon-carbon composites. Annu Rev Mater Sci,1994,24:19-44.
    [49]Magali R, Stephane J, Jacques L, et al. Characterization of fiber/matrix interfaces in carbon/carbon composites. Compos Sci Technol,2009,69(9): 1442-1446.
    [50]陈腾飞.炭纤维坯体结构及增密方式对炭炭复合材料界面及性能的影响研究[D].长沙:中南大学,2003.
    [51]Blanco C, Casal E, Granda M, et al. Influence of fiber-matrix interface on the fracture behavior of carbon-carbon composites. J Eur Ceram Soc,2003, 23(15):2857-2866.
    [52]陈洁.C/C复合材料的导热性能研究[D].长沙:中南大学,2009.
    [53]孙威.炭/炭复合材料抗烧蚀ZrC涂层的制备、结构和性能[D].长沙:中南大学,2010.
    [54]曾汉民.炭纤维及其复合材料显微图像[M].广州:中山大学出版社,1990.
    [55]陈建桥.复合材料力学概论[M].北京:科学出版社,2006.
    [56]Oh S M and Lee J Y. Effects of matrix structure on mechanical properties of carbon/carbon composites. Carbon,1988,26(6):769-776.
    [57]Schmidt D T. Carbon-carbon composites. SAMPLE Jounal,1972,8:9.
    [58]Sheehan J E. Oxidation protection for carbon fiber composites, carbon,1989,27: 709-715.
    [59]Nikiel L and Jagodzinski P W. Raman spectroscopic characterization of graphites:A re-evaluation of spectra/structure correlation. Carbon,1993, 31(8):1313-1317.
    [60]Zhang W G, Hu Z J and Hiittinger K J. Chemical vapor infiltration of carbon fiber felt:Optimization of densification and carbon microstructure. Carbon, 2002,40:2529-2545.
    [61]Hu Z J and Hiittinger K J. Chemical vapor infiltration of carbon-revised:Part Ⅱ:Experomental results. Carbon,2001,39:1023-1032.
    [62]李崇俊,霍肖旭,金志浩.编织销钉炭/炭复合材料界面微观结构探讨.新型炭材料,2000,15(2):43-47.
    [63]Zhang G, Sun S, Yang D., et al. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon,2008,46(2): 196-205.
    [64]Cao H L, Huang Y D, Zhang Z Q, et al. Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Compos Sci Technol,2005,65:1655-1662.
    [65]Kingsley K C H, Adam F L, Steven L, et al. Continuous atmospheric plasma fluorination of carbon fibers. Compos A,2008,39:364-368.
    [66]Matzinos P D, Patrick J W, Walker A. The efficiency and mechanism of densification of 2-D C/C composites by coal-tar pitch impregnation. Carbon, 2000,38(8):1123-1128.
    [67]Juliane M, Marcus M., Hans P B, et al. Carbon fiber reinforced carbon composite filled with SiC particles forming a porous matrix. Mater Sci Eng A, 2006,425:64-69.
    [68]Wang W X, Yoshihiro T, Terutake M. Tensile strength and fracture toughness of C/C and metal infiltrated composites Si-C/C and Cu-C/C. Compos A,2008, 39(2):231-242.
    [69]林志勇,杜慷慨,叶葳.碳纤维表面氧化还原研究.华侨大学学报(自然科学版),1999,20(4):354-357.
    [70]康勇,项素云,梁培亮.沥青基碳纤维表面复合处理的研究.功能高分子学报,1999,12(4):450-452.
    [71]Delannay F, Froyen L, Deruytture A. The wet ting of solids by molten metals and its relation to the preparation of metal-matrix composites. Mater Sci 22: 1216.
    [72]张乾,谢发勤.碳纤维的表面改性研究进展.金属热处理,2001,26(8):1-4.
    [73]杨永岗,贺福,王茂章,等.炭纤维的表面处理方法.炭素技术,1997(4):28-33.
    [74]Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers. Carbon,1999,37:1785-1796.
    [75]张守阳,李贺军,唐松.沉积表面粗糙度对热解炭组织结构的影响.炭素技术,2000,5(12-15).
    [76]Hu Z J, Zhang W G, Hiittinger K J, et al. Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane. Carbon,2003,41(4):749-758.
    [77]Fukunaga A. and Ueda S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Composites Science and Technology,2000,60(2):249-254.
    [78]Feng X, Dementev N, Feng W G, et al. Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling. Carbon,2006,44(7):1203-1209.
    [79]Park S J and Kim B J. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Materials Science and Engineering:A,2005,408(1-2):269-273.
    [80]Dhakate S R and Bahl O P. Effect of carbon fiber surface functional groups on the mechanical properties of carbon-carbon composites with HTT. Carbon, 2003,41(6):1193-1203.
    [81]Yoshida A, Tanahashi I, and Nishino A. Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon,1990,28(5):611-615.
    [82]Takahagi T and Ishitani A. XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber. Carbon,1984, 22(1):43-46.
    [83]贺持缓,周声励,刘其城.预氧丝原位炭化无粘结剂C/C复合材料工艺研究.湖南大学学报(自然科学版),2000,27(5):21-24.
    [84]Beinborn K M, Mullhr M and Hiittinger K J. The significance of the fibre coating in the production of carbon fibre-reinforced carbons from HT carbon fibres I. Poly(dimethylsiloxane) and poly(methylphenylsiloxane) coatings. Carbon,1995,33(8):1029-1042.
    [85]Miiller M, Bhinborn K M, and Hiittinger K J. The significance of the fibre coating in the production of carbon fibre-reinforced carbons from ht carbon fibres and phenolic resin as matrix precursor Ⅱ. Phenolic resin coatings. Carbon,1995,33(8):1043-1046.
    [86]Qin R Y and Donnet J B. Influence of thermal and surface treatments on surface properties of pitch-based carbon fibers studied by inverse gas chromatography. Carbon,1994,32(1):165-174.
    [87]信春玲,王培华.空气氧化刻蚀提高PAN基炭纤维抗拉强度的研究.炭素技术,2002,3:16-20.
    [88]翼克俭,邓卫华.臭氧处理对碳纤维表面及其复合处理性能的影响.工程 塑料应用,2003,5:34-39.
    [89]Basova Yu V, Hatori H, Yamada Y, et al. Effect of oxidation reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers. Electrochem. Commum,1999,11(1):540-544.
    [90]Kaushik V K. Surface characterization of KMnO4 treated carbon fiber precursors using X-ray photoelectron spectroscopy. Polymer Testing,2000, 19(1):17-25.
    [91]杨永岗,贺福,王茂章,等.气液双效表面处理方法的影响.新型炭材料,1999,4:49-52.
    [92]Cao H L, Huang Y D, Zhang Z Q, et al. Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Composites Science and Technology,2005,65(11-12):1655-1662.
    [93]Pittmanjr C, Jiang W, Yue Z, et al. Surface properties of electrochemically oxidized carbon fibers. Carbon,1999,37(11):1797-1807.
    [94]Park S J, Seo M K and Lee Y S. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon,2003,41(4):723-730.
    [95]Emig G, Popovska N, Edie D D, et al. Surface free energy of carbon fibers with circular and non-circular cross sections coated with silicon carbide. Carbon, 1995,33(6):779-782.
    [96]Pippel E, Woltersdorf J, Dietrich D, et al. CVD-coated boron nitride on continuous silicon carbide fibres:structure and nanocomposition. Journal of the European Ceramic Society,2000,20(11):1837-1844.
    [97]张复盛,吴瑜,庄严.双丙酮丙烯酰胺在炭纤维表面的电聚合研究.北京航空航天大学学报,1998,24(4):129-132.
    [98]Chen Y and Iroh J O. Electrodeposition of BTDA-ODA-PDA polyamic acid coatings on carbon fibers nonaqueous emulsions. Polym. Eng. Sci.,1999, 39(4):699-707.
    [99]曾庆冰.溶胶-凝胶法TiO2涂层碳纤维增强铝基复合处理的研究.高分子材料科学与工程,1999,15(4):171-175.
    [100]Wurm R, Dernovsek O, Greil P. Sol-gel derived SrTiO3 and SrZrO3 coating on SiC and C fibers. J. Mater. Sci.,1999,34(16):4031-4037.
    [101]Wen H C, Yang K, Ou K L, et al. Effects of ammonia plasma treatment on the surface characteristics of carbon fibers. Surface and Coatings Technology, 2006,200(10):3166-3169.
    [102]Pittman J C U, Jiang W, He G R, et al. Oxygen plasma and isobutylene plasma treatments of carbon fibers:Determination of surface functionality and effects on composite properties. Carbon,1998,36(1-2):25-37.
    [103]Yamada T, Miyashita K, Shinohara M, et al. Study on structure of carbon fiber modified by photooxygenation. J. Photopolym. Sci. Technol.,1999,12(1): 19-20.
    [104]徐志伟,吴晓青,刘梁森等.预辐照与等离子体对炭纤维表面接枝改性研究.固体火箭技术,2009,32(4):456-460.
    [105]殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感,2004,25(1):51-54.
    [106]魏佳顺,潘蕾,陶杰等.表面处理对碳纤维润湿性及连续纤维增强PEEK复合材料拉伸性能的影响.纤维复合材料,2010(4):36-40.
    [107]于祺,陈平,陆春.纤维增强复合材料的界面研究进展.绝缘材料,2005(250-56).
    [108]Montes-Moran M A, Martinez-Alonso A, Tascon J M D, et al. Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon,2001,39(7):1057-1068.
    [109]Li J Q, Huang Y D, Xu Z W, et al. High-energy radiation technique treat on the surface of carbon fiber. Materials Chemistry and Physics,2005,94(2-3): 315-321.
    [110]Weisweiler W, Fitzer E, Nagel G, et al. R.f.-sputtered SiC coatings on carbon fibres. Thin Solid Films,1987,148(1):93-108.
    [111]Vincent H, Vincent C, Scharff J P, et al. Thermodynamic and experimental conditions for the fabrication of a boron carbide layer on high-modulus carbon fiber surfaces by RCVD. Carbon,1992,30(3):495-505.
    [112]Tokunaga K, Yoshida N, Noda N, et al. Behavior of plasma-sprayed tungsten coatings on CFC and graphite under high heat load. Journal of Nuclear Materials,1999,266-269(0):1224-1229.
    [113]Baklanova N I, Zima T M, Boronin A I, et al. Protective ceramic multilayer coatings for carbon fibers. Surface and Coatings Technology,2006,201(6): 2313-2319.
    [114]Chang L and Zhang Z. Tribological properties of epoxy nanocomposites:Part II. A combinative effect of short carbon fibre with nano-TiO2. Wear,2006, 260(7-8):869-878.
    [115]He S Q, Zhang S C, Lu C X, et al. Polyimide nano-coating on carbon fibers by electrophoretic deposition. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,381(1-3):118-122.
    [116]Johnson T M, Fullwood D T and Hansen G.Strain monitoring of carbon fiber composite via embedded nickel nano-particles. Composites Part B: Engineering,2012,43(3):1155-1163.
    [117]Zeng Y, Liu H Y, Mai Y W, et al. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B:Engineering,2012,43(1):90-94.
    [118]Yang Y, Lu C X, Su X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites. Materials Letters,2007,61(17):3601-3604.
    [119]周蔚虹,张红波,虞露彬.炭纤维毡体添加硼酸高温热处理对C/C复合材料氧化行为的影响.矿冶工程,2005,25(5):66-69.
    [120]Ida T, Akada K, Okura T, et al. Carbonization of methylene-bridged aromatic oligomers—Effect of alkyl substituents. Carbon,1995,33(5):625-631.
    [121]宋士华,吴崇俊,马明亮等.炭/炭复合材料用煤沥青的改性及性能研究.化工新型材料,2007,35(5):45-47.
    [122]Mentz J, Muller M, Buchkremer H P, et al. Carbon-fibre-reinforced carbon composite filled with SiC particles forming a porous matrix. Materials Science and Engineering:A,2006,425(1-2):64-69.
    [123]Zhang Z Z, Su F H, Wang K, et al. Study on the friction and wear properties of carbon fabric composites reinforced with micro-and nano-particles. Materials Science and Engineering:A,2005,404(1-2):251-258.
    [124]Li X, Li K, Li H, et al. Microstructures and mechanical properties of carbon/carbon composites reinforced with carbon nanofibers/nanotubes produced in situ. Carbon,2007,45(8):1662-1668.
    [125]Sumio L. Helical microstubules of graphitic carbon, nature,1991,354:56-58.
    [126]Hughes T V, Chambers C R. Manufacture of carbon filaments, U. Patent, Editor.1889:US.
    [127]杨刚,杨娟,宋怀河,等.纳米炭纤维的制备、结构及其应用.炭素技术,2009,28(5):21-26.
    [128]刘海洋.PAN基碳纳米纤维杂化复合材料及其生物特性研究[D].北京:北京化工大学,2010.
    [129]成会明.纳米碳管——制备,结构,物性及应用[M].北京:化学工业出版社,2002.
    [130]Hammel E, Tang X, Trampert M, et al. Carbon nanofibers for composites applications. Carbon,2004,42(56):1153-1158.
    [131]Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs)-Basic properties and their battery applications. Carbon,2001,39(9): 1287-1297.
    [132]Tibbetts G G, Meisner G P and Olk C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon,2001,39(15): 2291-2301.
    [133]Zhang Q, Yu H, Huang J Q, et al. Carbon nanofiber microspheres obtained from ethylene using FeCl3 as the catalyst precursor. Materials Letters,2008, 62(17-18):3149-3151.
    [134]Agiral A, Lefferts L, and Gardeniers J G E. In situ CVD of carbon nanofibers in a microreactor. Catalysis Today,2010,150(1-2):128-132.
    [135]Bi H, Kou K C, Ostrikov K, et al. Unconventional Ni-P alloy-catalyzed CVD of carbon coil-like micro-and nano-structures. Materials Chemistry and Physics,2009,116(2-3):442-448.
    [136]Zheng G B, Kouda K, Sano H, et al. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon,2004,42(3):635-640.
    [137]Park S H, Kim C, Choi Y O, et al. Preparations of pitch-based CF/ACF webs by electro-spinning, carbon,2003,41(13):2655-2657.
    [138]Wang Y, Serrano S, Santiago-Aviles J J. Raman characterization of carbon nanofibers prepared using electro-spinning. Synthetic metals,2003,138(3): 423-427.
    [139]Thess A, Colbert D T, Smalley R E, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters,1995,243(1-2): 49-54.
    [140]Journet C, Master W K, Bernier P, et al Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature,1997, 388:756-758.
    [141]Liu C, Cong H T, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon,1999,37(11): 1865-1868.
    [142]Maser W K, Munoz E, Benito A M, et al. Production of high-density single-walled nanotube material by a simple laser-ablation method. Chemical Physics Letters,1998,292(4-6):587-593.
    [143]Eklund P C, Pradhan B K, Kim U J, et al. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser. Nano letters,202,2(6):561-566
    [144]Kokai F, Takahashi K, Yudasaka M, et al. Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. Journal of Chemical and Physics B,1999,103(21):4346-4351.
    [145]Kim J H, Ganapathy H S, Hong S S, et al. Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process. Journal of Supercritical Fluids,2008,47(1):103-107.
    [146]卢文新.纳米碳纤维生长速率及形态调控[D].上海:华东理工大学,2010.
    [147]Ishioka M, Okada T, Matsubara K, et al. Formation of vapor-grown carbon fibers in Co-Co2-H2 mixtures, I. Influence of carrier gas composition. Carbon,1992,30(6):859-863.
    [148]刘磊.炭纤维表面原位生长碳纳米纤维、螺旋碳纤维及其机理研究[D].长沙:湖南科技大学,2010.
    [149]Thostenson E T, Li W Z, Ren Z F, et al. Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics,2002,91:6034-6037.
    [150]Vinodp V, Cao A Y, Li X S, et al. Multifunctional composites using reinforced lamina with carbon nanotubes forests. Nature,2006,5:457-462.
    [151]Kuzumaki T. Processing of carbon nanotube reinforced aluminum composite. Journal of Materials Researches,1998,13:2445.
    [152]赵素,刘政,张新兵.纳米碳管增强铝基复合材料的工艺及性能研究.铸造技术,2006,27(2):135.
    [153]陈红燕,王继辉.纳米碳纤维及其在聚合物中的应用.玻璃钢/复合材料,2005(3):41-43.
    [154]Metaxa Z S, Seo J W T, Konsta-Gdoutos M S, et al. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites,2012,34(5):612-617.
    [155]Sanchez F and Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology,2009,69(7-8):1310-1318.
    [156]Wansom S, Kidner N J, Woo L Y, et al. AC-impedance response of multi-walled carbon nanotube/cement composites. Cement and Concrete Composites,2006,28(6):509-519.
    [157]Eric W W, Paul E S and Charles M L. Nanobeam Mechanics:Elasticity, strength and Toughness of nanorods and nanotubes. Science 1997,277(5334): 1971-1975.
    [158]张爱霞,蔡克峰.一维碳化硅纳米材料的研究进展.材料导报,2006,20:106-108.
    [159]陈建军,潘颐,林晶.硅气氛中PAN碳纤维原位生长碳化硅纳米纤维.高科技纤维与应用,2006,31(3):11-14.
    [160]王富强,郝志彪,闫联生.碳化硅纳米晶须的制备研究.材料导报,2008,22:74-76.
    [161]Casadyj B and Johnson R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:a review, solid State Electron,1996,39(10):1049-1422.
    [162]周伟民.一维碳化硅纳米材料的制备与性能的基础研究[D].上海:上海交通大学,2007.
    [163]He X B, Yang H. Preparation of SiC fiber reinforced SiC composites. Journal of Materials Processing Technology,2005,159:135-138.
    [164]Rohatgi P K, Thakkar RB, Kim J K, et al. Scatter and statistical analysis of tensile properties of cast SiC reinforced A359 alloys. Materials Science and Engineering:A,2005,398:1-14.
    [165]Yu J T, Li C Z. Study of the interface structure in SiC fiber reinforced Al matrix composite. Journal of materials Engineering,1995,4:32-34.
    [166]Yang W, Araki H, Hu Q. In situ growth of SiC nanowires on RS-SiC substrates. Journal of Crystal Growth 2004,264:278-283.
    [167]Lin M, Loh K P, Boothroyd C, et al. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones. Applied Physics Letters,2004, 85(22):5388-5390.
    [168]Zhang Y J, Wang N L, He R R, et al. Synthesis of SiC nanorods using floating catalyst. Solid State Communications,2001,118(11):595-598.
    [169]林晶.热蒸发方法碳化硅纳米晶须阵列的合成与表征[D].杭州:浙江大学,2007.
    [170]Zhou D and Seraphin S. Production of silicon carbide whiskers from carbon nanoclusters. Chemical Physics Letters,1994,222:223-238.
    [171]Ye H H, Titchenal N, Gogotsi Y, et al. SiC nanowires synthesized from elecreospun nanofiber templates, advanced materials,2005,17:1531-1535.
    [172]Li Z J, Zhang J L, Meng A L, et al. Large-are highly-oriented SiC nanowire arrays:synthesis, raman and photoluminescence properties. Journal of Physics and Chemical,2006,110(45):22382-22386.
    [173]Krishinarao R V, Godokhindi M M, Mukunda P G I, et al. Direct pyrolysis of raw rice husks for maximization of silicon carbide whisker formation. Journal of American Ceramic Society,1991,74:2869-2873.
    [174]Ryu Y, Tak Y, Yong K. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics. Nanotechnology,2005,16:S370-S374.
    [175]Raman V, Bhatia G, Bhardwaj S. Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques. Journal of Materials Science,2005,40: 1521-1524.
    [176]Liu H A and Balkus K J. Electrospinning of beta silicon carbide nanofibers. Materials Letters,2009,63(27):2361-2364.
    [177]Shi W S, Zheng Y F, Peng H Y, et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires. Journal of American Ceramic Society,2000,83(12):3228-3230.
    [178]Zhou J Y, Zhou M, Chen Z Y, et al. SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surface and Coatings Technology,2009,203(20-21):3219-3223.
    [179]Liu X Mand Yao K F. Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology,2005,16:2932-2935.
    [180]Godara A, Gorbatikh L, Kalinka G, et al. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology,2010,70(9):1346-1352.
    [181]Warrier A, Godara A, Rochez O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A:Applied Science and Manufacturing,2010,41(4):532-538.
    [182]Mathur R B, Chatterjee S, and Singh B P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Composites Science and Technology,2008,68(7-8): 1608-1615.
    [183]Lv P, Feng Y Y, Zhang P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon,2011,49(14):4665-4673.
    [184]Agnihotri P, Basu S and Kar K K. Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon,2011,49(9):3098-3106.
    [185]De G N, Gorbatikh L, Godara A, et al. The effect of carbon nanotubes on the damage development in carbon fiber/epoxy composites. Carbon,2011, 49(14):4650-4664.
    [186]Gong Q M, Li Z, Zhou X W, et al. Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. Carbon,2005,43(11):2426-2429.
    [187]Gong Q M, Li Z, Bai X D, et al. The effect of carbon nanotubes on the microstructure and morphology of pyrolytic carbon matrices of C-C composites obtained by CVI. Composites Science and Technology,2005, 65(7-8):1112-1119.
    [188]Song Q, Li K Z, Li H L, et al. Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites. Carbon,2012. http://dx.doi.org/10.1016/j.carbon.2012.03.023.
    [189]Chen J, Xiong X and Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites. Materials Chemistry and Physics, 2009,116(1):57-61.
    [190]Lim D S, An J W and Lee H J. Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear,2002,252(5-6): 512-517.
    [191]Fouquet S, Rollin M, Pailler R, et al. Tribological behaviour of composites made of carbon fibres and ceramic matrix in the Si-C system. Wear,2008, 264(850-856).
    [192]Matthieu H, Adrien D, Julien A, et al. Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase. Carbon,2008,46:76-83.
    [193]Li J S and Luo R Y. Study of the mechanical properties of carbon nanofiber reinforced carbon/carbon composites. Composites Part A:Applied Science and Manufacturing,2008,39(11):1700-1704.
    [194]Li C Y and Chou T W. Modeling of damage sensing in fiber composites using carbon nanotube networks. Composites Science and Technology,2008, 68(15-16):3373-3379.
    [195]Li Z, Xiao P, Xiong X, et al. Manufacture and properties of carbon fiber-reinforced C/SiC dual matrix composites. New Carbon Materials,2010, 25(3):225-231.
    [196]Wang J P, Lin M, Xu Z, et al. Microstructure and mechanical properties of C/C-SiC composites fabricated by a rapid processing method.. J Eur Ceram Soc,2009,29(14):3091-3097.
    [197]Nakagawa M, Sakai J, Ohkouchi T, et al. Friction and wear properties of C/C and ceramics particle dispersed C/C composites in a zinc plating bath. J Iron Steel Institute of Japan,1996,82(8):689-694.
    [198]Jeong E, Kim J, Cho S H, et al. New application of layered silicates for carbon fiber reinforced carbon composites. Journal of Industrial and Engineering Chemistry,2011,17(2):191-197.
    [199]Xu J and Saeys M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron. Journal of Catalysis,2006,242(1): 217-226.
    [200]Andrea C F and John R. 碳材料的拉曼光谱—从纳米管到金刚石[M].北京:化学工业出版社,2007.
    [201]贺福.用拉曼光谱研究碳纤维的结构.高技术纤维与应用,2005,30(6):20--25.
    [202]张伟刚.化学气相沉积-从烃气体到固体碳[M].北京:科学出版社,2007.
    [203]Li J S, Luo R Y and Yan Y. Densification kinetics and matrix microstructure of carbon fiber/carbon nanofiber/pyrocarbon composites prepared by electrophoresis and thermal gradient chemical vapor infiltration. Carbon, 2011,49(1):242-248.
    [204]Gong Q M, Li Z, Zhou X W, et al. Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. Carbon,2005,43(11):2426-2429.
    [205]Li Z, Gong QM, Wang Y, et al. Microstructure of the pyrocarbon in aligned carbon nanotube/carbon composites. Carbon,2011,49(3):1052-1053.
    [206]Ziegler I, Fournet R and Marquaire P M. Influence of surface on chemical kinetic of pyrocarbon deposition obtained by propane pyrolysis. Journal of Analytical and Applied Pyrolysis,2005,73(1):107-115.
    [207]李东风,王浩静王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱.光谱学与光谱分析,2007,27(11):2249-2253.
    [208]Kulkarni M R and Brady R P. A model of global thermal conductivity in laminated carbon/carbon composites. Composites Science and Technology, 1997,57(3):277-285.
    [209]Luo R Y, Liu T, Li J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon,2004,42(14):2887-2895.
    [210]范敏霞,李贺军,李克智.热解炭结构对C/C复合材料热物理性能的影响.炭素技术,2007,26(5):10-13.
    [211]Hugh O P and David A N. Carbon-Felt, Carbon-Matrix Composites: Depengdence of Thermal and Mechanical Properties on Fiber Precursor and Matrix Structure. Journal of Composite Materials,1975,9:118-137.
    [212]汤中华.用定向流动热梯度CVI工艺制备航空刹车用C/C复合材料的研究[D].长沙:中南大学,2003.
    [213]杨敏.采用纳米压痕测试技术对碳/碳复合材料微观性能的研究[D].上海:上海大学,2008.
    [214]孙伟,常明,杨保和.纳米晶体弹性模量的模拟研究.应用数学和力学,1999,20(5):525-530.
    [215]于守泉,张伟刚.织构对热解炭硬度及弹性模量的影响,i11第九届全国新型炭材料学术研讨会.2009:太原.630-635.
    [216]王磊.材料的力学性能[M].沈阳:东北大学,2005.
    [217]熊翔.炭/炭复合材料制动性能研究[D].长沙:中南大学,2004.
    [218]高建明.材料力学性能[M].武汉:武汉理工大学,2007.
    [219]贾德昌,宋桂明.无机非金属材料性能[M].北京:科学出版社,2008.
    [220]矫桂琼,贾普荣.复合材料力学[M].西安:西北工业大学,2008.
    [221]Guo W, Xiao H, Yasuda E, et al. Oxidation kinetics and mechanisms of a 2D-C/C composite. Carbon,2006,44(15):3269-3276.
    [222]Hou X M and Chou K C. A simple model for the oxidation of carbon-containing composites. Corrosion Science,2010,52(3):1093-1097.
    [223]Gao P Z, Guo W M, Xiao H N, et al. Model-free kinetics applied to the oxidation properties and mechanism of three-dimension carbon/carbon composite. Materials Science and Engineering:A,2006,432(1-2):226-230.
    [224]Cairo C A A, Florian M, Graca M L A, et al. Kinetic study by TGA of the effect of oxidation inhibitors for carbon-carbon composite. Materials Science and Engineering:A,2003,358(1-2):298-303.
    [225]Labruquere S, Blanchard H, Pailler R, et al. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part Ⅱ:oxidation resistance of B-C, Si-B-C AND Si-C coated carbon preforms densified with carbon. J Eur Ceram Soc,2002,22:1011-1021.
    [226]Tong C Q, Cheng L F, Yin X W, et al. Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores. Composites Science and Technology,2008,68(3-4):602-607.
    [227]Stoch A, Jastrzebski W, Dlugon E, et al. Modification of carbon composites by nanoceramic compounds. Journal of Molecular Structure,2005,744-747: 627-632.
    [228]阎志巧,熊翔,肖鹏,等.MSI工艺制备C/SiC复合材料的氧化动力学和机理.无机材料学报,2007,22(6):1151-1158.
    [229]Wan J T, Bu Z Y, Xu C J, et al. Model-fitting and model-free nonisothermal curing kinetics of epoxy resin with a low-volatile five-armed starlike aliphatic polyamine. Thermochimica Acta,2011,525(1-2):31-39.
    [230]郭伟明,肖汉宁,田荣一安.2D-C/C复合材料氧化动力学模型及其氧化机理.复合材料学报,2007,24(1):45-52.
    [231]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [232]刘佐民.摩擦学理论与设计[M].武汉:武汉理工大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700