用户名: 密码: 验证码:
含裂隙煤储层地震数值模拟与反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤田勘探中,裂隙的发育程度通常是影响煤层顶、底板稳定、煤矿瓦斯和矿井水的防治以及煤层气勘探和开发等方面的关键性因素。本文利用交错网格高阶有限差分地震数值模拟技术,对不同条件和状态下含裂隙煤储层中的地震波传播进行了详细的研究。
     首先,根据含裂隙煤储层双相介质弹性波基本方程结合Biot(1962)给出的应力和应变方程,推导出其相应的弹性波波动方程,并以此进一步推导出含裂隙煤储层双相介质的一阶应力-速度和速度-应力的交错网格高阶有限差分公式。通过修改其阻尼因子,推导出一种适合煤储层双相介质的改进型完全匹配层吸收边界条件差分公式,取得了较好的边界吸收效果,同时提高了计算效率。利用通量校正传输方法(Flux-corrected transport,FCT)对煤储层双相介质正演模拟时产生的数值频散进行了压制处理,并根据实例效果对比分析了其优缺点。
     其次,利用等效介质理论和一些理论经验公式推导出含裂隙煤储层各向异性和双相各向异性介质条件下的弹性参数,为煤储层数值模拟提供了理论参数基础;并以此设计出含裂隙煤储层正演数值模拟方法的流程,其中包括物性参数和正演数值模拟的计算流程。
     然后,利用交错网格高阶有限差分法,通过正演数值算例系统地讨论了不同条件下,地震波在含裂隙煤储层及相邻充水含水层不同状态(自然、充气和充水)中的波场分布及其传播特征,并利用地震属性技术定性地分析了其中的地震响应特征规律。研究表明,由不同状态下含裂隙煤储层所造成的弹性参数具有一定的差异,但这种差异在地震波场记录上反映并不明显,而利用地震属性技术却可以定性地分析出该差异,这为反演计算含裂隙煤储层提供了正演理论基础。
     最后,在正演分析成果的基础上,根据实际的三维地震资料,分别利用地震波阻抗和方位各向异性反演的原理,研究了含裂隙煤储层中的孔隙度和裂隙以及奥陶系灰岩顶部的孔隙度。研究表明,利用地震反演技术可以预测煤储层和奥陶系灰岩顶部的孔隙度,而利用方位各向异性反演技术也可以预测含裂隙煤储层中的裂隙发育密度和方向。
In the coalfield exploration, the degree of development of fractures usually is a key factor, which affects many problems in coal mines such as the roof and floor stability of the coal seam, prevention and treatment of coal gas and water, and coalbed methane exploration and development as well. And in this paper, seismic wave propagation of fractured coal reservoirs under different conditions and status has been in a detailed study by high-order staggered grid finite-difference which is one of seismic numerical simulation methods.
     At first, according to elastic wave fundamental equation of two-phase medium and the stress and strain equation given by Biot at 1962, elastic wave equation of fractured coal reservoirs has been deduced. On this basis, high-order finite-difference formulas of first-order stress-velocity and velocity-stress for fractured coal reservoirs are obtained. And an improved absorbing boundary condition for perfectly matched layers is achieved by modifying its damping factor on the basis of the general absorbing boundary condition. Case study states that this method has not only achieved a very good absorbing effect of the boundary, but also impoved its computational efficiency. Besides, the numerical dispersion has been suppressed during the simulation of two-phase medium of coal reservoirs by using the Flux-corected transport (FCT) method. And its advantages and disadvantages also have been analyzed through examples contrast.
     Secondly, elastic constants of anisotropic and two-phase medium of fractured coal reservoirs are gained with effective media theory and some other experiential formulas, which provide a theoretical foundation for parameters. And thus forward flows of numerical simulation for fractured coal reservoirs are desighed including the calculation of petrophysical parameters and numerical simulation.
     Then, with high-order staggered grid finite-difference, wave field distribution and propagation characteristics of fractured coal reservoirs and its adjacent aquifers containing different states (natural, gas-saturated, water-saturated) have been made a systematic discussion, and the seismic response characteristics have been qualitatively analyzed with the seismic attributes. It states that elastic constants of fractured coal reservoirs containing different states have some differences. And these differences are not obvious at the seismic records, but can be qualitatively distinguished throughout the seismic attributes techonology. Therefore, forward theoretical foundation has been provided for the inverse calculation of fractured coal reservoirs.
     Finally, research has been done for the porosity and fractures in the fractured coal reservoirs and Ordovician limestone top by using seismic impedance and azimuth anisotropic inversion with the actual seismic data. Research findings state that porosity of fractured coal reservoirs and Ordovician limestone top can be calculated through the seismic inversion method, and density and orientation of fractures also can be predicted with the azimuth anisotropic method.
引文
[1]石玉梅.各向异性非线性波形层析及裂隙裂缝参数反演[D].徐州:中国矿业大学, 2001.
    [2]傅强.裂缝性基岩油藏的石油地质动力学[M].北京:地质出版社, 2002.
    [3]潘钟祥.石油地质学[M].北京:地质出版社, 1984.
    [4]黄捍东,魏修成等.碳酸盐岩裂缝性储层研究的地质物理基础[J].石油地球物理勘探, 2001, 36(5): 591-596.
    [5] Close J C. Natural fracture in coal. In: Hydrocarbons from coal[J]. Law B E and Rice D D, eds. AAPG, Studies in Geology 38, 1993: 119-132.
    [6]傅雪海,秦勇.多相介质煤层气储层滲透率预测理论与方法[M].徐州:中国矿业大学出版社, 2003
    [7]倪新辉.地震勘探技术预测奥灰岩溶裂隙发育带[J].中国煤田地质, 1997, 9(4): 59-61.
    [8]张延忠.奥灰岩岩溶发育地震勘探方法研究[J].中国煤田地质, 1993, 5(3): 68-71.
    [9]胡永章,卢刚,杨志彬.储层裂缝定量预测方法研究—以楚雄盆地北部储层裂缝评价为例[J].南方油气, 2006, 19(2): 43-45.
    [10]魏斌,张凤山,刘风亮等.裂缝性储层流体类型识别技术[M].北京:地质出版社, 2004.
    [11]牛滨华,孙春岩.半空间介质与地震波传播[M].北京:石油工业出版社, 2002.
    [12]杨顶辉,张中杰等.双相各向异性研究、问题与应用前景.地球物理学进展[J], 2000, 15(2): 7-21.
    [13]苏现波,陈江峰,孙俊民等.煤层气地质学与勘探开发[M].北京:科学出版社, 2001.
    [14] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4): 673-682.
    [15] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid,Ⅰ: Low-frequency range[J]. J. Acoust. Soc. Am. , 1956, 28(2): 168-178.
    [16] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid,Ⅱ: High-frequency range[J]. J. Acoust. Soc. Am. , 1956, 28(2): 179-191.
    [17] White J E. Computed seismic speeds and attenuation in rock with partial gas saturation[J]. Geophysics, 1975, 40(2): 224-232.
    [18] Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J]. Applied Physics Letters, 1980, 36(4): 259-261.
    [19] Hamdi F, Smith D T. The influence of permeability on compressional wave velocity in marine sediments[J]. Geophysical Prospecting, 1982, 30(5): 622-640.
    [20] Amos Nur等著.许云译.双相介质中波的传播[M].北京:石油工业出版社, 1986.
    [21] B.ДСибиряков著.马在田译.含流体微观非均匀介质中波的传播[J].国外油气勘探, 1991, 3(3): 109-112.
    [22] Nur A M, Wang Z. Seismic and acoustic velocities in reservoir rocks: Experimental Studies[J]. Society of Exploration Geophysicists. 1989, 1.
    [23] Wang Z, Nur A M. Seismic and acoustic velocities in reservoir rocks: Theoretical and Model Studies[J]. Society of Exploration Geophysicists. 1992, 2.
    [24] Akbar N, Dvorkin J, Nur A. Relating P-wave attenuation to permeability[J]. Geophysics, 1993, 58(1), 20-29.
    [25] Parra J O, Xu P C. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media[J]. J. Acoust Soc. Am., 1994, 95(1): 91-98.
    [26] Sharma M D. Surface-wave propagation in a cracked poroelastic half-space lying under a uniform layer of fluid[J]. Geophysical J. Int. , 1996, 127(1): 31-39.
    [27]王尚旭.双相介质中弹性波问题有限元数值解和AVO问题[D].北京:中国石油大学, 1990.
    [28]乔文孝,王宁,严炽培.声波在两种多孔介质界面山的反射和透射[J].地球物理学报, 1992, 35(2): 242-248.
    [29]张应波. Biot理论应用于地震勘探的探索[J].石油物探, 1994, 33(4): 29-38.
    [30]牟永光.储层地球物理学[M].北京:石油工业出版社, 1996.
    [31]刘克安,刘宏伟.双相介质二维波动方程三参数同时反演时卷迭代法[J].石油地球物理勘探, 1997, 32(5): 615-622.
    [32]席道瑛,易良坤.砂岩石孔隙流体的粘弹性与衰减、模量和速度色散[J].石油地球物理勘探, 1999, 34(4): 420-425.
    [33] Crampin S. Review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4): 343-391.
    [34] Brodov L U et al. Estimating physical parameters of cracked-porous reservoirs by inverting shear-wave splitting[J]. Geophysical J. Int., 1991, 107(3), 429-432.
    [35] Mueller M C. Prediction of lateral variability in fracture intensity using multi-component shear-wave surface seismic as a processor to horizontal drilling in the Austin Chalk[J]. Geophysical J. Int., 1991, 107(3), 409-415.
    [36] Bush L, Crampin S. Paris Basin VSPs: case history, establishing combinations of fine-layer (or lithologic) anisotropy and crack anisotropy from modelling shear wavefields near point singularities[J]. Geophysical J. Int., 1991, 107(3), 433-447.
    [37] Ebrom, D.等(万有林译).各向异性和油藏开发[M].石油物探译丛, 1995, 2: 11-16.
    [38] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation[J]. J. Appl.Phys., 1957,24:594-601.
    [39] Biot M A. Mechanics of deformations and acoustic propagation in porous media[J]. J. Appl.Phys., 1962,33: 1482-1498.
    [40] Biot M A. Generalized theory of acoustic propagation in porous media[J]. J. Acoust. Soc.Am., 1962, 34: 1254-1264.
    [41] Kazi-Azoual M N, Bonnet G, Jouanna P. Green's functions in an infinite transverselyisotropic saturated poroelastic medium[J]. J. Acoust. Soc. Am., 1988, 84(5): 1883-1889.
    [42] Auriault J L. Dynamic behavior of a porous medium saturated by a Newtonian fluid[J]. Int.J. Eng. Sci., 1980, 18(6): 775-785.
    [43] Auriault J L, Borne L, Chambon R. Dynamics of porous saturated media, checking of thegeneralized law of Darcy[J]. J. Acoust. Soc. Am., 1985, 77(5): 1641-1650.
    [44] Schmitt D P. Acoustic multipole logging in transversely isotropic poroelastic formations [J].J. Acoust. Soc. Am. 1989, 86(6): 2397-2420.
    [45] Mukerji T, Mavko G. Pore fluid effects on seismic velocity in anisotropic rocks [J].Geophysics, 1994, 59(2), 233-244.
    [46] Xu S Y. Modeling the effect of pore fluid communication on seismic anisotropy [C], 67thAnn. Int. SEG Meeting, Expanded Abstract, 1997, 991-994.
    [47] Pointer T, et al. Numerical modeling of seismic waves scattered by hydro fractures:application of the indirect boundary element method[J]. Geophys. J. Int., 1998, 135(1):289-303.
    [48] Sayers C M. Stress-dependent seismic anisotropy of shales[J]. Geophysics, 1999, 64(1):93-98.
    [49] Berryman J G. Scattering by a spherical inhomogeneity in a fluid-saturated porousmedium [J]. J. Math. Phys., 1985, 26(6), 1408-1419.
    [50] Berryman J G. Effective medium approximation for elastic constants of porous solids withmicroscopic heterogeneity [J]. J. Appl. Phys., 1986, 59(4): 1136-1140.
    [51] Berryman J G, Milton G W. Exact results for generalized Gassmann's equation in compositeporous media with two constitutes [J]. Geophysics, 1991, 56(12): 1950-1960.
    [52] Rathore J S, Fjaer E, Holt R M, et al. P- and S-wave anisotropy of synthetics sandstone withcontrolled crack geometry [J]. Geophys. Prosp. 1995, 43(6): 711-728.
    [53] Thomsen L. Elastic anisotropy due to aligned cracks in porous rock[J]. GeophysicalProspecting, 1995, 43(6): 805-829.
    [54] Hudson J, A Liu, Crampin S. The mechanical properties of materials with interconnectedcracks andpores[J]. Geophys. J. Int., 1996, 124(1): 105-112.
    [55] Gelinsky S, Shapiro S A. Dynamic-equivalent medium approach for thinly layered saturatedsediments[J]. Geophys. J. Int, 1997, 128(1): F1-F4. [56] Korringa J. On the Biot-Gassmann equations for the elastic module of porous rocks (Criticalcomment on a paper by J. G.. Beryman) [J]. J. Acoust. Soc. Am., 1981, 70(6), 1752-1753.
    [57]牛银斌,李幼铭,吴如山.横向各向同性多孔介质中的地震波传播[J].地球物理学进展, 1994,37(4): 499-513.
    [58]牛滨华,何樵登,孙春岩.六方各向异性介质方位矢量波动方程及其相速度[J].石油物探, 1994, 33(1): 19-29.
    [59]魏修成.双相各向异性介质中的地震波场研究[D].北京:中国石油大学,1995.
    [60]杨顶辉.孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法[D].北京:中国石油大学, 1998
    [61]孟庆生,何樵登等.基于BISQ模型双相各向同性介质中地震波数值模拟[J].吉林大学学报(地球科学版). 2003, 33(2), 217-221.
    [62] Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biotmechanisms [J]. Geophysics, 1993, 58(4): 524-533.
    [63] Dvorkin J, Nolen-Hoeksema R, Nur A. Squirt-flow mechanism: Macroscopic description[J].Geophysics, 1994, 59(3): 428-438.
    [64] Parra J 0. The transversely isotropic poroelastic wave equation including the Biot and thesquirt mechanisms: Theory and application [J]. Geophysics, 1997, 62(1): 309-318.
    [65] Alterman Z, Karal Jr F C. Propagation of elastic waves in layered media by finite differencemethods[J]. Bull. Seism. Soc. Am., 1968, 58: 367-398.
    [66] Boore D M. Finite difference methods for seismic wave propagation in heterogeneousmaterials[J]. In: Methods in Bolt B A Ed. Computational Physics. Academic Press. Inc.
    [67] Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acousticwave equation [seismology] [J]. Geophysics, 1974, 39(6): 834-842.
    [68] Kelly K R, Treitel S, Alford R M, Ward R W. Synthetic seismograms: A finite-differenceapproach[JJ. Geophysics, 1976,41(1): 2-27.
    [69] Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-differencemethod[JJ. Geophysics, 1986, 51(4), 889-901.
    [70] Dablain M A. The application of high-order differencing to the scalar wave equation[J].Geophysics, 1986, 51(1), 54-66.
    [71] Bayliss A, Jordan K E, LeMesurier B J, Turkel E.A fourth-order accurate finite-differencescheme for the computation of elastic waves[J]. Bull. Seis. Soc. Am., 1986, 76(4): 1115-1132.
    [72] Levander A R. Fourth-order finite-difference P-SV seismograms. [J] Geophysics, 1988,53(11): 1425-1136.
    [73] Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-gridfinite differences[J]. Bull. Seis. Soc. Am., 1996, 86(4): 1091-1106.
    [74] Carcione J M. Viscoacoustic wave propagation simulation in the Earth[J]. Geophysics,1988, 53(6): 769-777.
    [75] Tal-Ezer H, Carcione J M, Kosloff D. An accurate and efficient scheme for wavepropagation in linear viscoelastic media[J]. Geophysics, 1990, 55(10): 1366-1379.
    [76] Robertsson J 0 A, Blanch J 0, Symes W W. Viscoelastic finite-difference modeling [J].Geophysics, 1994, 59(9): 1444-1456.
    [77] Mora P. Modeling anisotropic seismic waves in 3-D[J]. 59th Ann. Inernat. Mtg. Soc. Expl.Geophys., 1989,Expanded Abstracts, 2: 1039-1043.
    [78] Igel H, Mora P, Riollet B. Anisotropic wave propagation through finite-difference grids[J].Geophysics, 1995, 60(4): 1203-1216.
    [79] Dai N, Vafidis A, Kanasewich E R. Wave propagation in heterogeneous, porous media: avelocity-stress, finite-difference method[J]. Geophysics, 1995, 60(2): 327-340.
    [80] Carcione J M, Quiroga-Goode G. Some aspects of the physics and numerical modeling ofBiot compressional waves[J]. J. Comput. Acoust, 1996, 3(4): 261-280.
    [81] Ozdenvar T, McMechan G A. Algorithms for staggered-grid computations for poroelastic,elastic, acoustic, and scalar wave equation[J]s. Geophys. Pros., 1997, 45(3): 403-420.
    [82] Carcione J M, Helle H B. Numerical solution of the poroviscoelastic wave equation on astaggered mesh[J]. J. Comp. Phys., 1999, 154(2): 520-527.
    [83] Lysmer J, Drake L A. A finite element method for seismology, In Alder B, Fernbach S, BoltB A, Eds., Methods in computational physics II, Seismology[J]. Academic Press, 1972,181-216.
    [84] Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar andelastic wave equations[J]. Geophysics, 1984, 49(5), 533-549.
    [85] Seron F J, Sanz F J, Kindelan M, Badal J I. Finite-element method for elastic wavepropagation[J]. Comm. Appl. Num. Methods, 1990, 6(5): 359-368.
    [86] Seron F J, Badal J, Sabadell F J. Numerical laboratory for simulation and visualization ofseismic wavefields[J]. Geophys. Prosp., 44(4):603-642.
    [87] Padovani E, Priolo E, Seriani G. Low and high order finite element method: experience inseismic modeling[J]. J. Comp. Acoust., 1994, 2(4): 371-422.
    [88] Sarma G S, Mallick K, Gadhinglajkar V R. Nonreflecting boundary condition infinite-element formulation for an elastic wave equation[J]. Geophysics, 1998, 63(3):1006-1016.
    [89] Gazdag J. Modeling of the acoustic wave equation with transform methods [J]. Geophysics,1981,46(6): 854-859.
    [90] Kosloff D D, Baysal E. Forward modelling by a Fourier method[J]. Geophysics, 1982,47(10): 1402-1412
    [91] Fornberg B. The pseudospectral method: comparisons with finite differences for the elasticwave equation[J]. Geophysics, 1987, 52(4): 483-501.
    [92] Reshef M, Edwards M, Hsiung C. Three-dimensional acoustic modeling by the Fouriermethod[JJ. Geophysics, 1988, 53(9): 1175-1183.
    [93]牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社, 2003.
    [94] Pao Y S, Varatharajulu V. Huygens' principle, radiation conditions, and integral formulas forthe scattering of elastic waves[J]. J. Acoust. Soc. Am., 1976, 59(6): 1361-1371.
    [95] Bennett C L, Mieras H. Time domain integral equation solution for acoustic scattering fromfluid targets[J]. J. Acoust. Soc. Am., 1981, 69(5): 1261-1265.
    [96] Bouchon M, Diffraction of elastic waves by cracks or cavities using the discretewavenumber method [J]. J. Acoust. Soc. Am., 1987, 81(6): 1671-1676.
    [97] Bouchon M, Campillo M, Gaffet S. A boundary integral equation-discrete wavenumberrepresentation method to study wave propagation in multilayered media having irregularinterfaces [J]. Geophysics, 1989, 54(9): 1134-1140.
    [98] Bakamjian B. Boundary internats: An efficient method for modeling seismic wavepropagation in 3-D[C]. 62th Ann. Internet. Mtg. Soc. Expl. Geophys., Expanded Abstracts,1232-1235.
    [99]符力耘,牟永光.弹性波边界元法正演模拟[J].地球物理学报, 1994, 37(4): 521-529.
    [100] Fu Li-Yun, Mou Yong-Guang, Yang Huey-Ju. Forward problem of nonlinear Fredholm integral equation in reference medium via velocity-weighted wavefield function[J]. Geophysics, 1997, 62(2): 650-656.
    [101] Fu Li-Yun. Numerical study of generalized Lipmann-Schwinger integral equation includingsurface topography [J]. Geophysics, 2003, 68(2): 665-671.
    [102] Cerveny V, Molotkov I, Psencik I. Ray method in seismology[M]. Univ. Karlova, 1977.
    [103]张凌,白建峰.地震资料预测孔隙度的方法与分析[J].科技信息, 2007,18: 277.
    [104] Subhashis Mallick, Kenneth L.C, Laurent M and Ronald E.C. Determination of the principlal directions of azimuthal anisotropy from P-wave seismic data[J]. Geophysics. 1998, 63(2): 692-702.
    [105]刘洋,董敏煜.各向异性介质中的方位AVO[J].石油地球物理勘探. 1999, 34(3): 260-267.
    
    [106] Li Xiangyang. Fracture detection using azimuthal variation of P-wave moveout from orthogonal seismic survey lines[J]. Geophysics. 1999, 64(4): 1193-1201.
    
    [107]董渊,杨慧珠.利用P波层间时差确定裂缝性地层的各向异性参数[J].石油地球物理勘探. 1999, 34(5):520-525.
    
    [108]刘洋,魏修成.三维反射纵波旅行时检测裂隙[J].石油地球物理勘探. 1999, 34(5): 607-613.
    
    [109] Ramos A C B, Davis T L. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs[J]. Geophysics, 1997, 62(6): 1683-1695.
    
    [110]高云峰. AVO技术在煤层瓦斯富集部位检测中的应用——以淮南煤田为例[D].北京:中国矿业大学, 2003.
    
    [111]董守华.煤弹性各向异性系数测试与P波方位各向异性系裂缝评价技术[D].徐州:中国矿业大学, 2004.
    
    [112]陈同俊. P波方位AVO理论及煤层裂隙探测技术[D].徐州:中国矿业大学, 2009.
    
    [113] Eduardo L.Faria, Paul L.Stoffa. Finite-difference modeling in transversely isotropicmedia[J]. Geophysics, 1994, 59(2): 282-289.
    
    [114] C.tsingas, A.vafidis, E.R.kanasewich. Elastic wave propagation in transversely isotropicmedia using finite differences[J].Geophysical Prospecting,1990,38(8):933-949.
    
    [115] Christopher Juhlin. Finite-difference elastic wave propagation in 2D heterogeneoustransversely isotropic media[J]. Geophysical Prospecting, 1995, 43(6): 843-858.
    
    [116]孙卫涛,杨慧珠.双相各向异性介质弹性波场有限差分正演模拟[J].固体力学学报, 2004, 25(1): 21-28.
    
    [117] Berryman J G. Elastic wave propagation in fluid-saturated porous media[J]. Acoust Soc Am,1981, 69(2): 416-424.
    
    [118] Dong-Hoon Sheen, Kagan Tuncay, Chang-Eob Baag, et al. Parallel implementation of avelocity-stress staggered-grid finite-difference method for 2-D poroelastic wavepropagation[J]. Computers & Geosciences, 2006, 32: 1182-1191.
    
    [119] Francis Collino and Chrysoula Tsogka. Apllication of the perfectly matched absorbing layermodel to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics, 2001, 66(1): 294-307.
    
    [120]董守华.地震资料煤层横向预测与评价方法[M].徐州:中国矿业大学出版社. 2004.
    
    [121]李景叶,陈小宏.横向各向同性介质地震波场数值模拟研究[J].地球物理学进展, 2006, 21(3): 700~705.
    
    [122]张文忠. Biot介质的交错网格差分法波场模拟研究[D].北京:中国地质大学. 2006.
    [123] Book D L, Boris J P, Hain K. Flux-corrected transport. II: generalization of the method[J]. J.Comput. Phy, 1975, 18: 248-283.
    [124] Gary Mavko,Tapan Mukerji,Jack Dvorikin.The rock physics handbook: Tools for seismicanalysis in porous media[M]. Britain: Cambridge university press, 1998.
    [125] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
    [126] Andreas Riiger. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D].Colorado, Colorado School of Mines, 1996.
    [127] Simon B. R, Zienkiewicz 0. C, Paul D. K. An analytical solution for the transient responseof saturated porous elastic solids[J]. Int. J. Numer. Anal. Methods Geomech., 1984, 8:381-398.
    [128] LIU Ying, LIU Kaishin, Tanimura Shinji. Wave propagation in transversely isotropicfluid-saturated poroelastic media[J]. JSME International Journal Series A, 2002, 45(3):348-355.
    [129]崔若飞.地震资料断层自动解释系统[D].徐州,中国矿业大学, 1995.
    [130] Quincy Chen and Steve Sidenry. Seismic attribute technology for reservoir forecasting andmonitoring [J]. The Leading Edge, 1997, 16(5): 445-456.
    [131]冀涛,杨德义.沁水盆地煤与煤层气地质条件[J].中国煤田地质,2007,19(5):28.30.
    [132]杨宽,王伟平,祖庆夕.测井方法测定含煤地层的岩石弹性参数[J].地球物理学报,1990,33(5):593-603.
    [133]苏现波,林晓英著.煤层气地质学[M].北京:煤炭工业出版社,2007.
    [134]杨德义,彭苏萍.多分量地震勘探技术的现状及进展[J].中国煤田地质,2003,15(1):51.57.
    [135]石瑛,王赞,芦俊.用3CVSP资料分析含煤地层的方位各向异性[J].煤炭学报,2007,32f81:813-817.
    [136]韩宝平,冯启言,刘瑞新.鲍店煤矿四采区涌水规律分析[J].煤田地质与勘探,1996,24f41:35-38.
    [137]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2009
    [138]彭苏萍,高云峰,彭晓波等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004,29f21:177-181.
    [139]王锦山.煤层气储层两相流渗透率试验研究[J].西安科技大学学报,2006,26(1):24.27.
    [140]张延忠.奥灰岩岩溶发育地震勘探方法研究[J].中国煤田地质,1993,5(3):68.71.
    [141]雍世和,洪有密.测井资料综合解释与数字处理[M].北京:石油工业出版社,1982:17.24.
    [142]李铭,楚泽涵,卢颖忠.煤层气测井评价[J].特种油气藏,2000,7(1):4-9.179
    [143]周明磊,王怀洪,苏现为等.测井技术在晋城寺河煤层气地面预抽项目中的应用[J].中国煤层气勘探开发利用技术进展,2006,174.181.
    [144]雍世和,张超谟.测井数据处理与综合解释[M].北京:石油大学出版社,1996:284.286
    [143]周明磊,王怀洪,苏现为等.测井技术在晋城寺河煤层气地面预抽项目中的应用[J].中国煤层气勘探开发利用技术进展, 2006, 174-181.
    [144]雍世和,张超谟.测井数据处理与综合解释[M].北京:石油大学出版社, 1996: 284-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700