用户名: 密码: 验证码:
复垦区土壤重金属污染特征及农田杂草修复潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮南是一个开采历史达百年的煤炭城市,是我国重要的煤炭能源生产基地。煤炭资源开发利用促进了淮南市经济社会的发展,但同进也引发了一系列天然岩、水、土的环境地质问题和生态环境问题,如煤矸石的大量堆存、塌陷区的形成等。
     淮南矿区利用煤矸石填充塌陷地已有几十年历史,传统的复垦工艺不考虑土壤重构因素,使复垦区土壤理化性质、土壤物理结构以及土壤环境等发生了很大变化。同时,煤矸石充填塌陷区所带来的土壤重金属污染问题一直是矿区复垦研究的一个重点和难点。由于植物修复技术在修复土壤重金属污染方面,具有投入成本低、不破坏土壤结构、能起到一定美化环境作用和易于为社会所接受等优点,已成为当前国内外的热点科学问题和前沿研究领域,特别是在农田杂草资源中超积累植物筛选利用。
     但是,长期以来缺乏对煤矿区煤矸石充填复垦土壤特性、重金属污染特征、土壤—植物系统重金属迁移规律、农田杂草的重金属植物修复潜力的系统性研究。
     本论文在较系统地综述了国内外矿区复垦土壤重金属植物修复技术研究进展基础上,以潘一煤矿复垦区土壤及农田杂草为研究对象,重点开展了三方面的研究工作:
     1.复垦区土壤及煤矸石特性研究
     结合现场实测与室内实验,较系统地研究了复垦土壤和煤矸石的理化特性,分析了充填复垦土壤特性和肥力水平的变化。结果表明:与对照区土壤特性相比,潘一矿复垦区土壤含水量、有机质、速效钾、速效磷、全氮含量偏低;潘一矿复垦区土壤营养元素中有机质和速效磷比较缺乏,特别是有机质含量处于严重缺乏水平。分析用于充填复垦的煤矸石理化特性,结果表明风化后的煤矸石营养元素含量较丰富,可以满足植物生长的需要。但其含盐量较高,容易引起接触层土壤发生盐碱化。
     2.复垦区土壤重金属污染特征研究
     在研究区域现场分层采集土壤样品140个,详细地研究了复垦区土壤中Cu、Cr、Mn、Zn、Ni、Pb、Cd、Hg、As这9种重金属元素的垂直和水平空间分布特征,并利用surfer8.0软件对重金属的水平分布特征可视化表达。结果表明:采用煤矸石充填复垦存在有害重金属元素向覆土层迁移的风险,且煤矸石山的堆积和粉煤灰贮灰场的存在对复垦区土壤造成了一定程度和范围的重金属污染。并在此基础上,进行了重金属含量之间及土壤重金属含量与土壤特性的相关性研究。
     3.农田杂草修复土壤重金属污染潜力研究
     以潘一矿复垦区12种优势农田杂草为研究对象,分析农田杂草对9种重金属的吸收积累特征,结合富集系数和转移系数对12种优势农田杂草的重金属植物修复潜力进行筛选。参考超积累植物筛选标准,筛选出了野豇豆对Zn元素、一年蓬和洋姜对Cd元素、一年蓬、鬼针草、加拿大一枝黄花、钻叶紫菀和野豇豆对Hg元素同时具备超积累植物的两个基本特征。但是筛选出来的6种菊科植物地上部分重金属含量均未达到超积累植物的临界含量标准,没有筛选出重金属超积累植物。
     图[20]表[19]参[53]
Huainan with a 100-year coal-mining history is an important coal-production base of the country in East China.The exploitation and utilization of coal resources has promoted the city economic and social development, however, at the same time it has also inspired a series of questions including geological environment and ecological environment problems for natural rock, water, and soil, for example large amount of coal gangue heaping, formation of subsidence areas, and so on.
     Using coal gangue to fill subsidence areas has been for several decades at Huainan mining area. Soil reconstruction factors were not considered in the traditional reclamation technology, which made great changes of soil physicochemical property physical structure and soil environment in the reclamation area. Meanwhile, the soil pollution problem of heavy metals was always an important and difficult point for study of mining area reclamation, which was produced by using coal gangue to fill subsidence areas. Because phytoremediation has a lot of advantage in soils remediation polluted to heavy metals, such as low cost, not destroying the soil structure, play a certain role to beautify the environment, and easily be accepted for the society, and so on. Nowadays, it has been focal problem of science and frontier field of research at home and abroad, especially Screening out and utilization of hyperaccumulators from the resources of farmland weeds.
     But for a long time, it is short of the studies about the physicochemical property of reclamation soil filled with coal gangue in coal mining area, the characteristics of heavy metals pollution, the transformation law of heavy metals in soil-plant system, and the systemic research of potentiality of phytoremediation for heavy metals with farmland weeds.
     Systematically summarized the development of research at home and abroad on the phytoremediation of heavy metal pollution in reclamation soil, this paper focuses on the following three research works:
     1. Research on characters of reclamation soil and coal gangue
     Combined with the field measurement and laboratory tests, the reclaimed soil and the coal gangue characters were relatively systematically researched, soil character of the filled reclaimed soil and the change of level were analyses. The results show that compared with characters of comparative soil, the moisture content, organic matter, rapidly-available potassium, rapidly-available phosphorus and total nitrogen in the soil of Panyi reclamation area were relatively low; both the amount of organic matter and rapidly-available phosphorus of the soil nutrient in Panyi reclamation area were relatively lacking, especially the organic matter amounts were in a famine level. By analyzing the characters of coal gangue that was used to filling the reclamation, the results indicated that the nutrient amounts of coal gangue after weathering were relatively rich, which could satisfy the need of plants' growth. But the saltness was relatively high, which might cause the salinization of the soil between the contact layers.
     2. Research on heavy metal pollution characteristics of reclamation soil
     To collect 140 soil samples on the different layers of research area locale, these 9 heavy metals' space distribution characters of both vertical and horizontal—Cu, Cr, Mn, Zn, Ni, Pb, Cd, Hg and As in the reclamation soil were detailedly researched, and the surfer8.0 software was utilized to show a visualization express for the horizontal distribution of these heavy metals. The results indicated that there was some heavy metals risk of reclamation soil which comes from using coal gangue to fill the subsidence areas, and there was also some extend and scope of heavy metals pollution caused by accumulation of coal gangue hills and the existence of coal ash storage yard. And on the basis of these problems, some related researches on the heavy metals and the relevance between the soil heavy metal contents and the soil characters were conducted.
     3. Research on phytoremediation potential of farmland weeds
     Based on the 12 kinds of dominant farmland weeds of Panyi reclamation area as the research objects, the absorption and accumulation characters of these 9 heavy metals of the farmland weeds were analyzed, and then combined with Enrichment coefficient and translocation factor to screen out the heavy metals phytoremediation potential of these 12 kinds of dominant weeds. By referring to the screening standards of hyperaccumulator, Zn was accumulated by wild Vigna vexillata, Cd was accumulated by Erigeron annuus and Helianthus tuberosus. Hg was accumulated by Erigeron annuus, Bidens pilosa, Solidago canadensis, Aster subulatus and Vigna vexillata with two basic characteristics of hyperaccumulator.
     But the heavy metal amounts of the overground tissue which come from 6 kinds of compositae didn't reach to the critical content standards of hyperaccumulator, so the hyperaccumulator of heavy metal had been not screened out.
     Figure [20] table [19] reference [53]
引文
[1]李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003,1:24-26.
    [2]董霁红,卞正富,王贺封.矿山充填复垦场地重金属含量的对比研究[J].中国矿业大学学报,2007,36(4):531-536.
    [3]陈怀满.土壤—作物系统中重金属污染[M].北京:科学出版社,1996,216.
    [4]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.
    [5]岛崎和夫,孙来敏(译).日本农用土壤污染状况与对策[J].国外农业环境保护,1990(2):33-34.
    [6]ETCS(European Topic Centre Soil).Topic Report-Contaminated Sites.European Environment Agency:1998,142.
    [7]周启星等.污染土壤及地下水修复的PRB技术及展望[J].环境污染治理技术与设备,2001,2(5):48-53.
    [8]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001:265-298.
    [9]孙铁珩,周启星.污染生态学的研究前沿与展望[J].农村生态环境,2000,16(3):42-45,50.
    [10]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [11]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998:35-39.
    [12]张茂林,傅大放,殷承启.公路路域土壤的铅污染与植物修复[J].公路,2004,(9):181-184.
    [13]Mitch M L, Nicole S P, Deborah L D.et al.Zinc phytoextraction in thlaspi caerulesxens[J].International Journal of Phytoremediation,2001,2:129-144.
    [14]Ebbs S D, lasat MM, Brady DJ, et al. phytoextraction of cadmium and zinc from a contaminated soil[J].Journal of Environmental Quality,1997,26:4123-1430.
    [15]吴雁华.京南地区土壤重金属污染特征与杨树修复效应(D).北京:中国地质大学,2005.
    [16]陈英旭.土壤重金属的植物污染化学[M].北京;科学出版社,2008:212.
    [17]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002:314-315.
    [18]Brooks R R, Lee J, Reeves R D, et al.Detection of nickeliferous rocks by alysus of herbarium species of indicator plants [J].Journal of Geochemical Exploration,1977, 5:49-57.
    [19]Baker A J M, Brooks P R, Pease A J et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silence L.(Caryophyllaceae)from Zaire.Plant Soil,1983,73:377-385.
    [20]Reeves R D, Baker A J M.Metal accumulating plants[C]//Raskin I, Ensley B D(Eds).Phytoremediation of toxic metals:Using plant to clean up the environment.New York:John Wiley Press,2000.
    [21]Brown S L, et al.Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution.Soil Sci Soc Am J,1995,59:125-133.
    [22]张从,夏立江.污染土壤生物修复技术[M],北京:中国环境科学出版社,2009:87.
    [23]李清芳,马成仓,周秀杰,等.煤矿塌陷区不同复垦方法及年限的土壤修复效果研究[J].淮北煤炭师范学院学报,2005,26(1):49-51.
    [24]聂小军,胡斌,赵同谦.焦作韩王矿塌陷区土壤质量变化规律[J],干旱环境监测,2006,20(2):87-92.
    [25]王卓理,耿鹏旭,刘嘉俊.平顶山市煤矿塌陷区复垦土壤理化性质研究[J].河南理工大学学报(自然科学版),2009.28(5):667-669.
    [26]刘桂建,杨萍月,王桂梁.煤中微量元素在土壤环境中的迁移[J].地球学报,2000,21(4):423-427.
    [27]秦胜.煤矿矸石山周围土壤中重金属分布研究[J].中国煤炭,2008,34(3):58-60.
    [28]董霁红,卞正富,于敏,等.矿区充填复垦土壤重金属分布特征研究[J].中国矿业大学学报,2010,39(3):335-341.
    [29]崔龙鹏,白建峰,史永红,等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-904.
    [30]邵群.新庄孜矿塌陷区煤矸石中重金属迁移对覆土影响[J].煤田地质与勘探,2007,35(6):34-36.
    [31]李洪伟,颜事龙,崔龙鹏.淮南新集矿区土壤重金属污染评价[J].矿业安全与环保,2008,35(1):36-37.
    [32]Tessier, CampbellPGC, BlssonM.Sequential extraction procedure for the speeiation partieulate tracemetals[J].AnalChem,1979,51(7):844-851.
    [33]Dinelli E., Tateo F.Factors controiiing heavy metals associated with natural weathering of coal mine spoils, Enviroment pollution,2003:1138-1150.
    [34]Hochella Jr M F and White A F.Mineral-water interface geochemistry:Anoverview[J]. Reviews in Mineralogy,1990,23:1-16.
    [35]王广林,王立龙,李征,等.杂草对土壤重金属的富集与含量特征研究[J],生态学杂志,2005,24(6):639-643.
    [36]魏树和,周启星,刘睿.重金属污染土壤修复中杂草资源的利用[J].自然资源学报,2005,20(3):432-440.
    [37]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物一商陆fJ],生态学报,2003,23(5):935-937.
    [38]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrumL)[J],科学通报,2004,48(24):2568-2572.
    [39]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物—李氏禾(Leersiahexandra Swartz)[J],生态学报,2006,26(3):950-953.
    [40]陆引罡,黄建国,滕应,等.重金属富集植物车前草对镍的响应[J],水土保持学报,2004,18(1):108.
    [41]胡振琪,戚家忠,司继涛.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6):639-643.
    [42]朱祖祥.土壤学(上、下册)[M].北京:农业出版社,1983:191.
    [43]陈怀满.环境土壤学[M].北京:科学出版社,2005:85.
    [44]李贵宝,焦有,孙克刚,等.河南省耕地土壤速效钾含量与分布[J].河南农业科学,1998,(2):27-28.
    [45]廖菁菁,黄彪,孙维侠,等.农田土壤有效磷的时空变异及其影响因素分析[J].土壤学报,2007,44(4):620-627.
    [46]刘国栋,崔玉军,谭福成,等.黑龙江五常地区土壤肥力及环境健康评价[J].现代地质,2008,22(6):1010-1014.
    [47]鲍士旦.土壤农业化学分析[M].北京:中国农业出版社,2000:123-126.
    [48]全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社,1992.
    [49]董霁红.矿区充填复垦土壤重金属分布规律及主要农作物污染评价[D].徐州:中国矿业大学,2008.
    [50]崔龙鹏,白建峰,黄文辉,等.淮南煤田煤矸石中环境意义微量元素的丰度[J].地球化学,2004,33(5):53-540.
    [51]Baligar V C and Duncan R R. Crops enhancers of nutrient use[M].Academic Press, San Diego,1990.1-357.
    [52]Stoltze, Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings[J].Environmental and Experimental Botany,2002,47(3):271-280.
    [53]Salt D E Phytoextraction:Present applications and future promise[C]//Wise D L, et al.Bioremediation of Contaminated Soils New York:Marcel Dekker Press,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700