用户名: 密码: 验证码:
矿井瞬变电磁场数值模拟的边界元法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井瞬变电磁法是井下找水探水的有力工具,以其方便灵活的施工技术得到广泛的应用,在生产实践中取得很好的应用效果。本文针对矿井瞬变电磁法中固有的全空间场理论问题进行了深入研究。根据煤系地层的特点,建立地电模型,研究了全空间瞬变电磁场的1D和3D正演数值模拟算法,重点用边界元数值算法研究井下3D巷道空间对全空间瞬变电磁场的影响。
     从电磁场满足的麦克斯韦方程组和边界条件出发,定义了洛伦兹规范和库伦规范下的两组位函数对,推导了其满足的控制方程和边界条件,作为正演数值模拟的理论基础。1D水平层状介质模型的瞬变电磁场,用分离变量法推导了垂直和水平磁偶极子源的矢量位求解方法。矿井瞬变电磁法中常用圆形或方形的多匝小回线装置进行发射和接收,都可以根据磁偶极子源的场做线积分得到。不管是分离装置还是重叠装置,除去早期个别点外,均匀全空间的场值均大于地下半空间的场值,且二者的衰减规律一致。半空间场的理论不能很好的适用于全空间场。用小回线源半空间的解析解验证了滤波算法的正确性。当线圈架设倾斜一定角度时,将偶极子源分解为垂直和水平偶极子共同作用的结果,z方向磁通量的变化率主要受分解后垂直偶极子部分作用的影响,而x方向磁通量的变化率主要受分解后水平偶极子部分作用的影响。为了更加形象直观的描述层状介质模型系统,引入等效电路的描述方式。
     本着根据模型选择基本解使其满足控制方程的同时满足一定边界条件的思想,推导了含3D巷道的全空间水平层状介质模型的边界元算法。选择库伦规范下水平层状介质中电磁场位函数作为基本解,目的是利用该位函数对满足的边界条件消除无穷大表面上的面积分。对巷道边界进行三角网格剖分,采用分区均匀的规则三角网格剖分算法,可以很容易地实现区域的边界拟合,网格生成的速度快、质量好且数据结构简单。并采用混合元离散算法,避免了角点处法向导数不唯一的问题。
     仿照矿井直流电法勘探对巷道影响因数的定义,定义一个新的巷道影响因数,用于研究不同时刻巷道对视电阻率的影响。均匀介质中的巷道影响特征可归纳为先减小后增大,再减小再增大的趋势。收发装置分别位于巷道底板中心和巷道顶板中心时,巷道影响是相同的;收发距越大,较早观测时间内巷道影响越大,巷道影响迅速变小,随时间增加,各种收发距下巷道对瞬变响应的影响趋于一致;围岩导电性越差,巷道影响越小;巷道的几何尺寸越大,巷道影响越大,巷道长度对较晚观测时间内的场影响较大,而巷道宽度和高度对较早观测时间内的场影响较大。
     分别模拟了两层、三层和四层模型中的巷道影响特征。结果表明,巷道空间的存在,使得视电阻率发生显著变化,且层状介质中的巷道影响规律不同于均匀介质。模拟了各层地电参数变化对巷道的影响特征,综合分析可知,改变巷道所在层参数对巷道影响因数的影响最大,整个观测时间内都有影响;其次是改变直接底板和间接底板岩层的电阻率对巷道影响因数的影响较大,且直接底板和间接底板岩层的电阻率越小,对巷道影响因数的影响越大;最后是改变含源层顶板岩层电阻率对巷道影响因数的影响最小,只对观测曲线的尾支有影响,且含源层顶板岩层电阻率增大到一定程度后,巷道影响因数几乎不再变化。
     自主设计了水平层状介质1D和3DBEM正演软件,COM组件成功地将Matlab和VB接口,从而使Matlab强大的计算功能和图形显示功能与可视化的开发界面充分结合起来,取长补短。程序发布后,可在没有安装Matlab客户端机器上运行,完全脱离了Matlab工作环境,可移植性大大增强。VB调用COM组件,编程代码大大简化,缩短了开发时间,同时实现了算法的保密。可视化的操作界面,使用起来更加灵活方便,可任意改变模型参数,便于人机交互。
Mine transient electromagnetic method (MTEM) is a powerful tool for detecting underground water. It is widely used in production and practice, achieving satisfactory results for its convenient and flexible field works. In the dissertation, the whole space field theory inherent in of MTEM was studied in detail. According to the characteristics of coal bearing strata, 1D and 3D geo-electric models were designed to study the numerical simulation of transient electromagnetic field in whole space, focusing on the boundary element method (BEM) simulating the influence of 3D roadway on transient electromagnetic fields in whole space.
     Based on Maxwell's equations of electromagnetic fields and boundary conditions, two pairs of potential functions were introduced in terms of Coulomb and Lorentz gauges, whose control equations and boundary conditions were deduced as the theory basis of numerical simulation. The transient electromagnetic field in 1D layered medium model was calculated. The solving method of vector potential of vertical and horizontal magnetic dipole source were deduced by method of separation of variables. Circular or quadrate multi-coils are common used as transmitter-receiver in MTEM. Their electromagnetic fields can be got by calculation of line integral of the electromagnetic fields of magnetic dipole. No matter separated loops or coincident loops, the magnetic field in whole space is greater than the field in half space, besides several points in early times. And they have the same attenuation. The theory of half space cannot be well suited to whole space.When the transmitter coils are arbitrarily oriented; the transient electromagnetic field can be seen as the interaction of a VMD and a HMD. Z component of changing rate of magnetic flux is mainly decided by the decomposed VMD, as well as x component of changing rate of magnetic flux by the decomposed HMD. Equivalent circuit method is introduced to visually describe layered medium model system.
     BEM is used to study 3D roadway model in layered medium. The fundamental solution not only needs to satisfy the control equation, but also needs to satisfy certain boundary conditions at the same time. For 3D roadway model in layered medium, fundamental solutions are the potential functions in terms of Coulomb of layered medium model. The purpose is to use the boundary conditions of the potential functions to eliminate surface integral of infinite interface. It is easy to fit the roadway surface by rule triangular mesh generation algorithm. The algorithm is practical. And the structure of data is simple. Boundary integral equation is discrete by hybrid element method to resolve sketches of corner and edge.
     A new roadway influence factor was defined to study the influence of roadway on apparent resistivity the same as the definition of roadway influence factor in mine DC prospecting. The roadway influence factor decreases first then increases, and decreases and then increases again in homogeneous medium. When the transmitter-receiver located on floor and roof, the influence is the same. The greater the transmitter-receiver distance is, the greater the roadway influence factor is in earlier times. The roadway influence factor decreases rapidly with time, then keeps steady. The worse the conductivity of surrounding rock is, the smaller the roadway influence factor is. The bigger the physical dimension of the roadway is, the greater the roadway influence factor is. The length of roadway influences more in later times, while the width and height of roadway influences more in earlier times.
     The influences of roadway in two, three and four layered models were simulated. It is resulted that the apparent resistivity changes greatly because of the roadway. The influence of roadway in layered medium is different from the one in homogeneous medium. The influence of roadway was studied for different geo-electric parameters. Through the integrative analysis of the results, it is known that the apparent resistivity is influenced most by changing geo-electric parameters of the layer contained roadway in all times. Secondly, the apparent resistivity is influenced more by changing the resistivity of direct floor and indirect floor. And the smaller the resistivity of direct floor and indirect floor is, the greater the apparent resistivity changes. At last, the apparent resistivity is influenced smallest by changing the resistivity of roof. Roadway influence factor just changes at the end of the curve. And if the resistivity increases to some degree, the influence changes little.
     Forward software was explored to modeling 1D and 3D transient electromagnetic fields. COM module was designed to connect Matlab and VB used COM builder contained in Matlab. So the powerful calculated function and graphical display function of Matlab and visual exploited interface were combined fully. The program can work without Matlab environment. The portability was improved greatly. Because the COM module was called by VB, the codes was simplified, the exploited time was reduced and the arithmetic was kept secret. It is man-machine interactive and more convenient to change the parameters of models by visual operated interface.
引文
[1] Wait J.R. Transient EM propagation in a conducting medium[J]. Geophysics, 1951, 16:213-221.
    [2] Nabighian M.N. Quasi-static transient response of a conducting half-space--An approximate representation[J]. Geophysics, 1979, 44:1700-1705.
    [3] Singh S.K. Eletromagnetic transient trsponse of a conducting sphere embedded in a conductive medium[J]. Geophysics, 1973, l38:864-893.
    [4] Kuo J.T. and Cho D.H. Transient time-domain electromagnetic[J]. Geophysics, 1980, 45:271-292.
    [5] Raiche A.P. and Spies B.R. Coincident loop transient electromagnetic master curves for interpretation of two-layer earth[J]. Geophysics, 1981, 46:53-64.
    [6] Knight J.H. and Raiche A.P. Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method[J]. Geophysics, 1982, 47(1):47-50.
    [7] Hoversten G.W. Morrison H.F. Transient fields of a current loop source above a layered earth[J]. Geophysics, 1982, 47 (7):1068-1077.
    [8] Weidelt P. Response characteristics of coincident loop transient electromagnetic system[J]. Geophysics, 1982, 47:1325-1330.
    [9] Goldman M.M and Stoyer C.H. Finite-difference calculations of the transient field of an axially symmetric earth for vertical magnetic dipole excitational[J]. Geophysics, 1983, 48:953-962.
    [10] McNeill J.D. Edwards R.N. and Levy G.M. Approximate calculations of the transient electromagnetic response from buried conductors in a conductive half-space[J]. Geophysics, 1984, 49:918-924.
    [11] Oristagtio M.L. and Hohmann G.W. Diffusion of electromagnetic fields in a two-dimensional earth: A finite-difference approach[J]. Geophysics, 1984, 49:870-894.
    [12] San Filipo W.A. Eaton P.A. and Hohmann G.W. The transient EM response of a prism in a conductive half-space[J]. Geophysics, 1985, 50:1144-1162.
    [13] Rai S.S.. Transient electromagnetic response of a thin conducting plate embedded in conducting hast rock. Geophysics, 1985, 50:1342-1349.
    [14] Newman G.A. Hohmann G.W. and Anderson W.L. Transient electromagnetic response of a three-dimensional body in a layered earth[J]. Geophysics, 1986, 51:1608-1627.
    [15] Guderson B.M. Newman G.A. Hohmann G.W. Three-dimension transient electromagnetic responses for a grounded source[J]. Geophysics, 1986, 51:2117-2130.
    [16] Goldman Y.A. finite-element solution for the transient electromagnetic response of an arbitrary two -dimensional resistivity distribution[J]. Geophysics, 1986, 51:1450-1461.
    [17] Poddar M. and Anderson W.L. TEM modeling of shallow A-type sections with 3-D inhomogenetices[J]. Geophysics, 1992, 57:774-780.
    [18] Leppin M. Electromagnetic modeling of 3-D sources over 2-D inhomogenetices in the time domain[J].Geophysics, 1992, 57:994-1003.
    [19] Wang T. and Hohmann G.W. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling[J]. Geophysics, 1993, 58:797-809.
    [20] Fernando L.T. and Chew W.C. Finite-Difference computation of transient electromagnetic waves for cylindrical geometries in complex media[J]. IEEE, 2000, 38:1530-1542.
    [21]李金铭.电法勘探新进展[M].北京:地质出版社,1996:1-27.
    [22]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998:58-71.
    [23]李金铭.地电场与电法勘探[M].北京:地质出版社,2005:92-115.
    [24]牛之链.时间域电磁法原理[M].长沙:中南工业大学出版社,2007:18-67.
    [25]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002:49-78.
    [26]殷长春,李吉松.任意角度瞬变电磁测深正演问题计算方法[J].物探与化探,1994,18(4):297-303.
    [27]翁爱华,陆冬华,刘国兴.利用连分式定义瞬变电磁法全区视电阻率研究[J].煤田地质与勘探,2003,31(3):56-59.
    [28]宋维琪,仝兆歧.3D瞬变电磁场的有限差分正演计算[J].石油地球物理勘探,2000,35(6):751-756.
    [29]陈明生,闫述,石显新等.二维地质体的瞬变电磁场响应特征[J].地震地质,2001,23(2):252-256.
    [30]宋先旺,姜胜华.瞬变电磁法全期视电阻率、视深度求解方法与应用[J].矿产与地质,1997,11:129-135.
    [31]盛圣圣,牛之琏.一维层状大地的瞬变电磁测深正演计算[J].煤田地质与勘探,1991,19(6):53-57.
    [32]阮百尧. Guptasarma算法在瞬变电磁正演计算中的应用[J].桂林工学院学报,1996,16(2):167-170.
    [33]丁世荣,方文藻.球形地质体在阶跃磁偶极源激励下的瞬变电磁响应[J].辽宁师范大学学报(自然科学版),1997,20(3):218-223.
    [34]鲍光淑,张碧星,敬荣中等.三维电磁响应积分方程法数值模拟[J].中南工业大学学报,1999,30(5):472-474.
    [35]唐新功,胡良俊.层状地层中三维薄板的瞬变电磁响应[J].石油地球物理勘探,2000,35(5):628-633.
    [36]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-284.
    [37]严良俊,徐世浙,陈小斌等.线源二维瞬变电磁场的正演计算新方法[J].煤田地质与勘探,2004,32(5):58-61.
    [38]罗润林,张小路.一种层状大地瞬变电磁响应正演计算的改进方法[J].物探化探计算技术,2005(27):25-29.
    [39]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.
    [40]熊彬,罗延钟,强建科.瞬变电磁2.5维反演中灵敏度计算方法(Ⅰ)[J].地球物理进展,2004,19(3):616-620.
    [41]熊彬.关于瞬变电磁2.5维正演中的几个问题[J].物探化探计算技术,2005,28(2):124-129.
    [42]王华军.中心回线瞬变电磁2.5维正反演方法研究[D].武汉:中国地质大学,2001.
    [43]王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元算法[J].地球物理学报,2003,46(6):855-862.
    [44] Stefi Krivochieva and Michel Chouteau. Whole space modeling of a layered earth in time-domain electromagnetic measurements[J]. Journal of Applied Geophysics, 2002,50:375-391.
    [45]于景邨.矿井瞬变电磁法理论与应用技术研究[D].徐州:中国矿业大学,2001.
    [46]于景邨.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007,64-68.
    [47]于景邨,刘志新,刘树才等.深部采场突水构造矿井瞬变电磁法探查理论及应用[J].煤炭学报,2007,8(32):818-821.
    [48]岳建华,甘会春.矿井瞬变电磁法及其应用[C].中国地球物理学会年会论文.南京:南京师范大学出版社,2003.
    [49]周仕新,岳建华.矿井中瞬变电磁场三维时域有限差分模拟[J].勘探地球物理进展,2005,28(6):408-412.
    [50]周仕新.巷道围岩中全空间瞬变电磁场时域有限差分数值模拟[D].徐州:中国矿业大学,2006.
    [51]姜志海.巷道掘进工作面瞬变电磁超前探测机理与技术研究[D].徐州:中国矿业大学,2008.
    [52] Jiang Zhi-hai, Yue Jian-hua, Liu Shu-cai. Prediction technology of buried water-bearing structures in coal mines using transient electromagnetic method[J], Journal of China University of Mining and Technology. 2007, 17(2):164-167.
    [53]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报,2007, 4(4):291-294.
    [54]杨海燕,岳建华.巷道影响下三维全空间瞬变电磁法响应特征[J].吉林大学学报,2008,38(1):129-134.
    [55]杨海燕,岳建华.瞬变电磁法中关断电流的响应计算与校正方法研究[J].地球物理学进展,2008,23(6):1947-1952.
    [56]杨海燕.矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D].徐州:中国矿业大学,2009.
    [57]刘志新.矿井瞬变电磁场分布规律与应用研究[D].徐州:中国矿业大学,2008.
    [58]刘志新,岳建华,刘仰光.扇形探测技术在超前探测中的应用研究[J].中国矿业大学学报,2007,36(6):822-825.
    [59]汤金云,于景邨,王扬州等.矿井瞬变电磁人文噪声干扰及处理技术研究煤矿开采[J].2008,13(2):32-34.
    [60]白登海,何兆海,卢健等.地下全空间瞬变电磁法在煤矿水害预防中的应用[C].第六届中国国际地球电磁学学术研讨会.北京,2003.
    [61]郭纯,刘白宙,白登海.地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J].地震地质,2006,28(3):456-462.
    [62]李貅,郭文波,李毓茂.瞬变电磁法在煤田矿井涌水通道勘察中的应用[J].西安工程学院学报2000,22(3):35-38.
    [63]李貅,薛国强.隧道及井巷掘进超前预报的电磁导弹探测技[J].长安大学学报(自然科学版),2002,22(3):48-50.
    [64]李貅,武军杰,曹大明等.一种隧道水体不良地质体超前地质预报方法—瞬变电磁法[J].工程勘察2006,3:70-75.
    [65] Li Xiu. Application of the adaptive shrinkage genetic algorithm in the feasible region to TEM conductive thin layer inversion[J]. Apply Geophysics, 2005, 2(4):204-210.
    [66]薛国强,李貅.瞬变电磁隧道超前预报成像技术[J].地球物理学报,2008,51(3):894-900.
    [67]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-284.
    [68]闫述,傅俏,王刚等.复杂3D瞬变电磁场FDTD模拟中需要解决的问题[J].煤田地质与勘探,2007,35(2):63-66.
    [69]闫述,石显新.井下全空间瞬变电磁场法FDTD计算中薄层和细导线的模拟[J].煤田地质与勘探,2004,32(增刊):87-89.
    [70]闫述,石显新,陈明生.华北型煤田水文地质电法勘探的深度问题[J].煤炭科学技术,2006,34(12):5-8.
    [71]谭代明,漆泰岳.地下全空间瞬变电磁响应的数值分析[J].物探化探计算技术,2009,31(2):121-125.
    [72]谭代明,漆泰岳.基于ANSYS的瞬变电磁法数值模拟[J].路基工程,2008,5:30-32.
    [73]谭代明,漆泰岳.瞬变电磁超前探水数值模拟与应用[J].路基工程,2009,4:80-81.
    [74]谭代明,漆泰岳,刘传利.隧道全空间瞬变电磁响应的研究与应用[J].水文地质工程地质,2009,3:111-117.
    [75]代刚,漆泰岳,谭代明.全空间瞬变电磁法在地下工程探水中的应用[J].四川建筑,2006,26(2):59-60.
    [76]刘志新,于景邨,张华等.小波变换在矿井瞬变电磁法中的应用[J].煤田地质与勘探,2007,35(4):70-72.
    [77] Okabe M. Boundary element method for the arbitrary inhomogeneities problem in electrical prospecting[J]. Geophysical Prospecting, 1981, 29:39-59.
    [78]徐世浙.点源二维地电剖面的边界单元解法[J].桂林冶金地质学院学报,1984,4(4):119-133.
    [79]徐世浙,楼云菊,赵生凯.边界单元法原理及其在地球物理勘探中的应用简介[J].物探化探计算技术,1985,7(1):67-78.
    [80]徐世浙.三维地形均匀各向异性岩石点电源电场的边界单元解法[J].山东海洋学院学报,1985,15(2):54-61.
    [81]徐世浙,赵生凯,楼云菊.水平地形三维电场的边界单元解法[J].物探化探计算技术,1984,6(3):53-60.
    [82]徐世浙,赵生凯.三维地形上点电源电场的边界单元解法[J].桂林冶金地质学院学报,1985,5(2):163-168.
    [83]徐世浙,汪晓东,任景明.电阻率法二维地形改正的地质效果[J].地质与勘探,1989,25(5):43-45.
    [84]徐世浙,汪晓东.多域地电断面均匀电场边界元法正演[J].物探化探计算技术,1990,12(2):106-112.
    [85]徐世浙,倪逸.复杂地电条件下点源三维电阻率模拟的新方法[J].物探化探计算技术,1991,13(1):13-20.
    [86]田宪谟,黄兰珍.不同地电条件下电阻率法的边界元法数值模拟[J].物探化探计算技术,1994,16(3):270-275.
    [87]李予国,徐世浙.垂直断层附近三维不均匀体点源电场的边界单元法[J].物探化探计算技术,1996,18(2):147-151.
    [88]马钦忠,钱家栋.点源二维起伏界面二层介质边界元解[J].物探化探计算技术,1992,14(1):12-19.
    [89] Ma Q Z. The boundary element method for 3-D dc resistivity modeling in layered earth[J]. Geophysics, 2002, 67:610-617.
    [90]岳建华.矿井直流电法理论问题研究[D].徐州:中国矿业大学,1997.
    [91]岳建华,李志聃,刘世蕾.层状介质中巷道底板电测深边界元法正演[J].煤炭学报,1998,23(4):347-351.
    [92]岳建华.巷道层状围岩介质中稳恒电流场的边界积分解[J].中国矿业大学学报,1998,27(2):128-131.
    [93]岳建华,刘树才.矿井直流电法勘探[M].徐州:中国矿业大学出版社,2000:33-41.
    [94]李金铭,俞日洲.点源二维电阻率测深边界单元法[J].物探化探计算技术,1989,11(1):29-39.
    [95]田宪谟,黄兰珍.围岩充电法充电场的边界元法数值计算[J].成都地质学院学报,1991,18(2):88-96.
    [96]黄兰珍,田宪谟.用边界元法计算矿体充电电场[J].物探化探计算技术,1990,12(4):313-321.
    [97]徐世浙,王庆乙,王军.用边界单元法模拟二维地形对大地电磁场的影响[J].地球物理学报,1992, 35(3):380-388.
    [98]徐世浙,李予国,刘斌.大地电磁Hx型波二维地形改正的方法与效果[J].地球物理学报,1997,40(6):842-846.
    [99] Xu S Z, Zhou H. Modeling the 2D terrain effect on MT by the boundary element method[J]. Geophysical Prospecting, 1997, 45:931-943.
    [100]徐世浙.地球物理中的边界单元法[M].北京:科学出版社,1995:191-228.
    [101]徐世浙,阮白尧,周辉等.用边界元法模拟三维地形对MT场的影响[J].科学通报,1996,41(23):2162-2164.
    [102]徐世浙,阮百尧,周辉等.大地电磁场三维地形影响的数值模拟[J].中国科学(D辑),1997,43(2):269-275.
    [103]阮白尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法[J].中国地质大学学报. 2007,32(1):130-134.
    [104] Ruan B, Yataka M, Xu S. 3D EM terrain effect modeling for vertical magnetic dipole source in frequency domain using BEM[C]. Proceeding 98th SEG Conference, SEG, 1998.
    [105]阮白尧,王有学.三维地形频率域人工源电磁场的边界元模拟方法[J].地球物理学报,2005,48 (5):1197-1204.
    [106]罗焕炎,张淑霞.二维大地电磁测深的边界元与有限元耦合模拟[J].地震地质,1987,9(2): 1-8.
    [107]谢忠球,温佩琳,朱德兵等.二维非均匀介质中大地电磁的耦合模拟[J].桂林工学院学报,2001,21(2):110-113.
    [108]马钦忠,钱家栋.二维频率测深边界单元法正演计算[J].地球物理学报,1995,38(2):252-261.
    [109]阎述,陈明生,陆俊良.频率测深的地形影响及其校正方法[J].煤田地质与勘探,1994,22(4):45-48.
    [110]黄兰珍,田宪谟.用边界元法求解复杂条件下甚低频法电磁异常[J].成都地质学院学报,1988,15(2):87-93.
    [111]侯俊胜,王继伦.航空VLF电磁法边界元分析及其应用[J].桂林冶金地质学院学报,1993,13(2):200-207.
    [112]刘煜洲,陈福集,王爱民等.甚低频电磁法边界元数值模拟及地形影响与改正[J].物探与化探,1994,18(16):457-463.
    [113]李宗元.电磁场边界元素法[M].北京:北京工业学院出版社,1987:2-4.
    [114]米萨克N.纳比吉安.勘查地球物理电磁法:第1卷[M].赵经祥,王艳君译.北京:地质出版社,1992,122.
    [115]雷银照.时谐电磁场解析方法[M].北京:科学出版社,2000:112-113.
    [116]朴化荣.电磁测深法原理[M].北京:地质出版社,1990:21-148.
    [117] Adel A. Mohsen, E.A. Hashish. The fast Hankel transform[J]. Geophysical Prospecting, 1994, 42:131-139.
    [118] Guptasarma,B.Singh. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997, 45:745-762.
    [119] Luiz Rijo. Comment on The fast Hankel transform.by Adel A. Mohsen and E.A. Hashish[J]. Geophysical Prospecting, 1996:473-477.
    [120]阮百尧.均匀水平大地上频率域垂直磁偶源电磁场数值滤波解法[J].桂林工学院学报,2005,25(1):14-18.
    [121]陈向斌,胡社荣,张超.瞬变电磁场响应计算的频—时域转换方法综述[J].工程地球物理学报,2008,5(2):242-246.
    [122]昌彦君,张桂青.电磁场从频率域转换到时间域的几种算法比较[J].物探化探计算技术,1995,17(3):25-29.
    [123]陈明生.电偶源瞬变电磁测深研究(二)[J].煤田地质与勘探,1999:54-57.
    [124]徐建华.层状媒质中的电磁场与电磁波[M].北京:石油工业出版社,1997:65-68.
    [125] James R. Wait. Geo-Electromagnetism[M]. Printed in the United States of America, 1982, 104-111.
    [126]申光宪等.边界元法[M].北京:机械工业出版社,1998:248-249.
    [127]时洪斌.边界元网格自动生成系统开发研究[D].青岛:山东科技大学,2005.
    [128]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社,2002:149-151.
    [129]阎超梅,祖彦,吴玉林.水力机械转轮中全三维势流的非线性混合边界元法[J].水动力学研究与进展,1991,6(1):1-9.
    [130]张德丰. MATLAB与外部程序接口编程[M].北京:机械工业出版社, 2009,192-194.
    [131]梁新成,黄志刚,朱慧.VB与Matlab混合编程的研究[J].北京工商大学学报(自然科学版),2007(25):38-41.
    [132]黄锡泉.基于COM组件的VB与Matlab接口编程[J].电脑编程技巧与维护,2004,8:19-21.
    [133]黄锡泉,龙艺秋.基于COM组件的VB与Matlab接口编程(续)[J].电脑编程技巧与维护,2005,1:34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700