用户名: 密码: 验证码:
基于化学指纹图谱的茶叶产地、原料品种判别分析和生化成分预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶叶有着悠久的历史,是中国重要的经济作物。部分名优茶市场存在“以假乱真”的现象,为了对这种现象有一定的判断,本研究以对茶叶产地、品种等的判定为目的进行化学指纹图谱的分类和判别研究。同时,对茶叶近红外光谱技术进行研究,以期快速测定茶叶化学成分含量。
     基于HPLC化学指纹图谱对绿茶和武夷岩茶的分类中,得到了25组共有峰,达到了100%的分类正确率;对浙江和川渝绿茶的分类中,得到了24组共有峰,川渝绿茶和浙江绿茶的分类正确率分别为98.8%和88.3%,结果聚为三类,第一类为川渝绿茶,第三类主要为浙江绿茶,第二类为川渝绿茶和浙江绿茶的交叉。
     基于HPLC化学指纹图谱的扁形绿茶产地判别分析中,在增加了一个色谱条件后,得到了40组共有峰,龙井茶与非龙井扁形茶的判别得到一个判别函数,26个相关变量,达到92.4%的判别正确率;西湖龙井与非龙井扁形茶的判别得到一个判别函数,21个相关变量,达到95.8%的正确率;龙井茶三个产区的判别得到两个判别函数,36个相关变量和82.9%的正确率;西湖龙井一级保护区和二级保护区得到一个判别函数,11个相关变量和98.3%的正确率。
     基于NIR化学指纹图谱的龙井茶产地分析中,在同步分析中,不同光谱预处理方法,原始光谱、MSC、Smoothing、一阶导数和二阶导数对验证集样本的识别准确率分别为86.0%,为83.2%,83.9%,83.5%和76.1%,总体识别准确率为85%;扁形茶、钱塘龙井、西湖龙井、越州龙井四个单独模型对验证集的识别准确率分别为97.2%,97.5%,97.9%和100%;四个模型进行组合以后“初次识别”对验证集样本的识别准确率分别为87.2%,91.3%,95.1%和99.4%,验证集样本的总的识别正确率为93.7%,比同步识别有明显提高;采用欧氏距离法进行二次识别以后,对验证集样本最终的识别准确率为96.8%,较初次识别提高了3.2%,说明模型组合和欧氏距离法都能有效提高识别准确率。
     基于HPLC化学指纹图谱的扁形茶原料品种判别中,共获得40组共有峰,西湖龙井产区的龙井43和群体种的判别得到1个判别函数,其中有20个变量,最终对测试集的判别正确率是81.7%;钱塘龙井产区四个品种的判别得到3个判别函数,其中有23个变量,对测试集的判别正确率是94.1%;越州龙井产区的判别得到3个判别函数,其中有20个变量,对测试集的判别正确率为83.1%;非龙井扁形茶四个品种的判别得到3个判别函数,其中有19个变量,对测试集的判别正确率为93.6%;所有扁形茶四个品种的判别得到3个判别函数,其中有35个变量,对测试集的判别正确率为86.4%。
     基于NIR化学指纹图谱的扁形茶原料品种识别中,同步识别后,对验证集的总体识别准确率为65.6%;龙井43,群体种、迎霜和乌牛早四个单独识别模型对验证集样本的识别准确率为87.1%,84.2%,96.1%和97.5%;模型组合后“初次识别”,对验证集的总体识别准确率为74.2%;采用欧氏距离法进行二次识别后,对验证集样本的最终识别准确率为83.5%,较“初次识别”提高了9.3%。
     基于NIR指纹图谱和HPLC的扁形绿茶化学成分预测中,分别对八种化学成分建立了PCR和PLSR线性回归模型,并得到了各自的线性拟合方程。结果表明得到PLSR的预测效果更好,其中GA的最佳数据预处理方法是Smoothing,其相关系数为0.84,线性拟合方程为y=1.0405x-0.0064;EGC的最佳数据预处理方法是Smoothing,相关系数为0.88,线性拟合方程为y=0.9227x+0.0922;C的最佳数据预处理方法是MSC,相关系数为0.86,线性拟合方程为y=0.9762x+0.0123;CAF的最佳数据预处理方法是MSC,相关系数为0.92,线性拟合方程为y=0.9476x+0.201;EC的最佳数据预处理方法是Smoothing,其相关系数为0.91,线性拟合方程为y=1.0044x-0.0029;EGCG的最佳数据预处理方法是MSC,相关系数为0.92,线性拟合方程为y=0.9823x+0.19;ECG的最佳数据预处理方法是Smoothing,其相关系数为0.84,线性拟合方程为y=0.9572x+0.1425。
     本文的研究结果可以为名优茶产地和品种溯源系统建立提供一定的技术基础。本文建立生化成分含量预测方法可以用于NIR生化成分快速测定。本文首次对茶叶HPLC指纹图谱和NIR指纹图谱进行了比较研究。
In China, tea, having a long history, is an important economic crop. But there are some imitations selling as real famous tea in market. To make a judgement of the imitations and real tea, this study carried out for discriminating the production areas and cultivars of tea. And then studying on the NIR with tea to get a quick-time determines of tea biochemical components.
     In classification analysis of green tea and wuyiyancha tea based on HPLC chemical fingerprint,25common peaks were sorted out for building fingerprint, and with a PCA, the classification accurate rate of the two categories was100%. In classification analysis of Chuan-Yu green tea and Zhejiang green tea, there were24common peaks sorted out. A clusting with PCA results was drawn, and there were three classes in the clusting, the first was chuan-yu green tea, the third was Zhejiang green tea and the second was intercrossed with both the two tea categaries.
     In discriminant analysis of flatten shaped green tea production regions based on HPLC fingerprint,40common peaks were sorted out when increasing a new HPLC fingerprint chromatogram condition. One discriminant function was obtained for Longjing tea and Flat, it had26variables, and the discriminant accurate rate was92.4%. Similarly, one discriminant function was obtained for Xhlj and Flat, but it had21variabkes, and the accurate rate was95.8%. Two discriminant functions was obtained for Xhlj, Qtlj and Yzlj, even they had36variables, the accurate rate was82.9%. The accurate rate got98.3%for the first-grade and second-grade protection zones of Xhlj with one discriminant function and11variables.
     In discriminant analysis of flatten shaped green tea production regions based on NIR fingerprint, we developed an efficient procedure for validating the authenticity and origin of tea samples where Partial Least Squares and Euclidean Distance methods, based on near-infrared spectroscopy data, were combined to classify tea samples from different tea producing areas. Four models for identification of authenticity of tea samples were constructed and utilized in our two-step procedure. High accuracy rates of98.6%,97.9%,97.6%, and99.8%for the calibration set, and97.2%,97.5%,97.8%,100%for test set, were achieved. After the first identification step, employing the four origin authenticity models, followed by the second step using the Euclidean Distance method, accuracy rates for specific origin identification were98.4%in the calibration set and96.8%in the test set. This method, employing two-step analysis of multi-origin model, accurately identified the origin of tea samples collected in four different areas.
     In discriminant analysis of flatten shaped green tea cultivars based on HPLC fingerprint,40common peaks were sorted out. The results for four production region were one function,20variables and81.7%accurate rate for Xhlj;3,23and94.1%for Qtlj;3,20and83.1%for Yzlj;3,19and93.6%for Flat. For all tea samples,3discriminant functions were obtained, they had35variables, and the discriminant accurate rate was86.4%.
     In discriminant analysis of flatten shaped green tea cultivars based on NIR fingerprint, with the samples manufactured of four cultivars (LJ43, LG, YS and WNZ),4models were established to identify cultivars by PLS. Their identification accuracy rate for calibration set were89.8%,90.9%,96.1%and99.5%, while87.1%,84.2%,96.1%and97.5%for test set, but the general identification accuracy rate for test set was65.6%. After the "first identification" through the combined analysis of the four models for identifying four cultivars, the rate for test set got74.2%, and the "second identification" with Euclidean distance method, the accuracy rate for test set got83.5%.
     In prediction analysis of flatten shaped green tea biochemical components based on NIR fingerprint and HPLC, linear regression models for7biochemical components by PCR and PLSR were built up separately with a best preprocessing method. And linear fitting equations of predictive values and true values for testing set were calculated. The results showed PLSR getting a better predicton. The best preprocessing methods for all components were Smoothing for GA, EGC, EC and ECG, MSC for C, CAF and EGCG. Linear fitting equation for GA was y=1.0405x-0.0064, and followed by y=0.9227x+0.0922for EGC, y=1.0044x-0.0029for EC, y=0.9572x+0.1425for ECG, y=0.9762x+0.0123for C, y=0.9476x+0.201for CAF and y=0.9823x+0.1864for EGCG Correlation coefficients were0.84,0.88,0.91,0.84,0.86,0.92and0.92in turn.
     The results in this article could be used for tracing back the origin of famous tea production regions and cultivas. And the prediction analysis results could be used for a quickly detection for biochemical components content with NIR. A comparative study for HPLC fingerprint and NIR fingerprint was carried out in this article firstly.
引文
Alpana Srivastaw, Himanshu Misra, Ram K Verma. Chemical fingerprinting of andrographis paniculata using HPLC, HPTLC and densitometry[J]. PHYlOCNEMICAL ANALYSIS,2004,15:280-285.
    Charalambous C., Conjugate gradient algorithm for efficient training of artificial neural networks [J]. IEEE Proceedings,1992,139 (3):301-310.
    Daniele Del Rio, Amanda J Stewart, William Mullen. HPLC-MS nnalysis of phenolic compounds and purine alkaloids in green and black tea[J]. J. Agric. Food Chem.,2004,52:2807-281.
    CW Huck, W Guggenbichler, GK Bonn. Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry [J]. Analytica Chimica Acta,2005,538(1-2):195-203.
    David L Whitehead, Catherine M Temple. Rapid method for measuring thearubigins and theaflavins in black tea using C18 sorbent cartridges[J]. Journal of the Science of Food and Agriculture,1991, 58(1):149-152
    Dodge Y. The Oxford dictionary of statistical terms[M].2003,OUP. ISBN 0-19-920613-9.
    Eisei Nishitani, Yuko M. Sagesaka. Simultaneous determination of catechins, caffeine and other phenoliccompounds in tea using new HPLC method[J] Journal of Food Composition and Analysis, 2004,17:675-685.
    Haiyan Cen, Yong He.Theory and application of near infrared reflectance spectroscopy in determination of food quality[J]. Trends in food science technology,2007,18(2):72-83.
    Help "PCR". Unscrambler 9.7.
    Help "PLSR". Unscrambler 9.7.
    Hong Yang, Joseph Irudayaraj, Manish M. Paradkar. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy [J]. Food Chemistry,2005,93(1):25-32.
    H Schulz, UH Engelhardt, A Wegent. Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves[J]. Journal of Agricultural and Food Chemistry,1999,47 (12):5064-5067.
    Ian T Jolliffe (1982). A note on the use of principal components in regression[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics) 31 (3):300-303.).
    I Esteban-Diez, JM Gonzalez-Saiz, C Pizarro. An evaluation of orthogonal signal correction methods for the characterisation of arabica and robusta coffee varieties by NIRS[J]. Analytica Chimica Acta, 2004,514(1):57-67.
    J Luypaert, MH Zhang, DL Massart. Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis[J]. Analytica Chimica Acta, 2003,478(2):303-312.
    Jiewen Zhao, Quansheng Chen, Xingyi Huang. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41:1198-1204.
    Li-Fei Wang, Joo-Yeon Lee, Jin-Oh Chung et al. Discrimination of teas with different degrees of fermentation by PME-GC analysis of the characteristic volatile flavour compounds [J]. Food Chemistry,2008,109:196-206.
    Martaa-Josea Saa Iz-Abajo, Josea-Martaa Gonzaa Lez-Saa Iz, Consuelo Pizarro. Classification of wine and alcohol vinegar samples based on near-infrared spectroscopy. Feasibility study on the detection of adulterated vinegar samples[J]. Journal of Agricultural and Food Chemistry,2004, 52:7711-7719.
    Nahid Mashkouri Najafi, Ahmadi Seyed Hamid, Rajabi Khorrami Afshin. Determination of caffeine in black tea leaves by fourier transform infrared spectrometry using multiple linear regression[J]. Microchemical Journal,2003,75:151-158.
    Quansheng Chen, Jiewen Zhao, Haidong Zhang. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration[J]. Analytica Chimica Acta,2006(572):77-84.
    Quansheng Chen, Jiewen Zhao, Xingyi Huang. Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy [J]. Microchemical Journal, 2006,83(1):42-47.
    R Kramer. Chemometric techniques for quantitative analysis[M]. Marcel-Dekker,1998, ISBN 0-8247-0198-4.
    Williams P, Norris K. Near infrared technology in the agricultural and food industries (Second Edition)[M]. Minnesota, USA:The American of Cereal Chemists, Inc. St. Paul,2001.
    Xiaolan Zhu, Bo Chen, Ming Ma. Simultaneous analysis of theanine, chlorogenic acid, purine alkaloids and catechins in tea samples with the help of multi-dimension information of on-line high performance liquid chromatography/electrospray-mass spectrometry [J]. Journal of Pharmaceutical and Biomedical Analysis,2004,34:695-704.
    Xiaoli Li, Yong He, Changqing Wu et al. Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR spectroscopy[J]. Journal of Food Engineering,2007,82:316-323.
    Yong He, Xiaoli Li, Xunfei Deng. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J]. Journal of Food Engineering,2007,79:1238-1242
    《中国茶树品种志》编写委员会.茶树品种志[M].上海:上海科技留版社,2001.
    百度百科.旗枪[EB/OL]. [2010-5-21]. http://baike.baidu.com/view/462780.htm.
    百度百科.安溪铁观音[EB/OL].[2011-10-19]. http://baike.baidu.com/view/21376.htm.
    蔡宝昌.中药指纹图谱的研究[J],科学中国人,2005,21-22.
    陈波,康海宁,韩超.NMR指纹图谱与模式识别方法在食物分析中的应用[J].波谱学杂志,2006,23(3):397-407.
    陈华才,吕进,俸春红等.近红外光谱法测定茶多酚中总儿茶素含量[J].中国计量笋院笋报,2005,16(1):17-20.
    陈菊.中药HPLC指纹图谱的研究进展[J].新疆中医药,2008,26(2):85-87.
    陈培栋,天然药物HPLC指纹图谱的研究进展[J].中国药房,2007,18(36):2871-2873.
    陈全胜,赵文杰,张海东等.基于支持向量机的近红外光谱鉴别茶叶的真伪[J].光学学报,2006,26(6):933-937.
    陈全胜,赵文杰,张海东等.SIMCA模式识别方法在近红外光谱识别茶叶中的应[J].食品科学,2006,27(4):186-189.
    陈卫军,魏益民,欧阳韶晖.近红外技术及其在食品工业中的应用[J].食品科技,2001,4:55-57.
    陈宗懋主编.中国茶经[M].上海文化出版社,1991:133.
    成浩,王丽鸳,周健等.基于换血指纹图谱的扁形茶产地判别分析研究[J].茶叶科学,2008,28(2):83-88.
    戴静波.气相色谱指纹图谱在中药质量控制中的应用[J].浙江中西医结合杂志,2011,21(2):125-127.
    邓波,周玉荣,刘志宏FT-NIR与主成分分析在中药贝母鉴别和聚类中的应用研究[J].光谱实验室,2006,23(5):1103-1106.
    刁云鹏,舒晓宏,甄宇红等.紫穗槐果实和叶子的紫外光谱指纹图谱研究[J].现代生物医学进展,2007,7(7):1091-1092.
    丁宁,夏贤明,刘宝生.绿茶咖啡碱的近红外测定[J].中国茶叶,1989(2):18-19.
    丁阳平,刘仲华,黄建安.茶黄素类高效薄层色谱指纹图谱研究[J].食品工业科技,2007,28(6):210-212.
    段焰青,陶鹰,者为等.近红外光谱分析技术在烟叶产地鉴别中的应用[J].云南大学学报(自然群学版),2011,33(1):77-82.
    樊玉霞,廖宜涛,成芳.基于可见/近红外光谱分析技术的猪肉肉糜品质检测研究[J].光谱学与光谱分析,2011,31(10):2734-2737.
    龚加顺,刘佩瑛,刘勤晋等.茶饮料品质相关成分的近红外线光谱技术分析[J].食品科学,2004,25(2):135-140.
    郝志龙,金心怡,江丽萍等.化学指纹图谱在茶叶品质鉴定与控制上的应用[J].亚热带农业研究2009,5(1):60-63.
    和燕,主成分回归与偏最小二乘回归方法比较[J].程度电子机械高等专科学校学报,2003(04):34-37.
    何亮,杨天明,钱志余.近红外光谱技术实时监测创伤性脑水肿的可行性研究[J].东南大学学报(医学版),2011,30(5):703-706.
    何昱,洪筱坤,王智华,重叠率在绿茶和茶多酚指纹图谱研究中的应用[J].中成药,2006,28(7):1021-1024.
    胡坤,喻华,冯文强等.淹水条件下不同中微量元素及有益元素对土壤pH和Cd有效性的影响[J].西南农业学报,2010,23(04):1188-1193.
    黄青萍,蔡乐,滕茜华.中药指纹图谱研究现状[J].中国药业,2006,15(16):64-66.
    吉川聪一郎.用近红外分光光度法进行茶叶品质评价:蒸青玉绿茶和锅炒玉绿茶主要成分的分析[J].[日]茶砂研究报告,1997,85增刊:88-89.
    籍保平.近红外光谱技术在农产品加工中的应用[J].粮油加工与食品机械,2000(6):31-33.
    蒋国兴.偏最小二乘回归方法(PLS)在短期气候预测中的应用研究[D].南京信息工程大学,2007.
    蒋迎.傅里叶变换近红外光谱对花茶窨制过程的水分测定方法[J].中国茶叶,2003,5:24-25.
    江苏.近红外技术在烟用辅料质量控制中的应用研究[D].屠明理工大学,2007.
    江苏,马翔,陈永福.近红外光谱分析技术及其在烟草行业中的应用[J].光谱实验室,2006,23(3):633-637.
    李桂兰,赵慧辉,赵平等.基于HPLC指纹图谱的黄芪生长年限的质量控制研究[J].中华中医药杂志,2011,26(1):84-87.
    李海丽.中药指纹图谱研究进展概况[J],甘肃群技纵横,2006,35(6),237-238
    李强,李超.中药指纹图谱研究综述[J].齐鲁药事,2010,29(3):158-161.
    李晓波,屠鹏飞,中药材指纹体系[J].中草药,2003,34(5):385-387.
    李勇,魏益民,王峰.影响近红外光谱分析结果准确性的因素[J].核农学报,2005,19(3):236-240.
    梁月荣, 罗德尼·毕.名茶茶汤光谱特性初探[J].茶叶,1991,17(2):44-46.
    林锦富,王嘉玲.中国东部玄武岩中蓝宝石的紫外_可见光_近红外吸收光谱特征[J].珠宝科技,1997,2:51-52.
    刘波平,秦华俊,罗香.偏最小二乘-反向传播-近红外光谱法同时测定饲料中4种氨基酸[J].分析化学研究简报,2007,35(4):525-528.
    刘国珍,陈祖刚,李丹.近红外光谱分析技术进展及其在烟草行业中的应用[J].烟草科技, 2001(11):15-17.
    刘国林,陈国广,相秉仁.近红外光谱技术在元胡止痛散定量分析中的初步应用研究[J].中国现代应用药学杂志,2000,17(5):383-385.
    刘炯光,衰辉.白酒指纹图谱[J].酿酒,2003,30(3):19-20.
    芦永军,陈华才,吕进等.茶多酚中咖啡因的近红外光谱分析[J].光谱学与光谱分析,2005,25(8):1243-1245.
    芦永军,陈华才,吕进等.茶多酚中总儿茶素的近红外光谱分析[J].分析化学研究简报,2005,33(6):835-837.
    陆婉珍,袁洪福等.现代近红外光谱分析技术[M].北京:中国石化出版,2000,4.
    陆艳婷,张小明,叶胜海,祁永斌,严文潮,王建清,金庆生.粳稻七种必须氨基酸含量近红外漫反射光谱分析技术研究[J].核农学报,2007,21(5):478-482.
    罗一帆,郭振飞,朱振宇等.近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络研究模型[J].光谱学与光谱分析,2005,25(8):1230-1233.
    许次纾,《茶疏》.[明代].
    倪力军,张立国,李鹏.对中药指纹图谱研究现状及应用的思考[J].天然矿物研究与开发2002,14(5):60-64.
    全国人民代表大会常务委员会.中华人民共和国反不正当竞争法,1993.
    齐龙,朱克卫,马旭等.近红外光谱分析技术在大米检测中的应用[J].农机化研究,2011,7:18-22.
    沈文浩,谢益民,刘焕彬.近红外光谱技术在制浆造纸工业中的应用[J].现代群学仪器,2000,1:37-38.
    师大亮,余继忠,郭敏明.提高夏秋名优绿茶品质的技术措施[J].杭州农业群技,2006(4):35-36.
    守屋友贵.采用近红外分析法对绿茶成分进行不粉碎测定[J].茶叶研究报告,1997,85(增刊):84-85
    宋舒苹,张浩,张静等.纸张强度和白度与近红外谱图相关性的研究[J].中国造纸学报,2011,26(3):17-20.
    孙国祥,王真,金杰等.中药红外光谱指纹图谱专家系统网格(TCM-IRFP-ESG)构建与应用[J].中南药学,2009,7(8):622-625.
    孙海涛,吕淑红.BJKF-1型便携式近红外矿物分析仪在宝石鉴定中的应用[J].岩矿测试,2008,27(6):418-422.
    孙耀国,林敏,吕进等.近红外光谱法测定绿茶中氨基酸、咖啡碱和茶多酚的含量[J].光谱实验室,2004,21(5):940-943.
    孙毓庆,孙国祥,金郁.毛细管电泳指纹图谱及毛细管电泳-质谱联用在中药质量控制中的作用[J].色谱,2008,26(2):160-165.
    索少增,刘翠玲,李慧.近红外光谱技术检测农产品农药残留量的研究[J].北京工商大学学报(自 然科学版),2010,28(6):61-65.
    涂瑶生,柳俊,张建军.近红外光谱技术在中药生产过程质量控制领域的应用[J].中国中药杂志,2011.
    王晃,李梦龙,覃洁萍等.建立中药指纹图谱保证中药产品质量[J].成都中医药大学学报,2002,25(3):43-45.
    王建义,雷萌.经红外光谱煤质分析模型中异常样品的剔除方法[J].工矿自动化,2011,11:75-77.
    王里奥,黄川,詹艳慧等.三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究[J].长江流域资源与环境,2006,15(5):593-597.
    王群威,谭曜,王谦等.近红外光谱技术在液化石油气检测中的应用研究[J].分析科学学报,2011,27(5):655-658.
    王智民.对中药指纹图谱应用的几点看法[J].中国实验方剂学杂志,2001,8(9):554-557.
    王丽鸳,成浩,周健等.绿茶数字化多元化学指纹图谱建立初探[J].茶叶科学,2007,27(4):335-342.
    王燕岭.近红外光谱技术基础理论与应用综述[EB/OL].北京英闲仪器有限公司,(2004-4)[2011-02-03]. http://www.doc88.com/p-78033162423.html.
    王永明.傅里叶变换近红外光谱分析技术在茶叶中的应用[J].检测与分析,2006,9(5):29-31.
    王海莲,万向元,胡培松.稻米脂肪含量近红外光谱分析技术研究[J].中国农业群学,2005,38(8):1540-1546.
    王艳艳,何勇,邵咏妮.基于可见-近红外光谱的咖啡品牌鉴别研究[J].光谱学与光谱分析,2007,27(4):702-706.
    王镇恒,王广智主编.中国名茶志[M].北京:中国农业出版社,2000,348-361,369-373.
    冈本存喜,竹尾忠一用近红外分光分析法进行乌龙茶与绿茶水分的定量[J].日本食品工业学会志,1989,5:44-46.
    维基百科.武夷岩茶[EB/OL].[2011-5-29].http://zh.wikipedia.org/wiki/%E6%AD%A6%E5%A4%B7%E5%B2%A9%E8%8C%B6
    维基百科.绿茶[EB/OL].[2011-8-4].http://zh.wikipedia.org/wiki/%E7%BB%BF%E8%8C%B6
    武果桃,繁政治,牛国庆.中药指纹图谱的研究与发展趋势[J].中国农村群技,2006,32-33.
    夏贤明,丁宁.用近红外光谱法检测绿茶中品质成分的研究[J].分析化学,1991,19(8):945-948.
    夏贤明,刘宝生,丁宁.用近红外分析法测定绿茶的总氮量[J].茶叶科学,1988,8(1):55-59.
    邢旺兴,谷娜,郭胜才.近红外漫反射光谱聚类分析法在通光藤鉴别中的应用[J].解放军药学学报,2005,21(5):325-326.
    徐立恒,吕进,林敏等.茶叶中3类主要组分的近红外光谱分析作为茶叶质量的快速评定方法[J]. 理化检验(化学分册),2006,42(5):334-336.
    徐坤,刘鹏起,张玉娜.近红外光谱分析技术及应用[J].莱阳农学院报,2001,18(3):237-240.
    阎守和,莫汉斯M·,汪拜尔M·.用近红外光谱法检测茶纤维的研究[J].茶叶科学,1987,7(1):45-50.
    杨柳,何娟,王学斌.现代分析仪器在中药指纹图谱中的应用[J].现代仪器,2006(4):12-14.
    杨南林.基于近红外光谱的中药过程分析方法研究[D].浙江大学,2003.
    杨阳,刘振,赵洋等.湖南省主要茶树品种分子指纹图谱的构建[J].茶叶群尝2010,30(5):367-373.
    袁洪福,陆婉珍.近红外光谱技术正在掀起一场分析效率革命[J].现代仪器,1999(5):19-24.
    张海东,赵杰文,刘木华.基于混合线性分析的苹果糖度近红外光谱检测[J].农业机械学报,2006,37(4):149-151.
    张卉,宋妍,冷静.近红外光谱分析技术[J].光谱实验室,2007,24(3):388-395.
    张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究[J].水土保持学报,2004,18(6):120-123.
    张梁,李宁,车彦云等,普洱熟茶和普洱生茶的指纹图谱研究(英文)[J]. Journal of Chinese Pharmaceutical Sciences,2011,20:352-359.
    张晓慧,刘建学.近红外光谱技术鉴别连翘产地[J].激光与红外,2004,38(4):342-344.
    张正竹,廖步岩,阎守和等.近红外(NIR)技术在茶叶品质保真中的应用前景[J].食品工业科技,2009,30(6):349-352.
    中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.GB-T18650-2008地理标志产品·龙井茶[s],北京:中国标准出版社,2008.
    周健,成浩,王丽鸳等.基于杠杆率校正的PLS-DA法对正半岩武夷岩茶的识别研究[J].茶叶科学,2009,29(1):34-40.
    周健,成浩,贺巍等.基于近红外的PLS量化模型鉴定西湖龙井真伪的研究[J].光谱学与光谱分析,2009,29(5):1251-1254.
    周健,成浩,叶阳等.滇青、青饼和普洱茶(熟饼)近红外指纹图谱分析[J].核农学报,2009,23(1):110-113.
    周学秋.非破坏性近红外定性分析鉴别方法研究[J].现代仪器,2002(2):34-35.
    周学秋.傅里叶变换近红外过程分析技术在中国的应用[J].光谱学与光谱分析,2006,26(7):155-158.
    邹强,方慧,张维等.近红外光谱技术在奶酪品质评价中的应用[J].光谱学与光谱分析,2011,31(10):2725-2729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700