用户名: 密码: 验证码:
微透镜阵列的设计、制作及与CCD的集成技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学的发展,微光学元件的研究和在各个领域中的应用已经引起国内外科研工作者越来越高度的重视。微透镜阵列就是其中一种重要的微光学元件。本文对于微透镜阵列的设计理论、制作工艺、性能测试进行研究,并着重研究了微透镜阵列与CCD 图像传感器的集成技术,达到改善图像传感器光敏性的目的。本文的主要内容如下:
    (1) 概述了微光学技术的发展以及微光学元件的种类,介绍了微透镜阵列的研究和应用以及微透镜阵列与CCD 图像传感器集成应用现状。
    (2) 介绍了微透镜阵列的光学设计理论。包括折射微透镜的几何光学设计方法和衍射微透镜的衍射光学设计理论。对折射和衍射透镜的色散效应进行了理论上的分析。基于严格的矢量衍射理论,分析了亚波长结构衍射元件的衍射机理。此外,本文还分析了制作误差等因素对微透镜阵列衍射效率的影响,对系统中的光能损失进行了分析。
    (3) 对实用情况下出现的小冠高衍射微透镜,提出了表面直接台阶量化的设计方法,并将此方法应用于CCD 图像传感器的微透镜阵列进行了设计。此方法可以避免采用一般的设计方法对小冠高衍射微透镜设计时所出现的有限台阶数的问题,有效地保证了微透镜保持较高的衍射效率。
    (4) 基于MEMS(微电子机械系统,Micro-Electro-Mechanical-System)工艺,讨论了微透镜的制作方法,包括紫外光刻、图形转移方法。尤其是对三组分气体SF6/O2/CHF3 反应离子刻蚀方法进行了深入的研究,在硅衬底上得到了比较理想的图形转移效果。同时,首次进行了以聚合物为基的微透镜的制作,并制作出了比较理想的微透镜。
    (5) 建立了针对微透镜的微光学测试系统,介绍了参数的测量方法,可以测量微透镜的点扩散函数、衍射效率、焦长等性能参数,使得可以有效地对制作的微透镜进行评价。文中同时分析了测量中的误差及影响因素。
    (6) 对场镜形式的微透镜与CCD 集成系统的聚光效率问题进行了光学分析,使得集成器件有最好的光耦合效果。
    (7) 重点研究了衍射微透镜在256×256 元Pt/Si IRCCD 上的应用。通过将衍射微
With the development of modern optics, the researchers of the world in this field are attaching more and more importance to the investigation and applications of micro-optic elements in many fields. The microlens arrays are the important kind of micro-optics elements. This dissertation places emphasis upon the design theory, fabrication technology and optical performance measurement of microlens arrays. And it emphasizes the researches on integration technology between microlens array and CCD (charge coupled device) image sensors, which can improve the detecting performances of image sensor remarkably. The primary content of the dissertation includes:
    (1) The development of micro-optics and the kind of micro-optics elements have been summarized. And the statuses in quo of fabrication technology and applications of microlens array and present research on the integration between microlens and CCD image sensors have been introduced.
    (2) Optical design theory of microlens array is introduced. It includes the geometrical optics design theory for refractive microlens and diffraction optics theory for diffractive microlens. The dispersion effect of diffractive and refractive microlenses has been analyzed theoretically. Base on the rigorous vector diffraction theory, the diffractive mechanism of subwavelength structure has been discussed. Furthermore, the effect of fabrication-related errors on the diffractive microlens array and the optical losses in the system are also studied.
    (3) There are often the microlenses with low sag and long focal length in the applications. With regard to this kind of microlenses, a design method, the surface directly quantized, has been introduced. By this method, the microlens in the CCD applications has been designed effectively. It avoids finite phase steps, which appears when the microlens is designed by conventional design method. So the diffractive microlens array can keep high diffractive efficiency.
    (4) Based on MEMS(Micro-Electro-Mechanical-System)technology, the fabrication processes, including photolithography and pattern transfer are discussed. Especially the reactive ion etching (RIE)technology with three ingredients SF6/O2/CHF3 has been investigated deeply and the perfect patterns on the silicon substrate are achieved. At the same time, the polymer microlens array is studied and fabricated. High quality microlenses
    are completed. (5) The measurement system and testing method of microlens array are introduced. With this system, the microlens parameter such as point-spread function (PSF), diffractive efficiency, focal length and so on, can be evaluated effectively. The errors and influencing factors have been analyzed. (6) In the integration system of microlens and CCD, the microlens is used as field lens. The optical analysis of microlens convergent efficiency is carried out so as to optimize the optical coupling. (7) The integration between diffractive microlens array and 256×256 element PtSi IRCCD has been highlighted. With the microlens integrated, the fill factor (FF) of IRCCD increases evidently. And the IRCCD image sensors operating at 77K indicate an approximate 2-fold increase in relative optical responsivity in the spectral range of from 3μm to 5μm. At the same time, the integration technology between microlens array and visible is investigated. The monolithic and hybrid integration method is introduced, respectively. In sum, the innovations included in the dissertation are as follow: (1) As regard the design theory of microlens, the design method of continuous surface quantized by 2N equal phase for the microlens with low sag and high F-number has been put forward. It not only keeps the diffractive efficiency of microlens with low sag high, but also allows the microlenses with low sag to be made by binary optics fabrication technology. (2) The microlens array is made from the polymer with high transmissivity in the visible band, such as polyimide, BCB, SU-8 photoresist and is applied in the integration between microlens and visible CCD image sensors. (3) In order to evaluate the optical quality of microlens effectively, a testing system is set up and the wave band of microlens can cover 190~1100nm。(4) The hybrid integration between quartz microlens and visible 516×516 element CCD image sensor has been explored.
引文
[1] K.Nisbizawa, et a1. Micro-0ptics Research Activities in Japan. SPIE 1992:1751~1754
    [2] 伊贺健一. 微小光学. 应用物理,1986,55(7):661~668
    [3] 田中傻一. 激光学技术的现状和将来.光学,1987,16(2):42~47
    [4] A.Fletcher, et a1. Proc.P. Soc., 1954,223:216~219
    [5] E.W. Marchand. Appl.Opt. 1982,21:892~897
    [6] L. Kitano,et al. A light focusing fiber guide prepared by ion-exchange technique. Jpn Soc. Appl Phy. 1970,39:63~67
    [7] D.T.Moore. Gradient-index optics: a review. Applied Optics, 1 April 1980, 19(7):1035~1038
    [8] N.F.Borrelli,Morse, D.L,Bellman H. Photolytic technique for producing microlens in photosensitive glass. Appl. Opt. 1985,24(16):2520~2525
    [9] Abitbol, M., Eisenberg, N. New process for manufacturing arrays of microlenses on various substrates. Proceedings of SPIE-The International Society for Optical Engineering,1990, 1334:110~121
    [10] Popovic Z D,Sprague R A.Connell G A N. Technique for monolithic fabrication of microlens array. Appl Opt,1988,27(7):1281~1284
    [11] K.Merserean,et al. Fabrication and measurement of fused silica microlens arrays. SPIE 1992,1751:229~233
    [12] Oikawa, M., Imanishi, H.; Kishimoto, T. High NA planar microlens for LD array. Proceedings of the SPIE -The International Society for Optical Engineering, 1993, 1751:246~254
    [13] M.Olkawa,K.Iga. Distributed index planar microlens. Appl.Opt,Mar 15 1982,21(6):1052~1053
    [14] J.Jahns,S.J.Walker. Two-dimensional array of diffractive microlenses fabricated by thin film deposition. Appl.Opt.,1994,29 (7) :931~937
    [15] Nogues, Jean-Luc R., Howell, R.L. Fabrication of pure silica micro-optics by sol-gel process Proceedings of SPIE-The International Society for Optical Engineering, 1993, 1751:214~224
    [16] T.Cbia,L.L.Hench. Micro-optical arrays by laser densification of Gel-silica matrices. SPIE 1992,1758:215~226
    [17] 刘德森,第五届全国纤维光学与集成光学学术研讨会,第四届光计算技术讨论会论文集,厦门,1992:16
    [18] 朱传贵,第五届全国纤维光学与集成光学学术研讨会,第四届光计算技术讨论会论文集,厦门,1992:391
    [19] 刘德森. 微小光学的研究现状. 物理, 1994, 6:321~328
    [20] Feldman, Micheal R. Diffractive optics move into the commercial arena. Laser Focus World, Oct 1994, 30(10):143~151
    [21] Lee W. Computer generated holography. Progress in Optics. Wolf E.Ed. Amsterdam: North-Holland,1978,16:172~175
    [22] Temmen M G,Kathman A D,Clark R L. Holographic optics:optically and computer generated. SPIE,1989,1052:108~112
    [23] M.Oilccwa, et al. Appl Opt.,1983,22-3:411
    [24] K.Iga, et al. Fundamentals of microoptics. Academic Press, Orlando, 1984:195
    [25] 傅丹鹰,殷纯永. 微光学机电系统的发展和应用. 光学精密工程,1998,6(4): 7~14
    [26] 陈非凡,殷玲等. 微光机电系统(MOEMS)的研究现状及展望. 微细加工技术,2002, (3):1~7
    [27] 马军山,陈高庭,王向朝等.用于光通信的微电子机械系统技术进展.激光与光电子学进展,1999,(10):11~18
    [28] 王立鼎,刘冲.微机电系统科学与技术发展趋势.大连理工大学学报,2000,40(5):505~508
    [29] 周光亚,赵小林,张明生等.自由空间微光学元件的研制.微细加工技术,1999,(3):58~64
    [30] 陈非凡,尤政.微型可编程相位光栅技术的研究.微米/纳米科学与技术,2000,5(1):62~64
    [31] 陈非凡,李云龙,殷玲.微型可编程相位光栅的理论特性研究.仪器仪表学报,2002,23(1):67~70
    [32] 陈非凡,苑京立,陈益峰. 一种基于微光机电系统的阵列式激光收发集成传感器.中国专利:CN 1338830A,2002-03-06
    [33] 周兆英,王晓浩,叶雄英等.微型机电系统. 中国机械工程, 2000,11(1):163~168
    [34] 李育林.光学学科的一个前沿课题一二元光学. 光子学报,1992,21(5):105~110
    [35] Michael W.Farn. Micro-concentrators for focal plane arrays. Proc.SPIE,1992, 1751∶106~117
    [36] Takanori Okoshi. Three-dimensional displays. Proc. IEEE,1980,68(5)∶21~28
    [37] M.Edward Motamedi,William E.Tennant,HalukO.Sankur,et al. Micro-optic integration with focal plane arrays. Optical Engineering,1997,36(5):1374~1381
    [38] Ph Nussbaum,R V?lkel,H P Herzig,M Eisner,S Haselbeck. Design,fabrication and testing of microlens arrays for sensors and Microsystems. Pure Appl.Opt. 1997, (6):617~636
    [39] Ming-Hsien Wu and George M Whitesides. Fabrication of two-dimensional arrays of microlenses and their applications in photolithography. Journal Of Micromechanics and Microengineering. 2002, (12):747~758.
    [40] Hojo Junichi, Naito Yasuhiko, Mori Hiroshi. A 1/3–in 510×492 CCD Image Sensor with Mirror Image Function. IEEE Transactions on electron devices,May 1991,38(5):954~959
    [41] C L Jones,B E Malthews,D R Purdy and N E Metcalfe. Fabrication and assessment of optically immersed CdHgTe detector arrays. Semicond. Sci. Technol,1991, (6) :110~113
    [42] 张新宇,易新建,何苗,赵兴荣. 用于强功率半导体激光器的石英柱微透镜阵列. 华中科技大学学报,Nov. 1998,26(A02):7~9
    [43] Ki-Hun Jeong and Luke P.Lee. A new method of increasing numerical aperture of microlens for Biophotonic MEMS. 2nd annual international IEEE-EMBS special topic Conference on microtechnologies in medicine & Biology,2002,May 2-4:380~383
    [44] I I Khandaker,D Macintyre and S Thoms. Fabrication of microlens arrays by direct electron beam exposure of photoresist. Pure Appl. Opt. , 1997, (6):637~641.
    [45] M Rabaroty,L Fulbert,E Molva,P Thony,V Marty and S Dastouet. Fibre coupling of microchip lasers with silica microlenses. Pure Appl. Opt. , 1997, (6):699~705.
    [46] N.S. Ong,Y.H. Koh,Y.Q. Fu. Microlens array produced using hot embossing process. Microelectronic Engineering,2002, (60):365~379
    [47] Oikawa M , Iga K 。Array of distributed index planar microlens and its application.Appl Opt,1982,21(9):1052~1056
    [48] Borreli N F,Morse D L,Bellman R H,Morgan W L.Photolytic technique for Producing Microlenses in Photosensitive glass.Appl Opt,1988,24(16):2520~2525;
    [49] Hossack W J,McOwan P,Burge R E.Computer generated optical fan out element.Opt Commun,1988, 68(2):97~102
    [50] Nishihara H.Suhara.Micro Fresnel lenses. Progress in Optics, 1987, 24(l)
    [51] Lin Che-Ping,Yang Hsiharng,Chao Ching-Kong. Hexagonal microlens array modeling and fabrication using a thermal reflow process. Journal of Micromechanics and Microengineering,September 2003,13(5):775~781
    [52] Gottert,Fischer M,Muller A. High-aperture surface relief microlenses fabricated by X-ray lithography and melting. Proc EOS Topical Meeting,Microlens Array. 1995,(5):21~25
    [53] Rossi M,Blough C G,Raguin D H,Popov E K and Maystre D. Diffraction efficiency of high-NA continuous-relief diffractive lenses Diffractive Optics and Micro-Optics (OSA Technical Digest Series). 1996, 5:233~240
    [54] Masayuki Furumiya,Keisuke Hatano,Ichiro Murakami,et al. A 1/3-in 1.3 M-Pixel Single-Layer Electrode CCD With a High-Frame-Rate Skip Mode. IEEE Transitions on Electron devices,September 2001,48(9):1915~1921
    [55] D.L.Kendall,G.R.deGuet,S.Guel-Sadoveletal. Chemically etched micro-mirror Sin silicon. Appl.Phys.Lett.,1988,52 (10) ∶836~837
    [56] M.B.Stern,T.R.Jay. Dry etching for coherent refractive microlens arrays. Opt. Engng., 1994,33(11):3547~3551
    [57] H.Jerominek,Jin Pan. Laser-assisted deposition and etching of silicon for fabrication of refractive and diffractive optical elements. Proc. SPIE,1993,2045∶194~204
    [58] N.F. Borelli,Microoptics Technology Fabrication and Applications of Lens Arrays and Devices,Marcel Dekker Inc,NY,1999.
    [59] ZoranD.Popovic,RobertA.Sprague,G.A.NevileConnell. Technique for monolithic fabrication of microlens arrays. Appl.Opt.,1988,27 (7): 1281~1284
    [60] T.R.Jay,M.B.Stern,R.E.Knowlden. Effect of refractive microlens array fabrication parameters on optical quality. Proc.SPIE,1992,1751∶236~245
    [61] Michio Negishi,Hiroyuki Yamada,Koichi Harada,Machio Yamagishi. A low smear structure for 2M-pixel CCD image sensors. IEEE Transactions on Consumer electronics.,August 1991, 37(3):494~500
    [62] 庄思聪,朱瑞兴. 一种制作微透镜阵列的方法. 上海师范大学学报(自然科学版),Jun 1997, 26(2):33~37
    [63] F Gex,D Horville,G Leli`evre and D Mercier. Improvement of a manufacturing technique for long focal length microlens arrays. Pure Appl. Opt. 1996, (5):863~872.
    [64] McCormick M., Davies N., Cartwright P. Large area full fill factor microlens arrays. IEE Colloquium (Digest), 1996, (039):10/1~10/3
    [65] I.N.Ozerow, V.M.Petrov, V.A.Shishkinaetal. Shaping the contours of dies for manufacturing lens arrays having spherical elements. Sov. J. Opt.Technol.,1981,48 (1) ∶49~50
    [66] M.Oikawa,K.Iga,T. Sanadaetal. Array of distributed-index planar micro-lenses prepared from ion exchange technique. Jpn.J.Appl.Phys,1981,20(7)∶296~298
    [67] Th Hessleryx, M Rossiy, J Pederseny,et al. Microlens arrays with spatial variation of the optical functions. Pure Appl. Opt. ,1997, (6):673~681.
    [68] N Davies,M McCormick. Three Dimensional Optical Transmission and Micro Optical Elements. SPIE '93 Int. Symposium on Optics,Imaging & Instrumentation, 11-16 July 1993,San Diego,USA. 1992:247~252.
    [69] G.M.Peake,S.Z.Sun and S.D.Hersee. GaAs microlens arrays grown by shadow masked MOVPE. Journal of electronic materials,1997,26(10):1134~1138
    [70] 许乔.微透镜阵列反应离子束蚀刻传递研究. 光学学报,1998,18(11):1523~1527
    [71] C. Croutxe -Barghorn,O. Soppera,D.J. Lougnot. Fabrication of microlenses by direct photo-induced crosslinking polymerization. Applied Surface Science,2000 (168) :89~91
    [72] Z D Popovic,R A Spague,G A Neville Connell. Techniques for Monolithic Fabrication of Microlens Arrays. Applied Optics, 1988,27:1281~1284
    [73] N T Gordon,C L Jones,D L Purdy. Applications of Microlenses to infrared Detector Arrays. Infrared Physics, 1991,31:559~604.
    [74] AviY.Feldblum,CasimirR.Nijander,Wesley P. Townsendetal. Performance and measurement of refractive microlens arrays. Proc.SPIE,1991,1544∶200~208
    [75] 许乔,叶钧,周光亚等. 折射型微透镜列阵的光刻热熔法研究. 光学学报,1996,16(9):1327~1331
    [76] Yang G.Z,Dong B.Z,Gu B.Y,et al. Gerchberg-Saxton and Yang-Gu algorithms retrieval in a nonunitary transoform system. Appl.Opt.1994,33:209~218
    [77] Xin Tan,Ben-Yuan Gu,Guo-Zhen Yang,et al. Diffracitve phase elements for beam shaping:a new design method,Appl.Opt. 1995,34(8):1314~1320
    [78] Motanedi M. Edward. Micro-opto-electro-mechanical systems. Opt. Eng.,1994,33 (1) :3505~3517
    [79] Temmen M G,Kathman A D,Clark R L. Holographic optics:optically and computer generated. SPIE,1989,1052:108~112
    [80] Streibl N,Nolscher U,Jahns J,et al. Array generation with lenslet arrays. Appl.Opt. ,1991,30: 2739~2742
    [81] Cordingley J. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers. Appl. Opt.,1993,32 (14):2538~2542
    [82] Daly D, Stevens R.F, Hutley M.C, et al. The manufacture of microlenses by melting photoresist. Meas. Sci. Technol., 1990,1:759~766
    [83] Daschner W,Larsson M.S,Lee H. Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step. Appl. Opt., 1995,34 (14):2534~2538
    [84] Ernst–Bernhard Kley. Continuous profile writing by electron and optical lithography. Microeletronic Engineering,1997,34:261~298
    [85] Fu Yongqi and Bryan Kok Ann Ngoi. Investigation of direct milling of micro-optical elements with continuous relief on a substrate by focused ion beam technology. Optical Engineering,2000,39(11):3008~3013
    [86] Fu.Y. Investigation of microlens mold fabricated by focused ion beam technology. Microelectronic Engineering,2001,56:333~338
    [87] D?schner W,Long P,Larsson M. et.al. Fabrication of diffractive Optical elements using a single optical exposure with a gray level mask. J. Val. Sci. Technol. B,1995,13:2729~2731
    [88] D?schner Walter,Long Pin,Stein Robert,et al. Cost-effective mass fabrication of multilevel diffractive optical elements by was of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass. Applied Optics,1997,36 (20):4675~4680
    [89] Jiang Hongjin,Yuan Xiaocong,Yun ZhiSheng,et al. Fabrication of microlens in photosensitive hybrid sol-gel films using a gray scale mask. Materials Science and Engineering C,2001,16:99~102
    [90] M. R. Wang and H. Su. Multilevel diffractive micrelens fabrication by one-step laser-assisted chemical etching upon high-energy-beam-sensitive glass. Opt. Lett,1998,23 (13):876~878
    [91] 许乔,叶钧,周光亚,侯西云等. 折射型微透镜列阵的光刻热熔法研究.光学学报,September 1996,16(9):1326~1331
    [92] 陈祥献.光刻热熔微透镜阵列的电铸成形复制技术研究. 仪器仪表学报,Feb. 1998,19(1):56~60
    [93] 赫尔齐克H.P,周海宪等译. 微光学元件、系统和应用. 国防工业出版社,2002
    [94] 汤一新,王辉,蔡铁权,金国藩. 二元光学元件复制技术的研究. 1995,16(1):361~365
    [95] Dannberg P,Mann Gunnar,Br?uer A. Polymer UV-moulding for micro-optical systems and O/E-integration. Proceedings of SPIE -The International Society for Optical Engineering, 2000, 4179:137~145
    [96] Madanagopal V. Kunnavakkama. Low-cost , microlens arrays fabricated by soft-lithography replication process. Applied Physics Letter,2003,82(8):1152~1154
    [97] Seok-min Kim and Shinill Kang. Replication qualities and optical properties of UV-moulded microlens arrays. J. Phys. D: Appl. Phys. 2003,36:2451~2456
    [98] Sung-Keun Lee1,Kwang-Cheol Lee and Seung S Lee.A simple method for microlens fabrication by the modified LIGA process. J. Micromech. Microeng. , 2002, (12):334~340
    [99] J. Schulze,W.Ehrfeld,H.Muller,A.Picard. Compact self-aligning assemblies with refractive microlens arrays made by contactless embossing. in Proc. of SPIE , 1998, 3289:22~32.
    [100] Sheffer D. Random addressable 2048×2048 active pixel image sensor. IEEE Trans.Electron Devices.,1997,44(10):1716~1720
    [101] Lrppino G A. Design of an 8192×8192 pixel CCD mosaic. SPIE 1994,2198:810~820
    [102] 程开富. CCD 图像传感器的市场与发展. 国外电子元器件,2000,(7):2~7
    [103] Y Ishihara,T Tanigaki. A High Photosensitivity IL. CCD Image Sensor with Monolithic Resin Lens Array. Proc. International Electron Devices Meeting,Washington D.C. 1983:497~500.
    [104] Masayuki Furumiya,Shinobu Suwazono,Michihiro Morimoto,et al. A 30 Frames/s 2/3-in 1.3 M-Pixel Progressive Scan IT-CCD Image Sensor. IEEE TRANSACTIONS ON ELECTRON DEVICES,September 2001,48(9):1922~1928
    [105] Rossi M,Kunz R E,and Herzig H-P. Refractive and diffractive properties of planar micro-optical elements. Appl. Opt., 1995, 34:5996~6007
    [106] Hessler Th and Kunz R E. Relaxed fabrication tolerances for low Fresnel number lenses. J. Opt. Soc.Am.A, 1997,14(1):599~606
    [107] Tiziani H J,Achi R,Kr¨amer R N,et at. Microlens arrays for confocal microscopy. Opt. Laser Technol. , 1997 (29):85~91
    [108] Tiziani H J and Uhde H M. Three-dimensional analysis by a microlens-array confocal arrangement Appl. Opt. 1994, 33:567~572
    [109] 郎碧琪. 用熔化光致抗蚀材料方法制造微透镜阵列. 光机电世界,1993,10(10):10~11,18
    [110] Keijirou Itakura,Toshihide Nobusada,Noboru Kokusenya,et al. A 1-mm 50 k-Pixel IT CCD Image Sensor for Miniature Camera System. IEEE TRANSACTIONS ON ELECTRON DEVICES,2000,47(1):65~69
    [111] http://homepage.mac.com/yuen/blogwavestudio/LH20040804000537/LHA20050213235155/
    [112] Akira Tsukamoto,Wataru Kamisaka,Hiroyuki Senda,Naoto Niisoe. High sensitivity pixel technology for a 1/4-inch PAL 430K pixel IT-CCD. Proceedings of the IEEE-Custom Integrated Circuits Conference,5-8 May 1996:39~42
    [113] http://www.mecastronic.com/Liens/Chungara_English/
    [114] Putnam Gloria, Ciccarelli A, Davis B , et al. Front-illuminated full-frame charge-coupled device image sensor achieves 85% peak quantum efficiency. Proceedings of SPIE-The International Society for Optical Engineering,2002,4669:153~160
    [115] Furukawa J., Hiroto I, Takamura Y, et al. A 1/3-inch 380K pixel (effective) IT-CCD image sensor. IEEE Transaction on Consumer Electronics,1992,38(3):595~600
    [116] Keijirou Itakura,et al. A 1-mm 50 k-Pixel IT CCD Image Sensor for Miniature Camera System. IEEE Transaction Electron Devices,2000,47(1):65~69
    [117] Masayuki Furumiya. A 1/3-in 1.3M-pixel Single-layer Electrode CCD With a High-Frame-Rate Skip Mode. IEEE Transaction Electron Devices,2001,48(9):1915~1921
    [118] 高应俊,刘德森,阎国安等. 高质量光刻胶微小透镜阵列的制作.光子学报.Oct.1996,25(10):909~913
    [119] Harry C.Van Kuijk. Sensitivity improvemenet in progressive scan FT-CCDs for digital still camera applications. IEDM. 2000:689~692
    [120] http://www.coeri.com/
    [121] 杜春雷,林祥棣,周礼书等. 微透镜列阵提高红外探测器探测能力的方法研究. 光学学报,2001 年2 月,21(2):246~249
    [122] Li Yi,Hu Taoyuan,Yi Xinjian,Cai Liping,He Miao,Chen Sixiang. 256×290 diffractive microlens array monolithic integration with PtSi focal plane array. Proceedings of SPIE -The International Society for Optical Engineering,2000, 41(30):45~51
    [123] Chen Sihai,Yi Xinjian,Wang Hongchen,Liu Luqin,Wang Yingrui. Monolithic integration of diffractive microlens arrays and infrared focal plane arrays. International Journal of Infrared and Millimeter Waves,2002, 23(5):705~710
    [124] 谈新权,许胜辉,梅晓英. CCD 图像传感器的高分辨率技术. 电子与自动化,1999,(2):52~54
    [125] L.W. Pan,L.W. Lin,N. Jun. Cylindrical plastic lens array fabricated by micro intrusion process. Twelfth IEEE International Conference on MEMS, 1999:217~221.
    [126] 陈祥献,杨国光,陈洪谬等. 微透镜阵列的加工技术研究. 浙江大学学报,May 1998,32(3):286~291
    [127] Gal,et al. US patent,No. 5463498. Internally cooled large aperture microlens array with monolithically integrated microscanner. October 31,1995
    [128] Shim, US patent, No. 6093582, Method of forming a charge coupled device with stripe layers corresponding to CCD regions,July 25,2000
    [129] Maegawa,et al. US patent,No. 5371397. Solid-state imaging array including focusing elements. December 6,1994
    [130] T.R.Jay,M.B.Stern. Reshaping photoresist for refractive microlens fabrication. Proc. SPIE, 1993, 1992:275~282
    [131] 青木,裕光. 微透镜CCD 固体摄像元件的高灵敏化. 光机情报, 1992,9(2):6~10
    [132] T. O. K?rner and Ronald Gull. Combined Optical/Electric Simulation of CCD Cell Structures by Means of the Finite-Difference Time-Domain Method. IEEE TRANSACTIONS ON ELECTRON DEVICES,MAY 2000,47(5):163~168
    [133] F Gex,D Horville,G Leli`evre and D Mercier. Improvement of a manufacturing technique for long focal length microlens arrays. Pure Appl. Opt., 1996,(5):863~872.
    [134] 张以谟,应用光学,1987.
    [135] 金国藩,严瑛白,邬敏贤等. 二元光学,北京:国防工业出版社,1998
    [136] Goodman J W. Introduction to Fourier optics. New York:McGraw-Hill book,1968
    [137] Jahns J,Walker S J. Two-dimensional array of diffractive microlenses fabricated by thin film deposition. Appl.Opt.,1990,29 (7):931~936
    [138] W H Lee,Computer-generated holograms: Technique and applications,in Progress in Optics 16,E.Wolf(ed.),Amsterdam:North-Holland,1978:119~232
    [139] 张国平. 博士学位论文,二元光学的衍射理论与应用研究,华中科技大学图书馆,1995.10
    [140] Gale M. T.,Rossi M.P,Pedersen J. et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist. Opt.Eng. 1994, 33:3556~3566
    [141] Zaleta D.,Daschner W.,Larsson M.,et al. Diffractive optics fabricated by electron-beam direct write methods. In Lee S H.(ed) Diffractive and Miniaturized Optics.1993, Vol(CR49). Bellingham:OSA:117~137
    [142] Swanson G J. and Veldkamp W B. Diffractive optical elements for use in infrared systems. Opt.Eng.,1989,28:605~608
    [143] N C Gallagher and S S Naqvi. Diffractive optics: scalar and non-scalar design analysis. SPIE 1989, 1052:32~40
    [144] E Noponen,A Vasara,J Turunen,J.M.Miller,et al. Synthetic diffractive optics in the resonance domain. J.Opt.Soc.Am.A.,1992,9(7):1206~1213
    [145] R.Petit,Electromagnetic Theory of grating,Berlin:Springer-Verlag,1980
    [146] E.Wolf,Progress in Optics 21. Amsterdam:North-Holland Physics Publishing,1984:3~67
    [147] D Qu,R E Burge and X.Yuan. Diffractive properties of surface-relief microstructure,SPIE 1991,1506:152~159
    [148] D.E.Tremain and K.K.Mei. Application of the unimoment method to scattering from periodic surfaces. J.Opt.Soc.Am.,1978,68 (6):775~783
    [149] K.C.Chang,V.Shah,T.Tamir. Scattering and guiding of waves by dielectric gratings with arbitrary profiles. J.Opt.Soc.Am.,1980,70(7):804~813
    [150] S.T.Peng,T Tamir,H L Bertoni. Theory of periodic dielectric waveguides. IEEE Trans.Microwave Theory Tech.,1975,23 (1):123~133
    [151] M G Moharam and T. K. Gaylord. Rigorous coupled-wave analysis of planar grating diffraction. J.Opt.Soc.Am.,1981,71 (7) :811~818
    [152] M G Moharam, T.K.Gaylord. Diffraction analysis of dielectric surface relief gratings. J.Opt.Soc.Am.,1982,70 (10):1385~1392
    [153] G J Swanson, W B Veldkamp. Diffracitve optical elements for use in infrared systems. Opt.Eng.,1989,28 (6):605~608
    [154] 夏海良,张安康等编.半导体器件制造工艺.上海科学技术出版社.1985
    [155] H. Tong,Microelectronics packaging: present and future, Materials Chemistry and Physics, 1995, 40 (3):147~161
    [156] David Craven. Imaging and Resist Technologies for the Micromachining Industry. SPIE Micromachining & Microfabrication Symposium ’96.
    [157] Gregory A. Luurtsema. Spin coating for rectangular substrates. Maser thesis from University of California,Berkeley,1997
    [158] Han Sangjun,Derksen James,Chun Jung-Hoon. Extrusion Spin Coating: An Efficient and Deterministic Photoresist Coating Method in Microlithography. IEEE Transactions on Semiconductor Manufacturing,February 2004,17(1):12~21
    [159] Warren W. Flack,Davids S. Soongm,et.al. A mathematical model for spin coating of polymer resists. J.Appl.Phys. 1984,56(4) :1199~1206
    [160] Carcano. G,Ceriani. M,Soglio. F. Spin Coating with High Viscosity Photoresist on Square Substrates. Hybrid Circuits. 1993,32:12
    [161] Stephen A. Campbell.曾莹等译. 微电子制造科原理与工程技术. 电子工业出版社,第二版, 2003
    [162] Rangelow Ivo W. Dry etching-based silicon micro-machining for MEMS. Vacuum. 2001,62: 279~291
    [163] Margaret B.Stern. Pattern transfer for diffractive and refractive microoptics. Microelectronic Engineering. 1997,34:299~319
    [164] 李红军. 离子束刻蚀过程中台阶侧壁倾斜现象研究. 微细加工技术,2000,2:28~33
    [165] [胡新宁. 离子束刻蚀入射角对图形侧壁陡度影响的研究.微细加工技术,2003,12(4):14~17
    [166] 杜春雷, 杨力编. 微光学制作技术.先进光学制造技术,科学出版社,2001:139~174
    [167] Douglas C.Montgomery. 现代外国统计学优秀著作译丛:实验设计与分析.中国统 计出版社,1998
    [168] Rob Legtenberg,Henri Jansen,Meint de Boer and Miko Elwenspoek. Anisotropic reactive etching of silicon using SF6/O2/CHF3 gas mixtures. J.Electrochem. Soc. 1995,142(6) :2020~2028
    [169] Kazuhiko Fujikawa,Goichi Hirakawa,Teruhiro Shiono,et al. Optical properties of a Si binary optic microlens for ingrared ray. IEEE. 0-7803-3744-1. 1997:360~365.
    [170] Walsby E. D, Wang S,Xu J,et.al. Multilevel silicon diffractive optics for terahertz waves. J. Vac. Sci. Technol. B 2002,20:2780~2783
    [171] Lohmann A. W and Paris D. P. Binary Fraunhofer holograms generated by computer. Appl. Opt. 1967,6:1739~1748
    [172] Jansen.Henri,Han Gardeniers,Meint de Boer,et.al. A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng,1996,6:14~28
    [173] Campo A,Cardinaud.Ch and Turban G. Comparison of etching processes of silicon and germanium in SF6–O2 radio-frequency plasma. J. Vac. Sci. Technol. B 1995,13(2) :235~241
    [174] Wu W and McLarty P. K. Reactive ion etching induced damage with gas mixtures CHF3/O2 and SF6/O2. J. Vac. Sci. Technol. A 1995,13(1) :67~72
    [175] Paul A.K,Dimri A.K and Mohan S. Fabrication of micromechanical structures in silicon using SF6/02 gas mixtures. SPIE, 1999,Vol.3903:2~8
    [176] Boufnichel M,Aachboun S,Grangeon F,et al. Profile control of high aspect ratio trenches of silicon. I. Effect of process parameters on local bowing. J. Vac. Sci. Technol. B, 2002,20(4) :1508~1513
    [177] Ronaldo D Mansano, Patrik Verdonck and Homero S Maciel. Mechanisms of surface roughness induced in silicon by fluorine containing plasmas. Vacuum. ,1997,48(7) :677~679
    [178] Riccardo d’Agostino. Plasma etching of Si and SiO2 in SF6-O2 mixtures. J. Appl. Phys. 1981,52(1) :162~167
    [179] Lee W.H. Computer generated holograms: techniques and applications. in Progress in Optics Vol. XVI. edited by E. Wolf,North-Holland. Amsterdam,1978:121~232
    [180] Jansen. H,de Boer. M,Elwenspoek M. The black silicon method VI. High aspect ratio trench etching for MEMS applications. Micro Electro Mechanical Systems. MEMS '96. IEEE. The Ninth Annual International Workshop on. 11-15 Feb. 1996:250~257
    [181] Agarwal Navnit,Ponoth ahom,Plawsky Joel,et al. Optimized oxygen plasma etching of polyimide films for low loss optical waveguides. J. Vac. Sc. Technol.A,2002,20 (5):1587~1591
    [182] 杨国光,亦沈兵,候西云. 微光学技术及其发展. 红外与激光工程,2001,30(4) :157~162
    [183] Toshiyoshi Hiroshi Su , Guo-Dung John , LaCosse Jason , et al. A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process. Journal of Lightwave Technology,July 2003,21(7):1700~1708
    [184] 张新宇,易新建,赵兴荣等. 微透镜制作中光刻胶与衬底匹配行为的研究.光子学报.1998,27(1) :60~64
    [185] Doskolovich L. L,Perlo P,et al. Calculation of quantized DOEs on the basis of a continuous series approach. SPIE 1998, 3348:37~47
    [186] 张新宇,易新建,何苗等. 氩离子束刻蚀制作大面阵微透镜阵列.华中理工大学学报,1998, 26(II) :10~12
    [187] Zhang Xinyu,Tang Qingle,Yi Xinjian. Cylindrical microlens array fabricated by argon ion-beam etching. Opt.Eng. 2000,39(11) :3001~3007
    [188] Marco Severi, Patrick Mottier. Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberration. Opt. Eng. 1999,38(1): 146~150
    [189] Rabarot M, Fulbert L, Molva E,et al. Fibre coupling of microchip lasers with silica microlenses. Pure Appl. Opt. 1997,6: 699~705
    [190] Fujita 13T,Nishihara H., Koyama J. Fabrication of micro-lenses using electron beam lithography. Opt. Lett. 1981,6: 613~615
    [191] 张新宇. 微制作技术研究. 华中科技大学博士论文,华中科技大学图书馆,2000.
    [192] Michael D. Baker,Christopher D.Himmel and Gary S.May. In-Situ prediction of reactive ion etch endpoint using neural networks. IEEE transactions on components,packaging and manufacturing technology. September 1995,18(3):478~483
    [193] Han Myung-Geun,Yoon-Jung Park,Seoung-Hoe Kim,et al.. Thermal and chemical stability of reflowed-photoresist microlenses. J. Micromech. Microeng. 2004,14(2): 398~402
    [194] Navnit Agarwal,et al. Optimized oxygen plasma etching of polyimide films for low loss optical waveguides. J. Vac. Sci. Technol. A. 2002,20(5): 1587~1591
    [195] Percy B. Chinoy. Reactive Ion Etching of Benzocyclobutene Polymer Films. IEEE Transactions on components. Packaging and manufacturing technology-part C. 1997,20(3): 199~206
    [196] Lin Pang,Wataru Nakagawa,Yeshaiahu Fainman. Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching. Opt. Eng. 2003,42(10): 2912~2917
    [197] Hong Guodong, Andrew S Holmes, Mark E Heaton. SU8 resist plasma etching and its optimization. DTIP 2003,Mandelieu –La Napoule,France,May 2003: 268~271
    [198] 李雄. UV-LIGA 的光刻工艺研究.华中科技大学硕士论文,华中科技大学图书馆,2003.4
    [199] 赖建军,微透镜的设计、制作及应用研究. 博士后出站报告,华中科技大学图书馆,2004.6
    [200] 友清.石英微透镜阵列的制造和测量. 国外激光,1994,(9):26~28
    [201] Malyak P H, Kent D L, Kolodner P, Crawford J. Interferometric measurement of back focal length and insertion loss of precision microlens arrays Proceedings of the SPIE -The International Society for Optical Engineering,2001,4437: 161~171
    [202] Roblin G. Interferometrical method of testing the microlens arrays. Journal of Optics,Nov.-Dec. 1995,26(6): 271~285
    [203] 邓启凌,杜春雷,杨泽平. 衍射微透镜列阵质量评价方法研究. 光电工程,1998年12 月, 25:34~37
    [204] Geun Young Yoon,Jitsuno,T., Nakatsuka,et al. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Applied Optics,Jan. 1996,35(1):188~192
    [205] Cywiak M., Servin M, Mendoza Santoyo F. Vibrating knife-edge technique for measuring the focal length of a microlens. Applied Optics, Oct. 2001,40(28): 4947~ 4952
    [206] He.Junfa,Xu,Jun. Focal length measurement of collimating lens using moire technique. Guangxue Jishu/Optical Technique,Nov 20 1993, (6):25~29
    [207] Smirnov A P. Measurement of lens focal length using the Talbot effect: a comparative analytical review. Optika i Spektroskopiya,Jan. 1993, 74(1):202~209
    [208] 苏显渝,李继掏. 信息光学. 北京:科学出版社,1999.
    [209] Barakat R. The calculation of integrals encountered in optical diffraction theory,in the computer in optical research. New York:Springer Verlag,1980:35~80.
    [210] Collins S.A. Lens system diffraction integral written in terms of Matrix optics. J.Opt.Soc.Am. 1970,60: 1168~1177
    [211] 王植恒,陈英. 菲涅耳微透镜列阵衍射效率的测试与分析. 光学学报,1998,18(1):41~48
    [212] Jurgen Jahns,Susan J. Walker. Two-dimensional array of diffractive microlenses fabricated by thin film deposit ion. Appl.Opt.,1990,29 (7)∶931~936
    [213] 郭晴,王汝笠. 二元位相型菲涅耳透镜列阵器件的研制及其应用实验. 红外与毫米波学报,1995,14(1)∶18~26
    [214] Michael Holz,Margaret B. Stern,Shirey S. Medeirosm, et al. Testing binary optics: Accurate high-precision efficiency measurements of microlens arrays in the vision. Proc. SPIE,1991,1544∶75~89
    [215] L. Hale,E. Mo tamedi,W. Gunning. Optical testing and characterization of microlens arrays. Proc. SPIE,1992,1751∶47~51
    [216] H. Kogelnikk. Proceeding of the Symposium on Modern Optics,New York,Polytechnic Institute of Brooklyu,1967
    [217] 于美文,光学全息及信息处理,北京,国防工业出版社,1984
    [218] 罗风光,曹明翠,赵向军等.菲涅尔微透镜列阵衍射效率的测试.中国激光,1995,22 (5):343~346
    [219] Chen Sihai,Yi Xinjian,Li Yi,He Miao. Hybrid Integration between Long Focus Microlens Array and IR Detector Array. International J. Infrared and Millimeter Waves. 2001,22(3): 393~398
    [220] Li Yi,Yi Xinjian and Hao Jianhua. Design and fabrication of 256×256 diffractive microlens arrays on Si substrates. Proc. SPIE, 1999, 3557:143~148
    [221] Chen Sihai,He Miao,Yi Xinjian,Zhang Xinyu. Research on Fabrication of Microlenses Array with Long Focus for Improving Responsivity of PtSi IR Detector Array Device. Proc. SPIE,2000, 4130: 283~291
    [222] 程开富. CCD 图像传感器的市场与发展. 器件在线, www.56789.com.
    [223] 尤政,李涛. CMOS 图像传感器在空间技术中的应用. 光学技术,2002,28(1): 31~35
    [224] 叶嘉雄,常大定等. 光电系统与信号处理,科学出版社,1997
    [225] [225] 于前洋. 作为图像传感器的CCD,ICCD 和IRCCD. 光学精密工程.1994,2(5):8~16
    [226] Welford W T,W inston R. Geometrical vector flux and some new nonimaging concentrators. J Op t Soc Am,1979,69(4) : 532~536
    [227] RudaM C. How and when to use a nonimaging concentrator. Internat ional Conference on Nonimaging Concent rators,SPIE,1984,441: 51~58
    [228] H ildebrand R H,W inston R. Throughput of diffraction limited field optics system for infrared and millimetrictelescopes. Appl Opt,1982,21 (10): 1844~1846
    [229] Hopkins H. H. The numerical evaluat ion of the frequency response of optical systems. P roc Phys Soc (B), 1957, 70 (part10,454): 1002~1005
    [230] 熊平,周旭东,邓光华等. 512×512 PtSi 肖特基势垒IRCCD 图像传感器. 半导体光电,2003,24(3):154~156
    [231] 熊平. CCD 与CMOS 图像传感器特点比较.半导体光电.2004 年,25(1):1~4
    [232] 邓光华,何剑, 屈伟. PtSi 256×256 IRCCD 微型化封装技术研究. 半导体光电,2000, 21: 59~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700