用户名: 密码: 验证码:
基于SU-8负光胶的微流控芯片加工技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控学(Microfluidics)是在微米级结构中操控纳升至皮升体积流体的技术与科学,是近十年来迅速崛起的新交叉学科。流体在微流控芯片微米级通道中,由于尺度效应导致了许多不同于宏观体系的特点,促进了分析化学的发展。
     但是,当前微流控器件的加工技术还难以满足微流控学快速发展的需要,例如玻璃微流控芯片封接难度大,集成度低;用于复制聚合物芯片的阳模加工工艺复杂;高深宽比和三维微结构的制作方法尚稀见报道等。为促进了微流控学的进一步发展,本文研究了以SU-8负光胶制作和封接微流控器件的新技术。
     第一章综述了制作微流控芯片和SU-8负光胶加工技术的现状。
     第二章提出了一种用简便快速封合玻璃微流控芯片的新方法。利用毛细作用将熔化的液体硫填充开放的玻璃微通道,冷却后的固体硫形成牺牲层材料。用紫外光固化的SU-8光刻胶作为粘接剂,同时利用通道内黄色的硫牺牲层阻挡紫外光对通道与盖片结合处SU-8粘接剂的曝光,封接后得到的微通道表面性质基本一致。此方法可以简单快速的实现玻璃芯片的低温封接,有效提高了大面积玻璃芯片的封接成功率;而且有利于在玻璃芯片内集成金属电极等热敏感材料。制得的玻璃芯片已成功用于氨基酸的电泳分离。
     第三章研究了一种制作高聚物微流控芯片镍阳模的新工艺。采用抛光的镍片作为电铸基底,在光刻后的SU-8微结构中,以镍基片作为阳极,通过16~30 A/dm~2的电流密度阳极电解刻蚀5 min,清除SU-8微通道底部镍片表面的氧化物,并刻蚀得到10~20μm深的凹坑。用此SU-8微结构作为电铸模板,以镍基片作为阴极,用1~2 A/dm~2电流密度电铸5 h,制得了微结构倾角为83°深宽比较大的镍阳模。凹坑的设计,有效提高了电沉积的镍结构和基底镍片间结合力,在普通化学实验室中制得了长寿命的具有正拔模斜度镍阳模。用热压法制得PMMA聚合物芯片,并成功用于DNA片段的分离。
     第四章提出了利用ITO玻璃的导电性和透光性,在ITO导电层上电沉积镍金属薄膜制作光刻掩模和电铸金属的种子层,加工高深宽比金属微结构的简易方法。在导电玻璃的ITO层上涂覆薄层AZ4620正光胶,用常规的接触式曝光法UV光刻显影后,将光刻掩模上的图形转移到AZ4620光胶层上。利用ITO玻璃的导电性,在光刻胶曝光处电沉积镍,使掩模图形转移到ITO玻璃表面的镍薄膜上。在镍掩模上涂覆SU-8厚胶层,使UV光透过ITO玻璃基底对SU-8光胶层进行背面曝光,制得高深宽比SU-8微结构。最后以SU-8微结构作为模板,以ITO表面的镍掩模作为种子层,通过电铸得到深宽比高达15、侧壁垂直度为89°的金属微结构。此方法使用设备简单,加工成本低,在普通实验室实现了高深宽比的金属微结构的简易加工。
     第五章提出了将相变化牺牲层材料硫,用于封接SU-8敞开通道,制作SU-8的微流控芯片;而且在封接的SU-8层上通过光刻制作微结构,用叠层法制备了多层三维SU-8微流控芯片。SU-8光刻胶中的有机溶剂与硫之间不存在相互反应及溶解问题,加热后只要在微通道末端施加负压就可以将通道内的液体硫抽出,与现有的牺牲层的方法相比较,大大缩短了牺牲层的去除时间。实验成功制得了各种形状和尺寸的SU-8微通道和叠层三维结构。制得的三维SU-8微流控芯片在芯片毛细管电泳分离、有机合成微反应以及实现芯片的多功能集成化等方面可望有广泛的应用前景。
Microfluidics is the science and technology of systems that process or manipulate small(10~(-9)to 10~(-18)litres)amounts of fluids,using channels with dimensions of tens to hundreds of micrometres.Compared to macroscale laboratory techniques,microfluidic chip has a number of advantages over conventional chemical processes,which is expected to promote the development of analytical instrumentation to minimization,integration and automation.
     However,the present microfabrication technology can not follow the rapid development of microfluidics.For example,it is difficult to seal electrodes within glass microchip and tedious to fabricate molds used for replication of plastic chips. The fabrication of high-respect-ratio and 3-dimensional micro structure without using special instrtmaents is still on development.In this dissertation,several new fabrication and sealing techniques using SU-8 negative photoresist are studied and reported as following:
     In chapter 1,the current status in the field of fabricating microfluidic chip and the fabrication process for SU-8 microstructure was reviewed.
     In chapter 2,a novel method for adhesive bonding of glass microfluidic chips at room temperature was developed.Channels in an etched glass substrate were filled with a heated sulfur liquid at 120℃that formed a solid sacrificial layer cooled to 95℃.Then,the etched substrate and cover substrate were bonded together utilizing a SU-8 adhesive layer.To avoid any chance ofphotoresist curing inside the channel,the UV light was exposed through sulfur sacrificial layer.Once the sealing step was complete,the sacrificial layer was melted and removed,leaving enclosed microfluidic channels.The chips have been used successfully for the separation of amino acids. Another advantage of this method is the possibility of integration of metal electrodes into a microfluidic glass device.
     In chapter 3,a simple and inexpensive method to fabricate nickel mold insert for replicating of plastic microfluidic chips was developed.A polished nickel plate was used as a substrate on which a thick SU-8 photoresist layer was coated.Conventional contact UV lithography was applied to pattern the thick SU-8 photoresist layer.After development,electroetching was conducted at a large current density of 16~30 A/dm~2 for 5 min to clean the nickel surface in the SU-8 recesses where unexposed SU-8 had been lifted up and to form 5~10μm deep root structures for increasing the strength of the nickel insert electroformed later on.By using the fabricated SU-8 microstructure as a template and nickel substrate as an electrode supplying current,nickel mold insert with a sidewall slope of 83°and high aspect ratio were successfully fabricated within 5 h in a conventional chemical laboratory.More than 500 PMMA microfluidic chips were replicated by hot-embossing.The chips have been used successfully for the separation of DNA fragments.
     In chapter 4,a simple and low cost method to fabricate high aspect ratio metallic microstructures without the requirement of specialized equipments was described. Conventional contact UV lithography was applied to pattern a thin AZ 4620 positive photoresist film coated on the ITO layer of the glass substrate.After development of the photoresist,a nickel film was electrodeposited in the recesses where exposed AZ 4620 had been lifted up.The formed Ni pattern was then functioned as an exposure mask to pattern a thick SU-8 photoresist coated on it.SU-8 microstructures with high aspect ratio were fabricated with reverse-side exposure.By using the fabricated SU-8 microstructure as a template and the nickel pattern on the ITO glass substrate as the seed layer,nickel microstructures with high aspect ratio of about 15 and a sidewall slope of 89°were successfully fabricated in conventional chemical laboratory.
     In chapter 5,micro fabrication of embedded channels in SU-8 microchip using phase changing sacrificial material sulfur was developed,in which SU-8 open channels were sealed by another coating layer of SU-8 after being filled with liquified sulfur at 120℃and solidified at 95℃to form a sacrificial layer.Based on this new technique,3-dimensional SU-8 microchip was fabricated for first time by photolithography to pattern the top SU-8 photoresist layer sealed on the microchannels.By repeating the above steps,multi-layered structures could be fabricated.Unlike conventional sacrificial layer techniques,this method drastically simplifies and shortens the sacrificial layer removal process,especially for long and complex channel networks.The fabrication process is very flexible and opens new possibilities to construct complex 3-D structures in SU-8,which has very promising applications in electrophoresis microchips,micro-mixers and organic synthesis reactions carried out in microfluidics reactors.
引文
1.Manz A,Graber N,Widmer H M.Miniaturized total chemical analysis systems:a novel concept for chemical sensing.Sens.Actuators B,1990,1:244-248.
    2.方肇伦等.微流控分析芯片.北京:科学出版社,2002.
    3.Qin D,Xia Y,Rogers J A,Jackman R J,Zhao X M,Whitesides G M.Microfabrication,Microstructures and Microsystems.in:Manz A,Becker H,Eds.Microsystem Technology in Chemistry and Life Sciences.Berlin:Springer,1999.1-20.
    4.Lee G.B,Chen S H,Huang G.R,Sung W C,Lin Y H.Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection.Sens.Actuators B,2001,75:142-148.
    5.Harrison D J,Manz A,Fan Z,Luedi H,Widmer H M.Capillary electrophoresis and sample injection systems integrated on a planar glass chip.Anal.Chem.,1992,64:1926-1932.
    6.Harrison D J,Fluri K,Seiler K,Fan Z H,Effenhauser C S,Manz A.Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip.Science,1993,261:895-897.
    7.Fan Z H,Harrison J D.Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections.Anal.Chem.,1994,66:177-184.
    8.Jacobson S.C.,Hergenroder R.,Moore A.W.Jr.,Ramsey J.M.,Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip Anal.Chem.,1994,66(23):4127-4132.
    9.Culbertson C T,Jacobson S C,Ramsey J M.Microchip devices for high-efficiency separations.Anal.Chem.,2000,72(23):5814-5819.
    10.Jacobson S C,Moore A W,Ramsey J M.Fused Quartz Substrates for Microchip Electrophoresis.Anal.Chem.,1995,67(13):2059-2063.
    11.He B,Tait N,Regnier F.Fabrication of nanocolumns for liquid chromatography.Anal.Chem.,1998,70(18):3790-3797.
    12.Nakanishi H,Nishimoto T,Arai A,Abe H,Kanai M,Fujiyama Y,Yoshida T.Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems.Electrophoresis,2001,22:230-234.
    13.殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31:116-119.
    14.Chiem N,Lockyear-Shultz L,Andersson P,Skinner C,Harrison D J.Room temperature bonding of micromachined glass devices for capillary electrophoresis.Sens.Actuators B,2000,63:147-152.
    15.Jia Z-J,Fang Q,Fang Z-L.Bonding of Glass Microfluidic Chips at Room Temperatures.Anal.Chem.,2004,76(18):5597-5602.
    16.Wang H Y,Foote R S,Jacobson S C,Schneibel J H,Ramsey J M.Low temperature bonding for microfabrication of chemical analysis devices.Sens. Actuators B,1997,45:199-207.
    17.Nakanishi H,Nishimoto T,Kanai M,Saitoh T,Nakamura K,Shoji S.Condition optimisation,reliability evaluation of SiO_2 -SiO_2 HF bonding and its application for UV detection micro flow cell,Proc.Transducers 99,Sendal,1999.1332-1335.
    18.Sayah A,Solignac D,Cueni T,Gijs M A M.Development of novel low temperature bonding technologies for microchip chemical analysis applications.Sens.Actuators A,2000,84:103-108.
    19.Schlautmann S,Besselink G-A-J,G R-P,Schasfoort R B M.Fabrication of a microfluidic chip by UV bonding at room temperature for integration of emperature-sensitive layers.J.Micromech.Microeng.,2003,13:S81-S84.
    20.Huang Z,Sanders J C,Dunsmor C,Ahmadzadeh H,Landers J P.A method for UV-bonding in the fabrication of glass electrophoretic microchips.Electrophoresis,2001,22:3924-3929.
    21.Wu H,Huang B,Zare R N.Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.Lab Chip,2005,5:1393-1398.
    22.Rossier J,Reymond F,Michel P E.Polymer microfluidic chips for electrochemical and biochemical analyses.Electrophoresis,2002,23:858-867.
    23.Pépin A,Youinou P,Studer V,Chen L Y.Nanoimprint lithography for the fabrication of DNA electrophoresis chips.Microelectron.Eng.,2002,61-62:927-932.
    24.Becker H,Gartner C.Polymer microfabrication methods for microfluidic analytical applications.Electrophoresis,2000,21:12-26.
    25.Ling Z G,Lian K.,Jian L K.Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters.Proc SPIE,2000(3999):1019-1027.
    26.Zhang J,Tan K L,Hong G D,Yang L J,Gong H Q.Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS.J.Micromech.Microeng.,2001,11:20-26.
    27.刘景全,蔡炳初,陈迪,朱军,赵小林,杨春生,SU-8胶及其在MEMS 中的应用.微纳电子技术,2003,7/8,132-136.
    28.Soper S A,Ford S M,Qi S,McCarley R L,Kelly K,Murphy M C.Polymetric Microelectromechanical Systems.Anal.Chem.,2000,72(19):643A-651A.
    29.Lee J N,Park C,Whitesides G M.Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices.Anal.Chem.,2003,75:6544.
    30.Maluf N.An introduction to Microelectromechanical Systems Engineering.Boston:Artech House,2000.
    31.Kricka L J,Fortina P,Panaro N J,Wilding P,Alonso-Amigo G,Becker H.Fabrication of plastic microchips by hot embossing.Lab Chip,2002,2:1-4.
    32.Jackman R,Floyd T,Ghodssi R,Schmidt M,Jensen K.Microfuidic systems with on-line UV detection fabricated in photodefinable epoxy.J.Micromech.Microeng.,2001,11:263-269.
    33.方肇伦.微流控分析芯片发展与展望.大学化学,2001,16(2):1-6.
    34 Richard C J.Modular series on solid state devices,in:Neudeck G W,Pierret R F,eds.Introduction to microelectronic fabrication.Massachusetts:Addison-Wesley Publishing Company,1993.
    35.McCreedy T.Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems.Trends Anal.Chem.,2000,19:396-401.
    36.Chiem N,Harrison D J.Microchip-based capillary electrophoresis for immunoassays:analysis of monoclonal antibodies and theophylline.Anal.Chem.,1997,69:373-378.
    37.Jacobson S C,Ramsey J M.Electrokinetic Focusing in Microfabricated Channel Structures.Anal.Chem.,1997,69:3212-3217.
    38.Fister J C,Jacobson S C,Davis L M,Ramsey J M.Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices.Anal.Chem.,1998,70:431-437.
    39.Edwards T L,Mohanty S K,Edwards R K,Thomas C L,Frazier A B.Rapid Tooling Using SU-8 for Injection Molding Microfluidic Components.SPIE Micro Fluidic Devices and Systems Conference,Santa Clara:CA,2000.82-89.
    40.Martynova L,Locascio L E,Gaitan M,Kramer G.W,Christensen R G.,MacCrehan W A.Fabrication of plastic microfluid channels by imprinting methods.Anal.Chem.,1997,69(23),4783-4789.
    41.Kelly R T,Woolley A T.Thermal bonding of polymeric capillary electrophoresis microdevices in water.Anal.Chem.,2003,75:1941-1945.
    42.杜晓光,关艳霞,王福仁,方肇伦.聚甲基丙烯酸甲酯微流控分析芯片的简 易热压制作法.高等学校化学学报,2003,24:1962-1966.
    43.叶美英.高聚物微流控芯片加工技术与分析性能的研究:[博士学位论文].杭州:浙江大学,2004.
    44.Roberts M A,Rossier J S,Bercier P,Girault H.UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems.Anal.Chem.,1997,69:2035-2042.
    45.Gra β B,Neyer A,Johnck M,Siepe D,Eisenbei β F,Weber G.,Hergenroder R.A new PMMA-microchip device for isotachophoresis with integrated conductivity detector.Sens.Actuators B,2001,72:249-258.
    46.Dang F,Shinohara S,Tabata O,Yamaoka Y,Kurokawa M,Shinohara Y,Ishikawaa M,Baba Y.Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.Lab Chip,2005,5:472-478.
    47.Kelly R T,Pan T,Woolley A T.Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips.Anal.Chem.,2005,77(11):3536-3541.
    48.Wu Z,Xanthopoulos N,Reymond F,Rossier J S,Giraultl H H.Polymer microchips bonded by O2-plasma activation.Electrophoresis,2002,23,782-790.
    49.Duffy D C,McDonald J C,Schueller O J A,Whitesides G.M.Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).Anal.Chem.,1998,70:4974-4984.
    50.孟菲,陈恒武,方群,朱海霖,方肇伦.聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究.高等学校化学学报,2002,23:1264-1268.
    51.Unger M A,Chou H,Thorsen T,Scherer A,Quake S R.Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography.Science,2000,288:113-116.
    52.叶美英,方群,殷学锋,方肇伦.聚二甲基硅氧烷基质微流控芯片封接技术的研究.高等学校化学学报,2002,23:2243-2246.
    53.Mohr J,Bley P,Strohrmann M,Wallrabe U.Microactuators fabricated by the LIGA process.J.Micromech.Microeng.,1992,2:234-241.
    54.Ehrfeld W,Abraham M,Ehrfeld U,Lacher H,Lehr H.Materials for LIGA products,in:Proceedings of the IEEE Micro Electro Mechanical Systems.1994. 86-90.
    55.伊福延,吴坚武,冼鼎昌.微细加工新技术-LIGE技术.微细加工技术.1993(4):1-7.
    56.刘兴占,LLGA工艺技术.中国仪器仪表,1997,2:10-14.
    57.Kondo R,Suzuki K,Sugiyama S.Study on fabrication of high aspect ratio electrostatic microactuators using LIGA process,in:Proceedings of the international symposium on micromechatronics and human science,Nagoya:1998.155-160.
    58.Yang H,Chein R,Tsai T H,Chang J C,Wu J C,High-aspect-ratio microstructural posts electroforming modeling and fabrication in LIGA process.Microsyst Technol,2006,12(3):187-192.
    59.Kricka L J,Fortina P,Panaro N J,Wilding P,Amigo G A,Becker H.Fabrication of plastic microchips by hot embossing.Lab Chip,2002,2:1-4.
    60.Lorenz H,Despont M,Fahrnj N,Brugger J,Vettiger P,Renaud P.High-aspect-ratio,ultrathick,negative-tone near-UV photoresist and its applications for MEMS.Sens.Actuators A,1998,64(1):33-39.
    61.Bertsch A,Lorenz H,Renaud P.3D microfabrication by combining microstereolithography and thick resist UV lithography.Sens.Actuators A,1999,73:14-23.
    62.Lorenz H,Despont M,Fahrni N,LaBianca N,Resnaud P J.SU-8:a low-cost negative resist for MEMS.Micromech.Microeng.,1997,7:121-124.
    63.Lee L J,Madou M J,Koelling K W,Daunert S,Lai S,Koh C G,Juang Y-J,Lu Y,Yu L.Design and fabrication of CD-like microfluidic platforms for diagnostics:polymer-based microfabrication.J.Biomed.Microdev.,2001,3:339-351.
    64.Chang H-K,Kim Y-K.UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole.Sens.Actuators A,2000,84(3):342-350.
    65.刘景全,朱军,蔡炳初,陈迪,丁桂甫,赵小林,杨春生.SU-8胶与基底结合特性的实验研究.微细加工技术,2002,2:28-32.
    66.Son S-H,Park Y-S,Choi S-Y.New formation technology for a plasma display panel barrier-rib structure using a precise metal mold fabricated by the UV-LIGA process.J.Micromech.Microeng.,2002,12:63-69.
    67.Ho C-H,Hsu W.Experimental investigation of an embedded root method for stripping SU-8 photoresist in the UV-LIGA process.J.Micromech.Microeng.,2004, 14:356-364.
    68.Dentinger P M,Clift W M,Goods S H.Removal of SU-8 photoresist for thick film applications.Microelectronic Engineering,2002,61-62:993-1000.
    69.Ho C-H,Chin K-P,Yang C-R,Wu H-M,Chen S-L.Ultrathick SU-8 mold formation and removal,and its application to the fabrication of LIGA-like micromotors with embedded roots.Sens.Actuators A,2002,102:130-138.
    70.Song I,Ajmera P K.Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS Fabrication.J.Micromech.Microeng.,2003,13:816-821.
    71.Sander D,Hoffmann R,Reiling V,Muller J.Fabrication of metallic microstructures by electroplating using deep-etched silicon molds.J.Microelectromech.Syst.,1995,4:81-86.
    72.陈迪,张大成,丁桂甫,赵小林,章吉良,杨春生,蔡炳初,武国英.DEM 技术研究.微细加工技术,1998(4):1-6.
    73.Chen Z,Gao Y,Su R,Li C,Lin J.Fabrication and characterization of poly(methyl methacrylate)microchannels by in situ polymerization with a novel metal template.Electrophoresis,2003,24:3246-3252.
    74.Li C-W,Cheung C N,Yang J,Tzang C H,Yang M.PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.Analyst,2003,128:1137-1142.
    75.Yan Y,Chan-Park M B,Gao J,Yue C Y.Electroless Nickel-Plated UV-Embossed Microstructured Surface with Very High Aspect Ratio Channels.Langmuir 2004,20:1031-1035.
    76.李建华,陈迪,刘景全,朱军.微流控芯片金属模具制备工艺研究.微细加工技术,2005,4:56-58.
    77.张晔,陈迪,潘欣欣,方华斌,朱军,刘景全.U V-LIGA双层微齿轮加工工艺研究.微细加工技术,2005,4:69-75.
    78.Hosokawa K,Fujii T,Endo I.Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device.Anal.Chem.,1999,71:4781-4785.
    79.Martynova L,Locascio L E,Gaitan M,Kramer G W,Christensen R G,MacCrehan W A.Fabrication of Plastic Microfluid Channels by Imprinting Methods.Anal.Chem.,1997,69(23):4783-4789.
    80. Li Y, Buch J S, Rosenberger F, DeVoe D L, Lee C S. Integration of Isoelectric Focusing with Parallel Sodium Dodecyl Sulfate Gel Electrophoresis for Multidimensional Protein Separations in a Plastic Microfludic Network. Anal. Chem., 2004,76(3): 742-748.
    81. Esch M B, Kapur S, Irizarry G., Genova V. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab Chip, 2003, 3: 121-127.
    82. Huikko K, Ostman P, Grigoras K, Tuomikoski S, Tiainen V-M, Soininen A, Puolanne K, Manz A, Franssila S, Kostiainen R, Kotiaho T. Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. Lab Chip, 2003, 3: 67-72.
    83. Futai N, Gu W, Takayama S. Rapid prototyping of microstructures with bell-shaped cross-sections and its application to deformation-based microfluidic valves. Adv. Mater., 2004,16(15): 1320-1323.
    84. Toepke M W, Kenis P J A. Multilevel Microfluidics via Single-Exposure photolithography. J. AM. CHEM. SOC., 2005,127: 7674-7675.
    85. Kim D J, Oh H J, Park T H, Choo J B, Lee S H. An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions. Analyst, 2005,130: 293-298.
    86. Shaw J M, Gelorme J D, LaBianea N C, et al. Negative photoresists for optical lithography. IBM Journal of Research and Development, 1997,41: 81-94.
    87. Eyre B, Blosiu J, Wiberg D. Taguchi optimization for the processing of EPON SU-8 resist. In: Proceedings of the IEEE Micro Electro Mechanical Systems. Heidelberg, 1998.218-222.
    88. Dentinger P M, Krafcik K L, Simison K L, Janek R P, Hachman J. High aspect ratio patterning with a proximity ultraviolet source. Microelectronic Engineering, 2002,61-62: 1001-1007.
    89. Lin C-H, Lee G.-B, Chang B-W, Chang G.-L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng., 2002, 12: 590-597.
    90. Chunag Y-J, Tseng F-G, Cheng J-H, Lin W-K. A novel fabrication method of embedded micro channels by using SU-8 thick film photoresists. Sens. Actuators A, 2003, 103(1-2): 64-69.
    91. Kang W-J, Rabe E, Kopetz S, Neyer A. Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography. J. Micromech. Microeng., 2006,16: 821-831.
    92. Zhang J, Chan-Park M B, Conner S R. Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip, 2004, 4: 646-653.
    93. Han M, Lee W, Lee S-K, Lee S S. 3D microfabrication with inclined/rotated UV lithography. Sens. Actuators A, 2004, 111: 14-20.
    94. Peterman M C, Huie P, Bloom D M, Fishman H A. Building thick photoresist structures from the bottom up. J. Micromech. Microeng., 2003, 13(3): 380-382.
    95. Sato H, Kakinuma T, Go J S, Shoji S. In-channel 3-D micromesh structures using maskless multi-angle exposures and their microfilter application. Sens. Actuators A, 2004,111:87-92.
    96. Mata A, Fleischman A J, Roy S. Fabrication of multi-layer SU-8 Microstructures. J. Micromech. Microeng., 2006,16: 276-284.
    97. Guerin L J, Bossel M, Demierre M, Calmes S, Renaud P. Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic. Proc. of the transducers 97, 1997,1419-1422.
    98. Metz S, Jiguet S, Bertsch A, Renaud P. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip, 2004, 4: 114-120.
    99. Alderman B E J, Mann C M, Steenson D P, Chamberlain J M. Microfabrication of channels using an embedded mask in negative resist. J. Micromech. Microeng., 2001, 11:703-705.
    100. Pan C-T, Yang H, Shen S-C, Chou M-C, Chou H-P. A low-temperature wafer bonding technique using patternable materials. J. Micromech.Microeng., 2002, 12: 611-615.
    101. Li S, Freidhoff C B, Young R M, Ghodssi R. Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8. J. Micromech. Microeng., 2003, 13: 732-738.
    102. Tuomikoski S, Franssila S. Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens. Actuators A, 2005, 120: 408-415.
    103. Agirregabiria M, Blanco F J, Berganzo J, Arroyo M T, Fullaondo A, Mayora K, Ruano-Lo'pez J M. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip, 2005, 5: 545-552.
    104. Heuschkel M O, Guerin L, Buisson B, Bertrand D, Renaud P. Burried in microchannals photopolymer for delievring of solutions to neurons in a network. Sens. Actuators B, 1998, 48: 356-361.
    105. Abgrall P, Lattes C, Con'ed'era V, Dollat X, Colin S, Gu'e A M. A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films. J. Micromech. Microeng., 2006,16: 113-121.
    106. Fu C, Hung C, Huang H, A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. Journal of Physics: Conference Series, 2006, 34: 330-335.
    107. Yu H, Balogun O, Li B, Murray T W, Zhang X. Building embedded microchannels using a single layered SU-8 and determining Young's modulus using a laser acoustic technique. J. Micromech. Microeng., 2004, 14: 1576-1584.
    108. Tay F E H, Kan J A V, Watt F, Choong W O. A novel micro machining method for the fabrication of thick thick-film SU-8 embedded micro-channels". J. Micromech. Microeng., 2000, 11(1): 27-32.
    109. Mali P, Sarkar A, Lal R. Facile fabrication of microfluidic systems using electron beam lithography. Lab Chip, 2006,6: 310-315.
    110. Seidemann V, Rabe J, Feldmann M, Bu¨ttgenbach S. SU-8-micromechanical structures with in situ fabricated movable parts. Microsyst. Technol., 2002, 8: 348-350.
    111. Nguyen N T, Truong T Q, Wong K K, Ho S S, Low C L-N. Micro check valves for integration into polymeric microfluidic devices. J. Micromech. Microeng., 2004, 14: 69-75.
    112. Johansson A, Janting J, Schultz P, Hoppe K, Hansen I N, Boisenl A. SU-8 cantilever chip interconnection. J. Micromech. Microeng., 2006,16: 314-319.
    113. Lee G.-B, Lin C-H, Chang G.-L. Micro flow cytometers with buried SU-8/SOG optical waveguides. Sens. Actuators A, 2003, 103: 165-170.
    114. Wang Z, El-Ali J, Engelund M, Gotsaed T, Perch-Nielsen I R, Mogensen K B, Snakenborg D, Kutter J P, Wolff A. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip, 2004, 4: 372-377.
    115.Tuomikoski S, Sikanen T, Ketola R A, Kostiainen R, Kotiaho T, Franssila S. Fabrication of enclosed SU-8 tips for electrospray ionization-mass Spectrometry. Electrophoresis, 2005, 26: 4691-4702.
    116. Song Y, Kumar C S S R, Hormes J. Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a 'flexible semi-solid transfer'(FST) process J. Micromech. Microeng., 2004,14: 932-940.
    117. Yang R, Williams J D, Wang W. A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets. J. Micromech. Microeng., 2004,14: 1345-1351.
    118. Nordstr¨om M, Marie R, Calleja M, Boisen A. Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication. J. Micromech. Microeng., 2004, 14: 1614-1617.
    119. Zhang N, Xie J, Guers M, Varadan V K. Chemical bonding of multiwalled carbon nanotubes to SU-8 via ultrasonic irradiation. Smart Mater. Struct., 2003, 12: 260-263.
    120. Sikanen T, Tuomikoski S, Ketola R A, Kostiainen R, Franssila S, Kotiaho T. Characterization of SU-8 for electrokinetic microfluidic applications. Lab Chip, 2005, 5: 888-896.
    121. El-Ali J, Perch-Nielsen I R, Poulsen C R, Bangb D D, Telleman P, Wolff A. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sens. Actuators A, 2004,110: 3-10.
    122. West J, Karamata B, Lillis B, Gleeson J P, Alderman J, Collins J K, Lane W, Mathewson A, Berney H. Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip, 2002, 2: 224-230.
    123. Marie R, Schmid S, Johansson A, Ejsing L, Nordstr¨oma M, H¨afliger D, Christensen C B V, Boisen A, Dufva M. Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors and Bioelectronics, 2006, 21: 1327-1332.
    124. Strike D J, Fiaccabrino G.-C, Koudelka-Hep M, Rooij N F, Enzymatic Microreactor Using Si, Glass and EPON SU-8. Biomedical Microdevices, 2000, 2:3: 175-178.
    125. Hostis E L, Michel P E, Fiaccabrino G.C, Strike D J, de Rooij N F, Koudelka-Hep M. Microreactor and electrochemical detectors fabricated using Si and EPON SU-8. Sens. Actuators B, 2000, 64: 156-162.
    126.Minas G.,Wolffenbuttelb R F,Correia J H.A lab-on-a-chip for spectrophotometric analysis of biological fluids.Lab Chip,2005,5:1303-1309.
    127.Gadre A P,Nijdam A J,Garra J A,Monica A H,Chenga M C,Luoa C,Srivastava Y N,Schneider T W,Longb T J,White R C,Paranjape M,Currie J F.Fabrication of a fluid encapsulated dermal patch using multilayered SU-8.Sens.Actuators A,2004,114:478-485.
    1.Harrison D J,Manz A,Fan Z,Luedi H,Widmer H M.Capillary electrophoresis and sample injection systems integrated on a planar glass chip.Anal.Chem.,1992,64:1926-1932.
    2.Culbertson C T,Jacobson,S C,Ramsey J M,Microchip Devices for High-Efficiency Separations.Anal.Chem.,2000,72:5814-5819.
    3.殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31:116-119.
    4.Chiem N,Lockyear-Shultz L,Andersson P,Skinner C,Harrison D J.Room temperature bonding of micromachined glass devices for capillary electrophoresis.Sens.Actuators B,2000,63:147-152.
    5.Jia Z-J,Fang Q,Fang Z-L.Bonding of Glass Microfluidic Chips at Room Temperatures.Anal.Chem.,2004,76(18):5597-5602.
    6. Wang H Y, Foote R S, Jacobson S C, Schneibel J H, Ramsey J M. Low temperature bonding for microfabrication of chemical analysis devices. Sens. Actuators B, 1997,45: 199-207.
    7. Nakanishi H, Nishimoto T, Kanai M, Saitoh T, Nakamura K, Shoji S. Condition optimisation, reliability evaluation of SiO2 -SiO2 HF bonding and its application for UV detection micro flow cell, Proc. Transducers 99, Sendai, 1999. 1332-1335.
    8. Sayah A, Solignac D, Cueni T, Gijs M A M. Development of novel low temperature bonding technologies for microchip chemical analysis applications. Sens. Actuators A, 2000, 84: 103-108.
    9. Schlautmann S, Besselink G-A-J, G R-P, Schasfoort R B M. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of emperature-sensitive layers. J. Micromech. Microeng., 2003, 13: S81-S84.
    10. Huang Z, Sanders J C, Dunsmor C, Ahmadzadeh H, Landers J P. A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis, 2001,22:3924-3929.
    11. Wu H, Huang B, Zare R N. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip, 2005, 5: 1393-1398.
    12. Jackman R, Floyd T, Ghodssi R, Schmidt M, Jensen K. Microfuidic systems with on-line UV detection fabricated in photodefinable epoxy. J. Micromech. Microeng., 2001, 11: 263-269.
    13. Kelly R T, Pan T, Woolley A T. Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips. Anal. Chem., 2005, 77(11): 3536-3541.
    14. Woolley A T, Lao K, Glazer A N, Mathies R A. Capillary Electrophoresis Chips with Integrated Electrochemical Detection. Anal. Chem., 1998, 70: 684-688.
    15. Liu Y, Vickers J A, Henry C S. Simple and Sensitive Electrode Design for Microchip Electrophoresis/Electrochemistry. Anal. Chem., 2004, 76: 1513-1517.
    16. Zhang L, Yin X-F, Fang Z-L. Negative pressure pinched sample injection for microchip-based electrophoresis. Lab chip, 2006, 6: 258-264.
    17. Liu R H, Yang J, Lenigk R, Bonanno J, Grodzinski P. Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection. Anal. Chem., 2004, 76: 1824-1831.
    18. Pal R, Yang M, Johnson B N, Burke D T, Burns M A. Phase Change Microvalve for Integrated Devices. Anal. Chem., 2004, 76: 3740-3748.
    19.Lorenz H,Despont M,Fahrnj N,Brugger J,Vettiger P,Renaud P.High-aspect-ratio,ultrathick,negative-tone near-UV photoresist and its applications for MEMS.Sens.Actuators A,1998,64(1):33-39.
    1.Manz A,Graber N,Widmer H M.Miniaturized total chemical analysis systems:a novel concept for chemical sensing.Sens.Actuators B,1990,1:244-248.
    2.Rossier J,Reymond F,Michel P E.Polymer microfluidic chips for electrochemical and biochemical analyses.Electrophoresis,2002,23:858-867.
    3.Becker H,Gartner C.Polymer microfabrication methods for microfluidic analytical applications.Electrophoresis,2000,21:12-26.
    4.方肇伦等.微流控分析芯片.北京:科学出版社,2002,33-44.
    5.Pépin A,Youinou P,Studer V,Chen L Y.Nanoimprint lithography for the fabrication of DNA electrophoresis chips.Microelectron.Eng.,2002,61-62:927-932.
    6.Soper S A,Ford S M,Qi S,McCarley R L,Kelly K,Murphy M C.Polymetric Microelectromechanical Systems.Anal.Chem.,2000,72(19):643A-651A.
    7.陈迪,张大成,丁桂甫,赵小林,章吉良,杨春生,蔡炳初,武国英.DEM 技术研究.微细加工技术,1998(4):1-6.
    8.Ho C-H,Hsu W.Experimental investigation of an embedded root method for stripping SU-8 photoresist in the UV-LIGA process.J.Micromech.Microeng.,2004,14:356-364.
    9.Huikko K,Ostman P,Grigoras K,Tuomikoski S,Tiainen V-M,Soininen A,Puolanne K,Manz A,Franssila S,Kostiainen R,Kotiaho T.Poly(dimethylsiloxane)electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane)coated SU-8 masters.Lab Chip,2003,3:67-72.
    10.Lee L J,Madou M J,Koelling K W,Daunert S,Lai S,Koh C G,Juang Y-J,Lu Y,Yu L.Design and fabrication of CD-like microfluidic platforms for diagnostics:polymer-based microfabrication.J.Biomed.Microdev.,2001,3:339-351.
    11.Kricka L J,Fortina P,Panaro N J,Wilding P,Alonso-Amigo G,Becker H.Fabrication of plastic microchips by hot embossing.Lab Chip,2002,2:1-4.
    12.Chen Z,Gao Y,Su R,Li C,Lin J.Fabrication and characterization of poly(methyl methacrylate)microchannels by in situ polymerization with a novel metal template.Electrophoresis,2003,24:3246-3252.
    13.Li C-W,Cheung C N,Yang J,Tzang C H,Yang M.PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.Analvst,2003,128:1137-1142.
    14.殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31:116-119.
    15.Eyre B,Blosiu J,Wiberg D.Taguchi optimization for the processing of EPON SU-8 resist,in:Proceedings of the IEEE Micro Electro Mechanical Systems.Heidelberg,1998.218-222.
    16.Dentinger P M,Krafcik K L,Simison K L,Janek R P,Hachman J.High aspect ratio patterning with a proximity ultraviolet source.Microelectronic Engineering,2002,61-62:1001-1007.
    17.Kim D J,Oh H J,Park T H,Choo J B,Lee S H.An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions.Analyst,2005,130:293-298.
    18.Dentinger P M,Clift W M,Goods S H.Removal of SU-8 photoresist for thick film applications.Microelectronic Engineering,2002,61-62:993-1000.
    1.Mohr J,Bley P,Strohrmann M,Wallrabe U.Microactuators fabricated by the LIGA process.J.Micromech.Microeng.,1992,2:234-241.
    2.Kondo R,Suzuki K,Sugiyama S.Study on fabrication of high aspect ratio electrostatic micro actuators using LIGA process. in: Proceedings of the international symposium on micromechatronics and human science. Nagoya: 1998. 155-160.
    3. Qu W, Wenzel C, Gerlach G. Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA. Sens. Actuators A, 1999, 77: 14-20.
    4. Soper S A, Ford S M, Qi S, McCarley R L, Kelly K, Murphy M C. Polymetric Microelectromechanical Systems. Anal. Chem., 2000, 72 (19): 643A-651A.
    5. Lin C-H, Lee G.-B, Chang B-W, Chang G.-L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng., 2002, 12: 590-597.
    6. Yang R, Williams J D, Wang W. A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets. J. Micromech. Microeng., 2004, 14: 1345-1351.
    7. Hupert M L, Witek M A. Polymer-based microfluidic devices for biomedical applications, in: Proceedings of SPIE—the International Society for Optical Engineering—Microfluidics. BioMEMS, and Medical Microsystems, San Jose, CA, USA, 2003. 52-64.
    8. Ho C-H, Hsu W. Experimental investigation of an embedded root method for stripping SU-8 photoresist in the UV-LIGA process. J. Micromech. Microeng., 2004, 14: 356-364.
    9. Dang F, Shinohara S, Tabata O, Yamaoka Y, Kurokawa M, Shinohara Y, Ishikawaa M, Baba Y. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method. Lab Chip, 2005, 5: 472-478.
    10. Becker E W, Ehrfeld W, Hagmann P, Maner A, M(u|¨)nchmeyer D, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography. Microelectron. Eng., 1986,4 (1): 35-56.
    11. Samper V D, Sangster A J, Reuben R L, Wallrabe U. Multistator LIGA- fabricated electrostatic wobble motors with integrated synchronous control. J. Microelectromech. Syst, 1998, 7:214-223.
    12. Laermer F, Urban A, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng., 2003, 67-68: 349-355.
    13. Marty F, Rousseau L, Saadany B, Mercier B, Francais O, Mita Y, Bourouina T. Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron. J., 2005, 36: 673-677.
    14. Lorenz H, Despont M, Fahrnj N, Brugger J, Vettiger P, Renaud P. High-aspect-ratio,ultrathick,negative-tone near-UV photoresist and its applications for MEMS.Sens.Actuators A,1998,64(1):33-39.
    15.方肇伦等,微流控分析芯片,北京:科学出版社,2002.
    16.Zhang J,Tan K L,Hong G D,Yang L J,Gong H Q.Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS.J.Micromech.Microeng.,2001,11:20-26.
    17.Lorenz H,Despont M,Fahrnj N,Brugger J,Vettiger P,Renaud P.High-aspect-ratio,ultrathick,negative-tone near-UV photoresist and its applications for MEMS.Sens.Actuators A,1998,64(1):33-39.
    18.Dentinger P M,Krafcik K L,Simison K L,Janek R P,Hachman J.High aspect ratio patterning with a proximity ultraviolet source.Microelectronic Engineering,2002,61-62:1001-1007.
    19.Bertsch A,Lorenz H,Renaud P.3D microfabrication by combining microstereolithography and thick resist UV lithography.Sens.Actuators A,1999,73:14-23.
    20.Kang W-J,Rabe E,Kopetz S,Neyer A.Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography.J.Micromech.Microeng.,2006,16:821-831.
    21.Chang H-K,Kim Y-K.UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole.Sens.Actuators A,2000,84(3):342-350.
    22.Chunag Y-J,Tseng F-G,Cheng J-H,Lin W-K.A novel fabrication method of embedded micro channels by using SU-8 thick film photoresists.Sens.Actuators A,2003,103(1-2):64-69.
    23.Zhang J,Chan-Park M B,Conner S R.Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8.Lab Chip,2004,4:646-653.
    24.刘景全,朱军,蔡炳初,陈迪,丁桂甫,赵小林,杨春生.SU-8胶与基底结合特性的实验研究.微细加工技术,2002,2:28-32.
    25.Peterman M C,Huie P,Bloom D M,Fishman H A.Building thick photoresist structures from the bottom up.J.Micromech.Microeng.,2003,13(3):380-382.
    26.Sato H,Kakinuma T,Go J S,Shoji S.In-channel 3-D micromesh structures using maskless multi-angle exposures and their microfilter application.Sens.Actuators A,2004,111:87-92.
    27.K.Kim,D.S Park,H.M Lu,W.Che,K.Kim,J.oB.Lee,C.H Ahn,A tapered hollow metallic microneedle array using backside exposure of SU-8,J.Micromech.Microeng.14(2004)597-603.
    28.Ho C-H,Chin K-P,Yang C-R,Wu H-M,Chen S-L.Ultrathick SU-8 mold formation and removal,and its application to the fabrication of LIGA-like micromotors with embedded roots.Sens.Actuators A,2002,102:130-138.
    1.Qin D,Xia Y,Rogers J A,Jackman R J,Zhao X M,Whitesides G M.Microfabrication,Microstructures and Microsystems.in:Manz A,Becker H,Eds.Microsystem Technology in Chemistry and Life Sciences.Berlin:Springer,1999.1-20.
    2.Fister J C,Jacobson S C,Davis L M,Ramsey J M.Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices.Anal.Chem.,1998,70:431-437.
    3 Soper S A,Ford S M,Qi S,McCarley R L,Kelly K,Murphy M C.Polymetric Microelectromechanical Systems.Anal.Chem.,2000,72(19):643A-651A.
    4 Zhang J,Tan K L,Hong G D,Yang L J,Gong H Q.Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS.J.Micromech.Microeng.,2001,11:20-26.
    5 Song Y,Kumar C S S R,Hormes J.Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a 'flexible semi-solid transfer'(FST)process.J.Micromech.Microeng.,2004,14:932-940.
    6.Jackman R,Floyd T,Ghodssi R,Schmidt M,Jensen K.Microfuidic systems with on-line UV detection fabricated in photodefinable epoxy.J.Micromech.Microeng.,2001,11:263-269.
    7.Pan C-T,Yang H,Shen S-C,Chou M-C,Chou H-P.A low-temperature wafer bonding technique using patternable materials.J.Micromech.Microeng.,2002,12:611-615.
    8.Tuomikoski S,Franssila S.Free-standing SU-8 microfluidic chips by adhesive bonding and release etching.Sens.Actuators A,2005,120:408-415.
    9.Agirregabiria M,Blanco F J,Berganzo J,Arroyo M T,Fullaondo A,Mayora K,Ruano-Lo`pez J M.Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.Lab Chip,2005,5:545-552.
    10.Heuschkel M O,Guerin L,Buisson B,Bertrand D,Renaud P.Burried in microchannals photopolymer for delievring of solutions to neurons in a network.Sens.Actuators B,1998,48:356-361.
    11.Abgrall P,Lattes C,Con`ed`era V,Dollat X,Colin S,Gu`e A M.A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films.J.Micromech.Microeng.,2006,16:113-121.
    12.Guerin L J,Bossel M,Demierre M,Calmes S,Renaud P.Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic.Proc.of the transducers 97,1997,1419-1422.
    13.Alderman B E J,Mann C M,Steenson D P,Chamberlain J M.Microfabrication of channels using an embedded mask in negative resist.J.Micromech.Microeng.,2001,11:703-705.
    14.Chunag Y-J,Tseng F-G,Cheng J-H,Lin W-K.A novel fabrication method of embedded micro channels by using SU-8 thick film photoresists.Sens.Actuators A,2003,103(1-2):64-69.
    15.Mali P,Sarkar A,Lal R.Facile fabrication of microfluidic systems using electron beam lithography.Lab Chip,2006,6:310-315.
    16.Yu H,Balogun O,Li B,Murray T W,Zhang X.Building embedded microchannels using a single layered SU-8 and determining Young's modulus using a laser acoustic technique.J.Micromech.Microeng.,2004,14:1576-1584.
    17.Metz S,Jiguet S,Bertsch A,Renaud P.Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.Lab Chip,2004,4:114-120.
    18.Seidemann V,Rabe J,Feldmann M,Bu"ttgenbach S.SU-8-micromechanical structures with in situ fabricated movable parts.Microsyst.Technol.,2002,8:348-350.
    19.Song I-H,Ajmera P K.Use of a photoresist sacrificial layer with SU-8electroplating mould in MEMS Fabrication.J.Micromech.Microeng.,2003,13:816-821.
    20.K.Walsh,J.Norville and T.Yu Chong,Photoresist as a sacrificial layer by dissolution in acetone,presented at 14th IEEE International Conference on Micro Electro Mechanical Systems,MEMS 2001,Interlaken,Switzerland,2001,pp.114-117.
    21.Jayachandran J P,Reed H A,Zhen H,Rhodes L F,Henderson C L,Allen S A B,Kohl P A.Air-channel fabrication for microelectromechanical systems via sacrificial photosensitive polycarbonates.J.Microelectromech.Syst.,2003,12:147-159.
    22.Foquet M,Korlach J,Zipfel W,Webb W W,Craighead H G.DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels.Anal.Chem.,2002,74:1415-1422.
    23.Kelly R T,Pan T,Woolley A T.Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips.Anal.Chem.,2005,77(11):3536-3541.
    24.Sikanen T,Tuomikoski S,Ketola R A,Kostiainen R,Franssila S,Kotiaho T.Characterization of SU-8 for electrokinetic microfluidic applications.Lab Chip,2005,5:888-896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700