用户名: 密码: 验证码:
在镀铝玻璃衬底上低温沉积GaN薄膜的结晶特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓(GaN)作为一种宽直接带隙(室温禁带宽度为3.39eV)半导体材料,具有电子饱和漂移速度高、热导系数高、介电常数小、化学性质稳定和热稳定性好等特性。GaN基器件已经广泛应用于半导体发光二极管(LED)、半导体激光器(LD)等光电子器件上,同时由于它还具有高的声波速率、很好的压电特性,又使其成为制备兆赫兹级声表面波器件(SAW)的理想压电材料。目前GaN薄膜主要是在蓝宝石(α-Al2O3)碳化硅(SiC)、氧化锌(ZnO)和硅片等异质衬底上制备的,其中最常用的是α-Al2O3衬底,但α-Al2O3衬底存在许多缺点如:价格昂贵、难以实现大面积沉积、不导电、热导率低等,使用α-Al2O3做衬底限制了GaN在器件中的进一步应用。金属是电和热的良导体,用金属做衬底,一方面可以改善器件的电学特性、解决散热等问题,另一方面还可以直接用作下电极,因此有研究组将α-Al2O3衬底上生长的GaN薄膜剥离下来转移到金属上,但工艺要求高,成品率低。干法刻蚀在器件下电极的制备中广泛使用,但是由此产生的刻蚀损伤对器件性能影响也较大。如果能在金属上直接沉积出高质量的GaN薄膜,则不需要复杂的工艺程序,就可以改善器件的电学特性、解决散热问题和满足器件对金属下电极的使用需求。
     目前有以Cu、Ag等金属为衬底沉积c轴择优取向GaN薄膜的报导,但是这些研究中生长温度都较高。铝也是电和热的良导体并且还是一种广泛使用的金属电极,但熔点较低(660.37℃),且铝膜的熔点更低,过高的生长温度会使铝膜熔化,所以要在铝膜上沉积GaN薄膜要求沉积温度不能过高。本文采用镀铝膜玻璃为衬底,低温沉积了结晶质量较好的GaN薄膜(沉积温度只有430℃)。相对于一些研究中使用单晶金属为衬底,本实验采用廉价的镀铝玻璃为衬底,可进一步节约成本且能够实现大面积沉积。
     本文首先使用射频磁控溅射方法在康宁7101型普通玻璃表面镀一层厚约300nm的(111)择优取向的多晶铝薄膜,然后采用电子回旋共振-等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)方法,以镀铝玻璃为衬底,三甲基镓(TMGa)为镓源(以氢气为载气),高纯氮气(纯度为5N)为氮源,低温沉积了高度c轴择优取向GaN薄膜。利用反射高能电子衍射(RHEED)、X射线衍射(XRD)、扫描电镜(SEM)和拉曼光谱(Raman)研究了衬底氮化时间、TMGa流量、衬底温度对制备GaN薄膜质量的影响。得出了在镀铝膜玻璃衬底上沉积GaN薄膜的适宜工艺参数,实验结果表明,在其他沉积参数固定不变的条件下,以表面较为平整的镀铝膜玻璃为衬底,衬底氮化60min, TMGa流量为2.0sccm,沉积温度为430℃和470℃的条件下,制备的GaN薄膜结晶质量较好。
GaN is a direct wide-band gap semiconductor with a band-gap of 3.39 eV at room temperature, and possesses some superior characteristics including high electron saturation drift velocity, high thermal conductivity, low dielectric constant, good chemical property and good thermal stability and so on. GaN-based semiconductor devices have been widely used for the fabrication of various photonic devices such as blue-green lighting emission diode (LED) and laser diode (LD). In addition, GaN has also been considered as an ideal material to produce megahertz (MHz) level SAW for its advantage of high sound wave velocity as well as good piezoelectricity characteristic. Nowadays, GaN thin film is mainly deposited on foreign substrates such as a-Al2O3、SiC、ZnO and Si, and a-Al2O3 is the most commonly used one among all these substrate. However, the intrinsic drawback of a-Al2O3, including expensive price, the difficulty in realizing large area deposition, poor electric conduction, low heat conductivity and so on, has obviously restricted its further application in GaN device. Compared witha-Al2O3, metal substrate exhibits some merits such as good electricity and thermal properties and thus can improve the device electrical characteristic and solve the radiation if the GaN film is deposited on it. On the other hand, it also can serve as underneath electrode directly. Therefore, the growth of GaN thin film has been shifted from sapphire substrate to metal substrate. However, it requires high technology and the final rate of finished product is quite low. Dry etching technology has been widely used to produce the underneath electrode, but it may bring some damage to device and thus influences the device performance. If the high quality GaN thin film can be deposited on metal substrate directly, it may improve the device electricity characteristic, solving the radiation and meeting the requirement of devices' underneath electrode.
     Nowadays, it has been reported that c-axis oriented GaN films can be deposited directly on metal substrates such as Cu, Ag, but the deposition temperature is a little high. Al metal has been also used as metal electrode for its good electricity and thermal properties. However, it may melt under the high deposited temperature. So it is necessary to deposit good GaN films on Al substrate at lower temperature. In this work, the GaN films with good crystallization quality has been obtained on Al films, which was coated on glass substrate beforehand, using the low temperature depositing technology, and the actual deposited temperature used in the growth of GaN film is 430℃. Therefore, it can be seen that the method proposed in this work provides an effective way to produce GaN films on Al coated glass substrate with lower cost and large area growth, comparing with other traditional methods.
     In this work, (111)-oriented polytropism Al film with a thickness of 300 nm was first coated on glass substrate by the RF magnetron sputtering, and then c-axis oriented GaN film with good crystal quality was deposited on the as-coated Al film on glass substrate, using the electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) at low temperature. During the deposition, Trimethyl-gallium (TMGa) and high purity N2 were employed as Ga and N sources, respectively, and high purity H2 was used as carrier gas. Finally, the effect of substrate nitriding time, Trimethyl-gallium (TMGa) flow rate, deposition temperature on the GaN film quality was systemically studied using in-situ reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrum (Raman), and the optimizing deposition parameters for GaN films deposition on Al-coated glass substrates can be confirmed. The results show that the crystalline characteristics of prepared GaN films is better if Al-coated glass substrate is smooth, the Al films are nitrided one hour,the TMGa flow rate is 2.0sccm and the deposition tempurature is 430℃or 470℃, all other parameters are left unchange.
引文
[1]Fewster P F, Andrew N L, Foxon C T. Microstructure and composition analysis of group III nitrides by X-ray scattering [J]. J. Cryst. Growth.,2001,230 (3-4):398-404.
    [2]王文彦.玻璃衬底上低温沉积GaN薄膜及其性能分析[D].大连:大连理工大学出版社,硕士论文,2008.
    [3]孙剑.金刚石基片上压电薄膜的制备及其生长特性研究[D].大连:大连理工大学出版社,博士论文,2008.
    [4]Maruska H P, Tietjen J J. The preparation and progerties of vapor-deposited single-crystalline GaN [J]. Appl.Phys. Lett.,1969,15(10):327-329.
    [5]Karpinski J, Porowski S. High Pressure Thermodynamics of GaN [J]. J. Cryst. Growth. 1984,66:11-14.
    [6]Binari S C, Dietrich H C. GaN and Related Materials [M].New York,1997:509-510.
    [7]Nakamura. S, Mukai T, Senoh M. Si and Ge doped GaN films grown with GaN buffers layers [J]. J.Appl. Phys.,1992,31:2883-2889.
    [8]Amano H, Sawaki N, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energyelectron beam irradiation [J]. J. Appl. Phys.,1989,28:L2112-2114.
    [9]Shuji N, Masayuki S, Shin-ichi N, et al. Characteristics of InGaN multi-quantum-well-structure laser diodes [J]. Appl.Phys. Lett.,1996,68(23):3269-3271
    [10]Dingle R, Ilegems M. Donor-acceptor pair recombination in GaN [J]. Solid State Commun,1971,9(3):175-180.
    [11]Pankove J I, Berkeyheiser J E, Maruska H P, et al. Luminescent properties of GaN [J]. Solid State Commun,1971,8(13):1051-1053.
    [12]Monemar b. Fundamental energy gap of GaN from photoluminescence excitation spectra [J]. Phys Rev B,1974,10(2):676-681.
    [13]Camphausen D L, Connell G A N. Pressure and temperature dependence of the absorption edge in GaN [J]. J. Appl. Phys.,1971,42(11):4438-4443.
    [14]Morkoa H, Strite S, Gao G B, et al. Large-band-gap SiC III-V nitride and II-VI Ense-based semiconductor device techenologies [J]. J. Appl. Phys.,1994,76(3): 1363-1399.
    [15]郑有炓,沈波,施洪涛等.GaN基蓝光器件的研究进展[M].光电子技术,1996,16(4):286-292.
    [16]Liang C C, Zhang J. GaN-Dawn of 3rd-Generation-Sem iconductors [J]. Chinese Journal of Semiconductor.1999,20(2):89-99.
    [17]Nakamura S, Senoh M, Nagahama S, et. al. InGaN-based Multi-quantum-well-structure laser diodes [J]. J. Appl. Phys.,1996,35:74-75.
    [18]Nakamura S, Senoh M, Nagahama S, et. al. Continuous-wave operation of InGaN/GaN/ AlGaN based laser diodes grown on GaN substrates [J]. Appl. Phys. Lett.,1998,72: 2014-2016.
    [19]Mukai T, Nagahama S, Iwasa N, et al. Proc In:China-Japan Workshop on Nitride Semiconductor Materials and Devices [C].12-17 March, Shanghai, P. R. China,2001, 96-99.
    [20]李雪,陈俊,何政两种结构基太阳盲紫外探测器[J].激光与红外,2006,36(11):1040-1042.
    [21]Nishimura k, Shigekawa n, Yokoyama h, et al. SAW characteristics of GaN with n-GaN IDTs [J]. Electron Lett,2006,42:62.
    [22]Omkar J, Ferguson i, Christiana H, et al. Design and characterization of GaN/InGaN solar cells [J]. Appl. Phys. Lett.,2007,91(13):132117-1-3.
    [23]Noriyuki Kuwano, Tadayoshi Shiraishi, Akihiro Koga, et al. Cross-sectional TEM study of microstructures in MOVPE GaN films grown on α-A12O3 with a buffer layer of AlN [J]. J. Cryst. Growth.,1991,115(1-4):381-387.
    [24]Kazuyuki Tamura, Yuichiro Kuroki, Kanji Yasui, et al. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD [J].Thin Solid Films.,2008, 516(5):659-662.
    [25]El-Naggar A M, El-Zaiat S Y, Saleh M Hassan. Optical parameters of epitaxial GaN thin film on si substrate from the reflection spectrum [J]. Optics & Laser Technology.,2009,41(3):334-338.
    [26]Brajesh S.Yadav, Sukhvinder Singh, Tapas Ganguli, et al. Highly oriented GaN films grown on ZnO buffer layer over quartz substrates by reactive sputtering of GaAs target [J].Thin Solid Films.,2008,517(2):488-493.
    [27]Hiroki M, Asahi H, Tampo H, et al. Improved properties of polycrystalline GaN grown on silica glass substrate [J]. J. Cryst.Growth.,2000,209:387-391.
    [28]王文彦,秦福文,吴爱民等.玻璃衬底上低温沉积GaN薄膜研究[J].半导体技术,2008,33(10):880-884.
    [29]Chu C F, Lai F I, Chu J T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique [J]. J. Appl. Phys.,2004,95(8):3916-3922.
    [30]Hiroki M, Asahi H, Tampo H, et al. Improved properties of polycrystalline GaN grown on silica glass substrate [J]. J. Cryst. Growth,2000,209:387-391.
    [31]Hamdani F, Yeadon M, Smith D J, et al. Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy [J]. J. Appl. Phys.,1998,83 (2):983-990.
    [32]Lazarov V K, Zimmerman J, Cheung S H, et al. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO (111) [J]. Phys. Rev. Lett.,2005,94(216101):1-4.
    [33]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [34]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991.
    [35]Lee H, Harris J S. Vapor phase epitaxy of GaN using GaC13/N-2 and NH3/N-2 [J]. J. Cryst. Growth.,1996,169:689-696.
    [36]Chu T L, Ito K, Smeltzer R K, et al. Crystal Growth and Characterization of Gallium Nitride [J]. J. Electrochem. Soc.,1974,121(1):159-162.
    [37]Amano H, Swakai N, Akasaki I et al. Metalorganic vapor-phase epitaxial-groth of a high-quality GaN film ueing an ain buffer layer [J]. Appl. Phys. Lett., 1986,48:353-355.
    [38]Park SE, Kim DJ, Woo SG, et al. Growth parameters for polycrystalline GaN on silica substrates by metalorganic chemical vapor deposition [J]. J. Cryst. Growth.,2002, 242:383-388.
    [39]吴刚.材料结构表征及应用[M].北京:化学工业出版社教材出版中心,2002.
    [40]刘琨.近场表面增强拉曼散射实验技术与血清分析的研究[D].大连:大连理工大学出版社,博士论文,2008.
    [41]徐茵,顾彪,秦福文等.GaN薄膜低温外延的ECR-PAMOCVD技术[J].半导体技术.1998,23(1):37-39.
    [42]Koleske D D, Wickenden A E, Henry R L, et al. Growth model for GaN with comparison to structural, optical, and electrical properties [J]. J. Appl. Phys.,1998,84(4): 1998-2010.
    [43]Kuyyadi P Biju, Subrahmanyam A, Mahaveer K.Jain. Low-temperature growth of polycrystalline GaN films using modified activated reactive evaporation [J]. J. Cryst.Growth.,2009,311(8):2275-2280.
    [44]Perlin P, Grzegory I, Polian A et al. Raman scattering and x-ray-absorption in gallium nitride under high pressure [J].Phys Rev. B.,1992,45(1):83-89.
    [45]Melnik Y V, Vassilevski K V, Nikitina I P, et al. Physical properties of bulk GaN crystals grown by HVPE [J]. J. Nitride Semicond Res.,1997,2:39.
    [46]Kozawa T, Kachi T, Kano H, et al. Raman scattering from LO phonon-plasmon coupled modes in gallium nitride [J]. J. Appl. Phys.,1994,75(2):1098-1101.
    [47]Yam F K, Hassan Z. Structural and optical characteristics of porous GaN generated by electroless chemical etching [J]. Materials Letters.,2009,63(8):724-727.
    [48]Arguello C A, Rousseau D L, Porto S P S. First-order raman effect in wurtzite-type crystals [J]. Phys. Rev.,1969,181(3):1351-1363.
    [49]Limmer W, Ritter W, Sauer R, et al. Raman scattering in ion-implanted GaN [J]. Appl. Phys. Lett.,1998,72(20):2589-2591.
    [50]Wang Y G, Lau S P, Lee H W, etal. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature [J].J. Appl. Phys.,2003,94(3): 1597-1604.
    [51]Ibanez J, Pastor D, Alarcon-Llado E, et al. Raman scattering study of undoped and as-doped GaN grown with different Ⅲ/V ratios [J]. Semicond.Sci Technol. 2007,22(10):1145-1150.
    [52]Young W T, Silva S R P, Benyoucef M, et al. The growth of gallium nitride films produced by reactive sputtering at low temperature [J]. Phys. Stat. Sol. (a).,1999, 176(1):319-322.
    [53]Nakamura S, Mukai T, Senoh M. Insitu monitoring and hall measurements of GaN grown with GaN buffer laywers [J]. J. Appl. Phys.,1992,71(11):5543-5549.
    [54]Lin H C, Ou J, Chen W K, et al. Crystalline structure changes in GaN films grown at different temperatures [J]. J. Appl. Phys., Part2,1997,36:598-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700