用户名: 密码: 验证码:
管板电阻点焊熔核形成机理及特征分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们对环境问题认识的不断深入和对安全性要求的不断提高,汽车车身构造和材料正在发生巨大变化。为了进一步实现车身轻量化和节能减排,液压成形管和高强钢等轻量化结构件与材料在车身中的应用日趋广泛。电阻点焊工艺由于其高效率、低成本的突出优点仍是现阶段连接液压成形管与高强钢材料的首选工艺方法,然而,在管板电阻点焊过程中,由于管件的刚度较小,焊接过程中会产生较大的焊接变形,易形成椭圆形熔核,变形严重时甚至出现裂纹等缺陷;同时,受高强钢自身材料性能的影响和零部件间搭接宽度的制约,传统高强钢焊点尺寸规范难以满足焊点接头强度要求,必须通过增加焊点数量来保证熔核质量,而椭圆形熔核通过控制熔核的长宽比,能在不增加焊点数量的前提下稳定高强钢点焊熔核质量。目前对椭圆形熔核的生成方法及其对焊点质量的影响仍未进行深入系统的研究,因此,本文针对椭圆形熔核的形成机理、焊接质量以及特征分析方法展开相关的研究工作,具有重要意义和研究价值。
     基于上述研究背景和目标,本文首先建立用于获取椭圆形熔核的点焊试验系统,应用数值分析方法建立电阻点焊椭圆形熔核形成过程的三维有限元模型,揭示椭圆形熔核形成机理,并建立熔核长度与临界试样尺寸的logistic回归模型,为焊点间距的选取提供依据。通过拉剪测试的数值模拟和拉丁正交试验设计,建立椭圆形熔核几何尺寸、材料属性与拉剪强度的关系模型,实现对椭圆形熔核拉剪强度的定量预测。基于对高强钢板板点焊椭圆形熔核研究结果,进一步分析管板单面电阻点焊椭圆形熔核质量问题,研究工艺参数和结构尺寸对椭圆形熔核质量的影响规律,提出基于电极位移曲线的熔核生成过程和管体变形过程的有效分离方法,实现了管板点焊椭圆形熔核特征分析,为管板单面点焊焊接质量监控奠定基础。本文主要开展的研究工作如下:
     1.点焊椭圆形熔核形成过程数值仿真建模与临界尺寸试验
     为了获取不同尺寸的椭圆形熔核,分析熔核长度对高强钢点焊熔核拉剪强度和断裂失效模式的影响规律,本章首先建立用于获取点焊椭圆形熔核的试验系统,结合数值模拟研究椭圆形熔核形成过程机理,并验证电极端面尺寸与熔核形状的对应关系。然后通过拉剪测试试验研究和logistic回归分析方法,确定热镀锌双相钢DP600椭圆形焊点结构的临界试样宽度和临界试样厚度,以及它们与熔核长度、板材厚度的对应关系,并通过多点结构的拉剪测试进行验证。与圆形熔核相比,椭圆形熔核能够降低高强钢点焊结构发生分界面断裂失效的概率,增大焊点间距。
     2.点焊椭圆形熔核拉剪强度预测方法
     影响焊点拉剪强度的因素较多,不仅包括熔核几何尺寸,还包括焊件材料属性。为了分析焊点属性对椭圆形熔核拉剪强度的影响规律,本章建立了高强钢椭圆形焊点的拉剪测试数值仿真模型,确定了保证焊接质量的临界椭圆度,并结合拉丁正交试验设计方法,建立焊点几何参数和材料属性与拉剪强度的关系模型,实现对高强钢点焊椭圆形熔核拉剪强度的预测。
     3.工艺和结构参数对管板点焊椭圆形熔核影响试验研究
     由于车身结构零部件形状的复杂性,本章针对基于圆管的管板单面点焊连接方法展开研究。考虑管板的线接触状态和管材的对称性,设计开发了半圆形管材的加工模具以及相应的焊装夹具,建立管板单面点焊椭圆形熔核试验系统。由于管的内部缺乏有效支撑,在焊接过程中产生焊接变形,受结构形式非轴对称的影响,往往形成椭圆形环状熔核。本章首先通过金相试验和硬度分析,研究管板单面点焊的椭圆形熔核形态,以及焊接电流、焊接时间、电极力和电极错位等工艺规范对焊接变形和拉剪强度的影响。然后结合动态电阻分析,研究不同电极力、管材厚度和管材半径对管板单面点焊椭圆形熔核质量的影响规律。
     4.基于电极位移的管板单面点焊椭圆形熔核特征分析
     由于管板单面点焊特殊的结构形式,在电极力作用下发生焊接变形,而且容易出现虚焊、焊接飞溅或微裂纹等焊接缺陷,影响焊接质量。为了实现对管板单面点焊椭圆形熔核质量的特征分析,本章对总体电极位移曲线进行分解,建立管板单面点焊的三维有限元模型,确定焊接热量分配比例,分别获得相应的熔核生成过程和管体变形过程。通过对位移曲线分解结果的分析,可实现对虚焊、焊接飞溅和焊接微裂纹三种椭圆形熔核质量特征的分析。
     通过以上研究,本文结合数值仿真、试验设计和统计分析等方法,确定了熔核长度与临界试样尺寸的关系模型,有效增大了焊点间距,降低了断裂失效模式的发生。建立了焊点属性与椭圆形熔核拉剪强度的关系模型,实现了椭圆形熔核拉剪强度的定量评价。并在此基础上确定了不同工艺参数和结构尺寸对管板单面点焊椭圆形熔核质量的影响规律,提出了基于电极位移曲线的熔核生成过程和管体变形过程的有效分离方法,实现了管板点焊椭圆形熔核特征分析,为高强钢管板单面点焊工艺分析、参数选取以及焊接质量在线监控奠定基础,研究成果具有较高的理论基础和实际应用价值。
During the last few years, with the developments of the recognition of environmentsand the requirements for the safety, the automotive body structure and materials arechanging greatly. For vehicle lightweight and energy saving, hydroforming technique andhigh strength steels (HSS) have been widely used in vehicle structure. Because of highefficiency and low costs, resistance spot welding is the mainly method for joining.However, in sheet to tube spot welding, welding deformation often occurs because of lowtube stiffness, and elliptical nugget is formed even with cracks. Moreover, because ofmaterial properties and limitation for purpose of minimizing the weld flange, welds mustbe increased to assure welding quality. Through controlling the aspect ratio, ellipticalnugget can stabilize welding quality without increasing welds, and research on theinfluence of elliptical nugget on welding quality is seldom addressed. Therefore, in thepresent paper, research works are conducted on nugget formation mechanism and weldingquality inspection method of elliptical nugget.
     Based on the above backgrounds, experimental system of elliptical nugget isestablished firstly, and formation mechanism is studied by3D numerical simulation.Relationship between weld length and critical specimen size is determined combinedexperiments and logistic statistic analysis. Then relationships between weld attributes andwelding quality are established with numerical model of tensile-shear test and Latinhypercube design, and prediction of welding quality is achieved. Furthermore, ellipticalnugget size in sheet to tube spot welding is analyzed and influences of process andstructural parameters on welding quality are investigated. Last, decomposition of nuggetformation and tube deformation is proposed based on the electrode displacement, andcharacteristic of elliptical nugget can be analyzed, which provide reference for sheet totube spot welding quality control. Mainly research works are listed as follows
     1. Numerical simulation and experimental study on critical size of elliptical nuggetin spot welding
     In order to obtain elliptical nugget, experimental system of elliptical nugget isestablished, and formation mechanism is studied by simulation. Relationship betweenelectrode size and nugget shape is also verified. Combined experimental study and logisticanalysis, critical specimen sizes of DP600are determined and verified by multi-weldsstructure. Compared with circular nugget, elliptical nugget can minimize interfacialfracture and increase weld space.
     2. Prediction of tensile-shear strength for elliptical nugget
     There are many factors influenced tensile-shear strength, including nugget size andmaterial attributes. In order to analyze the effects of weld attributes on tensile strength,numerical model of tensile-shear test is established. The critical ellipticity is determinedand relationship between weld attributes and tensile strength is obtained. Last, ellipticalnugget size and influence of structural parameters on ellipticity are investigated further.
     3. Influence of process and structural parameters on elliptical nugget in sheet totube spot welding
     Sheet to cylindrical tube spot welding is investigated for complexity of vehiclecomponents. Manufacture dies and welding clamps are designed and experimental systemis established. Without support inside, welding deformation occurs and elliptical nugget isformed. The elliptical nugget is studied firstly by microstructure and hardness test.Influences of process parameters on welding deformation and tensile strength are alsoinvestigated. Then effects of electrode force, tube thickness and tube radius on ellipticalnugget welding quality are researched combined analysis of dynamic resistance.
     4. Characteristic analysis of elliptical nugget in sheet to tube single sided spotwelding based on electrode displacement
     Because of special structure, welding deformation happens in sheet to tube spotwelding, and cold weld, expulsion and crack often occur. In order to inspect weldingquality of elliptical nugget in sheet to tube spot welding, the electrode displacement isdecomposed, and nugget formation and tube deformation are obtained.3D finite elementmodel of sheet to tube spot welding is established and the proportion of welding energy isdetermined to get the course of nugget formation. Through analysis of electrodedecomposition, characteristic of welding defects in sheet to tube spot welding can be inspected.
     Based on research above, combined numerical simulation, experimental design andstatistical analysis, relationship between nugget length and critical specimen size isdetermined, and weld space can be increased and interfacial fracture can be improved.Relationships between weld attributes and tensile strength are also established, and tensilestrength is evaluated. The influence of process and structural parameters on ellipticalnugget quality in sheet to tube spot welding is analyzed. And decomposition of nuggetformation and tube deformation is proposed based on the electrode displacement toanalyze elliptical nugget characteristic, which provide reference for process analysis,parameter selection and quality control. Research results have high theory foundation andapplication value.
引文
[1] Tumuluru M., Resistance spot welding of coated high-strength dual-phase steels,Welding Journal,2006,86(8):31-37.
    [2]张译中,邱伍华,汽车零部件用高强度钢材的进展,上海金属,2000,22(4),8~15.
    [3]潘玲玲,曾顺民,高强度钢作为汽车轻质材料的应用,上海汽车,2005,8,41~43.
    [4]小宫幸久,汽车用钢铁材料的现状和发展动向,鞍钢技术,2004,4,65~67.
    [5] Dohmann F, Hartl Ch. Tube hydroforming-research and practical application [J].Journal of Materials Processing Technology,1997,71(1):174~186.
    [6] Michael G P, and Joseph M L. Closed tubular automobile parts demand innovativewelding methods [J]. Welding Journal,1997,76(10):55~58.
    [7] Sun P. C., Wang P. C., Sheet-to-tube resistance spot welding using servo gun, UnitedStates Patent,2006, US7,060,929B2.
    [8]中国机械工程学会焊接学会电阻焊(Ш)专业委员会.电阻焊理论与实践[M].北京:机械工业出版社,1994.
    [9] Aslanlar, S., The effect of nucleus size on mechanical properties in electricalresistance spot welding of sheets used in automotive industry, Materials and Design,2006,27(2):125~131.
    [10] Kaiser, J.G., Dunn, G. J., and Eagar, T. W., The effect of electrical resistance onnugget formation during spot welding, Welding Journal,1982,61(6):167s~174s.
    [11] Harlin, N., Jones, T. B., and Parker, J. D.,Weld growth mechanism of resistance spotwelds in zinc coated steel, Journal of Materials Processing Technology,2003,143-144:448~453.
    [12] Dorn, L., and Xu, P., Influence of the mechanical properties of resistance weldingmachines on the quality of spot welding. Welding and Cutting,1993,1,12–16.
    [13] Tang, H., Hou, W., and Hu, S. J.,et al, Influence of welding machine mechanicalcharacterisitcs on the resistance spot welding process and weld quality, WeldingJournal,2003,82(5):116s-124s.
    [14] Wu, P., Zhang, W., and Bay, N., Characterization of dynamic mechanical propertiesof resistance welding machines, Welding Journal,2005,84(1):17s-21s.
    [15] Williams, N. T., and Parker, J. D., Review of resistance spot welding of steel sheetsPart1Modeling and control of weld nugget formation. International MaterialsReviews,2004,49(2):45~75.
    [16] Holiday, R., Parker, J. D., and Williams, N. T., Electrode deformation when spotwelding coated steels, Welding in the World,1995,35(3):23~27.
    [17] Satoh, T., Katayama, J., and Okumura, S, Effects of mechanical properties of spotwelding machine on electrode life for mild steel, IIW Doc.,1988, No. Ⅲ-912-88.
    [18] Shriver, J., Peng, H., and Hu, S. J., Control of resistance spot welding, Proceedingsof the American Control Conference, San Diego,Califomia,1999,6:187~191.
    [19] Crinon, E., and Evans, J. T., The effect of surface roughness, oxide film thicknessand interfacial sliding on the electrical contact resistance of aluminum. MaterialsScience and Engineering,1998,242(1):121~128.
    [20] Li, W., Modeling and on-line estimation of electrode wear in resistance spot welding,ASME Journal of Manufacturing Science and Engineering,2005,127(11):709~717.
    [21] Dariusz. Dimensional variation reduction for automotive body assembly, ASME ofmanufacturing review,1995,8(2),139-154
    [22] Liu, S. C., Hu, S. J., Variation simulation for deformable sheet metal assembliesusing finite element methods. ASME Journal of Manufacturing Science andEngineering,1997,119(8),368-374
    [23] Nied., H. A.,The Finite Element Modeling of the Resistance Spot WeldingProcess.Welding Journal,1984,63(4):123~132.
    [24] Tsai, C. L., Jammal, O. A., and Papritan, J. C., etc, Modeling of Resistance SpotWeld Nugget Growth, Welding Journal,1992,71(2):47~54.
    [25] Browne, D.J., Chandler, H.W., Evans, J.T. etc. Computer simulation of resistancespot welding in aluminum: Part I.Welding Journal,1995,74(10):339~344.
    [26] Houchens, A. F., Kang, W. J., Numerical modeling of resistance spot welding,Numerical modeling of manufacturing process, Atlanda,1997,117-129.
    [27] Jamil. A. Soundik, et al., Numerical thermal model of resistance spot welding inAliminum, Journal of thermophysics and heat transfer,2000,14(1),88-95
    [28] De, A., and Theddeus, M. P., Finite element analysis of resistance spot weldingaluminum, Science and Technology of Welding and Joining,2002,7(2):111~118.
    [29] Sun, X., and Khaleel, M.A., Resistance spot welding of aluminum alloy to steel withtransition material-Part II: Finite element analyses of nugget growth. WeldingJournal,2004,83(7):197s~202s.
    [30]陆匠心,王利,应白桦等,高强度汽车钢板的特性及应用,汽车工艺与材料,2004,6,13~15.
    [31] ULSAB-AVC body structure materials, ULSAB-AVC Consortium, TechnicalTransfer Dispatch6[R]. SAE,2001.
    [32] Ma, C., Chen, D. L., Bhole, S. D., et al, Microstructure and fracture characteristics ofspot-welded DP600steel, Materials Science and Engineering A,2007,8:1~13.
    [33] Hilditch, T. B., Speer, J. G., and Matlock, D. K., Effect of susceptibility to interfacialfracture on fatigue properties of spot-welded high strength sheet steel, Materials&Design,2007,28(10):2566~2576.
    [34]马鸣图,吴宝榕,双相钢--物理和力学冶金,冶金工业出版社,北京,1988.
    [35] Ferrasse, S., Verrier, P., and Meesemaecker, F., Resistance spot weldability of highstrength steels for use in car industry, Welding in the World,1998,41(3):177~195.
    [36] Laurent, C., Ihsan, K. A., and Lucia, T. M., Improvement of weldability of TRIPsteels by use of in-situ pre-and post-heat treatment. Steel Research,2002,73(6-7):314~319.
    [37] Otani, T., Sasabe, K., Characteristics of resistance spot welds of ultra-fine grainedhigh strength steel sheets. Journal of the Japan Welding Society,2003,21(2):243~248.
    [38] Otani, T., Sasabe, K., Shiga, C.,etal, Characteristics of welds of high strength steelsheets with ultra-fine grained microstructure welded by resistance spot heatingmethod. Journal of the Japan Welding Society,2002,20(1):114~119.
    [39] Chao, Y. J., Ultimate strength and failure mechanism of resistance spot weldsubjected to tensile, shear or combined tensile/shear loads. Journal of EngineeringMaterials and Technology,2003,125(4):125-132.
    [40] Milititsky, M., Pakalnins, E., Jiang, C. H., et al, On characteristics of DP600resistance spot welds, Journal of Materials&Manufacturing,2004,112,244~251.
    [41] Marya, M. and Garyden, X. Q., Development of requirements for resistance spotwelding dual-phase (DP600) steels Part I—the causes of interfacial fracture.Welding Journal,2005,84(11):172s-182s.
    [42] Marya, M., and Gayden, X., Development of requirements for resistance spotwelding of dual-phase steels DP600—Part II: statistical analyses, WeldingJournal,2005,84(12):197s~204s.
    [43] Lin, S. H., Pan, J., and Wu, S. R., et al, Failure Loads of Spot Welds underCombined Opening and Shear Static Loading Conditions, International Journal ofSolids and Structures,2002,39(1),19~39.
    [44] Wung, P., Walsh, T., Ourchane, A., Stewart, W. and Jie, M., Failure of spot weldsunder in-plane static loading, Experimental Mechanics,2001,41,100~106.
    [45] Lee, H., Kim, N., Lee, T. S., Over load failure curve and fatigue behavior ofspot-welded specimens, Journal of Engineering Fracture Mechanics,2005,72(8),1203~1221.
    [46] Kafkalidis, M. S., and Thouless, M. D., The effects of geometry and materialproperties on the fracture of single lap-shear joints, International Journal of Solidsand Structures,2002,39(17):4367~4383
    [47] Koenigsberger, F., Design for Welding in Mechanical Engineering, Longmans, Gree,and Co.,1948, pp.81~91.
    [48] American Welding Society:‘Recommended practices for test methods for evaluatingthe resistance spot welding behavior of automotive sheet steel materials’,ANSI/AWS/SAE/D8.9-97,1997.
    [49] Sparagen, W., and Cordovi, M. A., Mechanical characteristics of resistance welds inplain carbon steels. Welding Journal,1944,23(7):305s~343s.
    [50] Keller, F., and Smith, D. W., Correlation of the strength and structure of spot weldsin aluminum alloys. Welding Journal,1944,23(1):23s~26s.
    [51] McMaster, R. C., and Lindrall, F. C., The interpretation of radiographs of spot weldsin alclad24S-T and75S-T aluminum alloys. Welding Journal,1946,25(8):707s~723s.
    [52] Thornton, P. M., Krause, A. R., and Davies, R. G., The aluminum spot weld. WeldingJournal,1996,75(3):101s~108s.
    [53] Heuschkel, J., Some metallurgical aspects of carbon steel spot welding, WeldingJournal,1947,26(10):560s~582s.
    [54] Heuschkel, J., The expression of spot-weld properties. Welding Journal,1952,31(10):931s~943s.
    [55] Sawhill, J. M., and Baker, J. C. Spot weldability of high-strength sheet steels.Welding Journal,1980,59(1):19s~30s.
    [56] Rivett, R. M., Final contract report: resistance spot welding of steel sheet (for theEuropean Coal and Steel Community). The Welding Institute,1982, Report3570/7/81.
    [57] Zhou, M., Hu, S. J., and Zhang, H., Critical specimen sizes for tensile-shear testingof steel sheets. Welding Journal,1999,78(9):305s~313s.
    [58] Zhou M, Zhang H and Hu S J. Relationship between quality and attributes of spotwelds. Welding Journal,2003,82(4):72s~77s.
    [59] Sun, X. and Dong, P. Analysis of aluminum resistance spot welding processes usingcoupled finite element procedures. Welding Journal,2000,79(8):215s~221s.
    [60] Sun, X., Stephens, E. V., and Davies, R. W., et al, Effects of fusion zone size onfailure modes and static strength of aluminum resistance spot welds, WeldingJournal,2004,83(11):308s~318s.
    [61] Marya, M., Wang, K. Lousi, G. Hector, et al. Tensile-shear forces and fracture modesin single and multiple weld specimens in dual-phase steels. Journal ofManufacturing Science and Engineering,2006,128(2):287~298.
    [62] Pouranvari, M., Asgari, H. R., Mosavizadch, S. M., et al. Effect of weld nugget sizeon overload failure mode of resistances spot welding. Science and Technology ofWelding and Joining,2007,12(3):217~225.
    [63] Zuniga, S. M., and Sheppard, S. D., Determining the constitutive properties of theheat-affected zone in a resistance spot weld. Modeling&Simulation in MaterialsScience&Engineering,1995,3(3):391~416.
    [64] Gao, Z., and Zhang, K., Comparison of the fracture and fatigue properties of16MnRsteel weld metal, the HAZ and the base metal. Journal of Materials ProcessingTechnology,1997,63(1):559~562.
    [65] Radaj, D, Soegiharto, S., Structural concentration at spot welded joints:improvedmodel,comparison of results, stress singularity. Welding in the World,1990,28(9/10):183~189.
    [66] Satoh, T., Abe, H., Nishikawa, K., and Morita, M. On three-dimensionalelastic-plastic stress analysis of spot-welded joint under tensile shear load,Transactions of the Japan Welding Society,1991,22(1):46~51.
    [67] Kalpakjian, S., Manufacturing Processes for Engineering Materials, Addison-Wesley,1997.
    [68] Zuniga, S., M., and Sheppard, S. D., Determining the constitutive properties of theheat-affected zone in a resistance spot weld, Modeling&Simulation In MaterialsScience&Engineering,1995,3(3):391~416.
    [69] Bourges, P. H., Jubin, L., and Bocquet, P., Prediction of mechanical properties ofweld metal based on some metallurgical assumptions. Mathematical Modelling ofWeld Phenomena, ed. H. Cerjak, Institute of Materials, London,1995,pp.201~212.
    [70] Chang, B. H., Shi, Y. W., and Dong S. J., Comparative studies on stresses inweld-bonded, spot-welded and adhesive-bonded joints, Journal of MaterialsProcessing Technology,1999,87(1-3):230~236.
    [71]常保华,史耀武,董仕节日,汽车钢板胶焊接头的计算模型及其应力场特征研究,机械工程学报,1999,35(2):92~96.
    [72] Darwish, S. M., Weldbonding strengthens and balances the stresses in spot-weldeddissimilar thickness joints, Journal of Materials Processing Technology,2003,134(3):352~362.
    [73] Darwish, S. M., and Al-Samhan, A. M., Peel and shear strength of spot-welded andweld-bonded dissimilar thickness joints, Journal of Materials Processing Technology,2004,147(1):51~59.
    [74] Al-Samhan, A. M., and Darwish, S. M., Finite element modeling of weld-bondedjoints, Journal of Materials Processing Technology,2003,142(3):587~598.
    [75] Zhou, B., Thouless, M. D., and Ward, S. M., Predicting the failiure of ultrasonic spotwelds by pull-out from sheet metal, International Journal of Solids and Structures,2006,43(25-26):7482~7500.
    [76] Cavalli, M. N., Thouless, M. D. and Yang, Q. D., Cohesive-zone modeling of thedeformation and fracture of weld-bonded joints, Welding Journal,2004,83,133s~139s.
    [77] Cavalli, M. N. and Thouless, M. D., Cohesive-Zone modeling of the deformationand fracture of spot-welded joints, Fatigue and Fracture of Engineering Materialsand Structures,2005,28(10):861~874.
    [78] Chabanet, O., Steglich, D., and Besson, J., et al, Predicting crack growth resistanceof aluminum sheets, Computational Materials Science,2003,26,1~12.
    [79] Lin, S. H., Pan, J, Tyan, T. and Prasad, P., A general failure criterion for spot weldsunder combined loading conditions, International Journal of Solids and Structures,2003,40,5539~5564.
    [80] Zhang, S., Approximate stress formulas for a multiaxial spot weld specimen,Welding Journal,2001,80(8),201s~203s.
    [81] Bang, H. S., Joo, S. M., and Kim, J. M.,et al, Mechanical characteristics of resistancemultispot welded joints, Science and Tchnology of Welding andJoining,2003,8(5):369~376.
    [82]李银平,吴翔宇,多点焊拉剪搭接接头构件的有限元分析,岳阳师范学院学报,2000,13(1):43~45.
    [83]吴翔宇,李春植,揭敏,多点焊拉剪搭接接头构件的最佳焊点间距研究,机械强度,1997,19(2):73~76.
    [84] Park, S. W.,and Na, S. J., A new current measurement method in resistance spotwelding,IEEE Transactions on Instrumentation and Measurement,1990,39(5):767~772.
    [85] Araki, K., Chen, X., Application of a model reference fuzzy adaptive control to thespot welding system, Pro.35th SCIE International Session Annual Conference,Tottori Japan,1996,7,1139~1144.
    [86] Chen, X., Araki, K., and Mizuno, T., Modeling and fuzzy control of the resistancespot weldin process, Pro.36th SCIE International Session Annual Conference,Tokushima,1997,7,989~994.
    [87] Waller, D. N., and Knowlson, P. M., Electrode separation applied to quality controlin resistance welding. Welding Journal,1965,44(12):168s~174s.
    [88] Tasi, C. L., Dai, W. L., Dickinson, D. W., et al. Analysis and development of a real-time control methodology in resistance spot welding. Welding Jouranl,1991,70(12):339s~351s.
    [89] Cho, H. S., and Chun, D. W., A microprocessor-based electrode movementcontroller for spot weld quality assurance. IEEE Transactions on IndustrialElectronics,1985, IE-32(3):234~238.
    [90] Wood, R. T., Bauer, J. F., and Bernstein, J., et al, A closed-loop control system forthree-phase resistance spot welding. Welding Journal,1985,64(12):26–30.
    [91] Chang, H. S., Cho, Y. J., and Choi, S. G.,et al, A proportional-integral controller forresistance spot welding using nugget expansion. ASME Journal of DynamicSystems, Measurement, and Control,1989,111:332–336.
    [92] Haefner, K., Carey, B., and Bernstein, B.,et al, Real time adaptive spot weldingcontrol. ASME Journal of Dynamic Systems, Measurement, and Control,1991,113(3):104–112.
    [93] Gedeon, S. A., Sorensen,C. D.,and Ulrich K. T., et al, Measurement of dynamicelectrical and mechanical properties of resistance spot welds, Welding Journal,1987,66(12):378s-385s.
    [94] James, P. S., Chandler, H. W., and Evans, J. T., et al, The effect of mechanicalloading on the contact resistance of coated aluminium, Materials Science andEngineering,1997,230(1-2):194~201.
    [95] Brown, J. D., Rodd, M. G., and Williams, N. T., Applicaton of artificial intelligencetechniques to resistance spot welding, Ironmaking&Steelmaking,1998,25(3):199~204.
    [96] Wang, S. C., and Wei, P. S., Modeling dynamic electrical resistance during resistancespot welding, ASME Journal of Heat Transfer,2001,123(6):576~585.
    [97] Dickinson, D. G., Dunn, G. J. and Eagar, T. W. The effct of electrical resistance onnugget formation during spot welding. Welding Journal,1982,61(6),167s~174s.
    [98] Gould, J. E. An examination of nugget development during resistance spot weldingusing both experimental and analytical techniques. Welding Journal,1987,66(1),1s~10s.
    [99] Thornton, P. H., Krause, A. R., and Davies, R., G., Contact resistance of aluminum,Welding Journal,1997,76(8):331~341.
    [100]Chang, B. H., and Zhou, Y., Numercial study on the effect of electrode force insmall-scale resistance spot welding, Journal of Materials Processing Technology,2003,139(1-3):635~641.
    [101]Notvest, K. R., Acoustic Emission Spot Welding Controller. U.S. Patent,1974, No.3.824.377.
    [102]Vahaviolos, S. J., Adaptive spot weld feedback control loop via acoustic emission.Material Evaluation,1981,10:1057~1080.
    [103]Lee, H., Wang, M., and Maev, R., etal, A study on using scanning acousticmicroscopy and neural network techniques to evaluate the quality of resistance spotwelding, The International Journal of Advanced Manufacturing Technology,2003,22(11):727~732.
    [104]Brian, R., Advances in resistance welding for body-in-white, Assembly Automation,2003,23(2):159~162.
    [105]Jou, M., Real time monitoring weld quality of resistance spot welding for thefabrication fo sheet metal assemblies, Journal of Materials Processing Technology,2003,132:102~113.
    [106]Farson, D. F., Chen, J. Z., and Ely, K.,et al, Monitoring resistance spot nugget sizeby electorde displacement, ASME Journal of Manufacturing Science andEngineering,2004,126(5):391-394.
    [107]Hao, M., Osman, K. A., et al, Development in characterization of resistance spotwelding of aluminum, Welding Journal,1996,75(1):1~8.
    [108]Li, W., Hu, S. J. and Ni, J., On-line quality estimation in resistance spot welding.ASME Journal of Manufacturing Science and Engineering,2000,122(8):511~512.
    [109]Li, W., Mornitoring and diagnosis of resistance spot welding process, Degree ofdoctor of philosophy in the university of Michigan,1999.
    [110]Li, W., Chen, S. W. and Hu, S. J., et al, Statistical investigation on resistance spotwelding quality using a two-state, sliding-level experiment, ASME Journal ofManufacturing Science and Engineering,2001,123(8):513~520.
    [111]Li, W., Chen, S. W. and Hu, S. J., et al, Robost design and analysis formanufacturing process with parameter interdependency,Journal of ManufacturingSystem,2002,21(2):93~100.
    [112]Cho, Y., Hu, S. J., and Li, W., Resistance spot welding of aluminium and steel:Acomparative experimental study, Proceedings of the Institution of MechanicalEngineers Part B: Jouranl of Engineering Manufactrue,2003,217(10):1355~1363.
    [113]Lee, S. R., Choo, Y. J., and Lee, T. Y., et al, A quality asurance technique forresistance spot welding using a neruo-fuzzy algorithm. Journal of ManufacturingSystems,2001,20(5):320~328.
    [114]Lee, S. R., Choo, Y. J., and Lee, T. Y., et al, Neuro-fuzzy algorthm for qualityassurance of resistance spot welding, Indursty Applications Conference,2000,1210~1216.
    [115]Cho, Y., and Rhee, S., Primary circuit dynamic resistance monitoring and itsapplication to quality estimation during resistance spot welding. Welding Journal,2002,81(6):104s-111s.
    [116]Cho, Y., and Rhee, S., Quality estimation of resistance spot welding by using patternrecogniton with neural networks, IEEE Transactions on Instrumentation andMeasurement,2004,53(2):330~334.
    [117]Cho, Y., Kim, Y., and Rhee, S., Development of a quality estimation model usingmultivariate analysis during resistance spot welding, Proceedings of the I MECH Epart B Journal of Engineering Manufacture,2001,215(11):1529~1538.
    [118]Cho, Y., and Rhee, S., Experimental study of nugget formation in resistance spotwelding, Welding Journal,2003,82(8):195s-201s.
    [119]Chien, C.-S., Kannatey-asibu E., JR., Investigation of monitoring systems forresistance spot welding. Welding Journal,2002,81(9):195s-199s.
    [120]Ji, C. T., Zhou, Y., Dynamic electrode force and displacement in resistance spotwelding of aluminum. Journal of Manufacturing Science and Engineering,2004,126(8):605-610.
    [121]Park, Y. J., AND Cho, H., Quality evaluation by classification of electrode forcepatterns in the resistance spot welding process using neural networks. Proceedingsof the I MECH E part B Journal of Engineering Manufacture,2004,218(11):1513~1524.
    [122]Zhang, H., Hu, S. J., and Senkara, J., A statistical analysis of expulsion limits inresistance spot welding, ASME Journal of Manufacturing Science and Engineering,2000,122(8):501~510.
    [123]Senkara, J., Zhang, H., and Hu, S. J., Expulsion prediction in resistance spot welding,Welding Journal,2004,83(4):123s~132s.
    [124]胡德安,郑如忠,罗贤星等,点焊质量控制方法的研究,航空学报,1996,17(4):421~425.
    [125]胡德安,郑如忠,冀殿英,电阻点焊电极位移监测系统的研究,南昌航空工业学院学报,1995,1:16~22.
    [126]罗贤星,邓黎鹏,张晨曙等,铝合金点焊过程中影响因素的特征判识与熔核尺寸的评估,焊接学报,2005,26(7):37~43.
    [127]方平,熊丽云,潭义明,人工神经网络技术在电阻点焊质量监控中的应用研究和展望,焊接技术,1999,4(2):39~44.
    [128]方平,熊丽云,林一松等,点焊电流有效值神经网络实时计算方法研究,机械工程学报,2004,40(11):148~152.
    [129]常云龙,薛家祥,黄石生,机器人点焊多信息融合及控制,焊接学报,2000,21(2):85~89.
    [130]常云龙,黄石生,余文松等,热膨胀电极位移法用于机器人点焊过程的研究,机器人,1999,21(2):134~138.
    [131]张忠典,李冬青,基于回归分析理论的点焊质量监测模型,焊接学报,2001,22(4):31~35.
    [132]张忠典,李冬青,赵洪运等,建立点焊质量神经网络监测模型时作用函数的选取,焊接学报,2002,23(3):59~62.
    [133]Slavick S. A. Using servoguns for automated resistance welding. Welding Journal,1999,78(7):29-33.
    [134]Tang, H., Hou, W.,and Hu, S. J.,Forging force in resistance spot welding,Proceedings of the I MECH E part B Journal of Engineering Manufacture,2002,216(7):957~968.
    [135]Julio V., Advances in robotic welding technology, Welding Journal,2005,85(1):28-30.
    [136]李永兵,感应磁场作用下电阻点焊熔核长大过程研究,上海交通大学博士学位论文,2005
    [137]John. Neter, William. Wasserman, Applied linear regression models [M], Richard D.Irwin, INC.,1983.
    [138]Koehler, J. R., and Owen, A. B., Computer experiments in Design and Analysis ofExperiments. North-Holland, Amsterdam,1996,261~308.
    [139]Ye, K. Q., Orthogonal column Latin hypercubes and their application in computerexperiments. Journal of the American Statistical Association,1998,93(444):1430~1439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700