用户名: 密码: 验证码:
能源材料Al/Ni复合物快速放热和g-C_3N_4光解水性能的理论模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能材料与新能源材料对于提高社会的经济发展和改善环境非常重要。含能材料Al/Ni复合物的快速放热性能与新能源材料g-C_3N_4的光解水的性能是关乎大规模开发应用的关键。本文采用分子动力学模拟对含能材料Al/Ni复合物的快速放热性能和第一性原理计算和分子动力学模拟对新能源材料g-C_3N_4的光解水的性能进行了系统研究,理论模拟研究得到以下结论:
     分子动力学模拟的结果表明:纳米结构Al/Ni(原子配比分别为1:1)涂层颗粒体系的点火温度约为913K。增加Al/Ni涂层颗粒的尺寸,体系的绝热温度升高,压强升高而反应波前的传播速度减小。增大热加载的温度或体系质量密度,体系的绝热温度,压强与反应波前的传播速度都增加。Al/Ni(原子配比分别为1:1)涂层颗粒的反应波前是从热加载区域向周围逐渐传播的。在纳米结构Al/Ni(原子比率为1:3)涂层颗粒体系的反应过程中,会经历形成中间产物过程:首先形成富铝化合物,然后过渡为NiAl复合物,最终反应的产物为Ni3Al复合物。热加载结束后的第一阶段,反应波前的传播表现为质量输运控制,即准连续燃烧模式在反应波前的传播中起着控制作用。对于涂层颗粒较大的体系(Al颗粒尺寸大于4nm),反应的过程中出现NiAl析出相,表明了纳米结构Al/Ni(原子比率为1:3)涂层颗粒体系在生成产物为Ni3Al复合物的过程中有中间产物NiAl复合物。在最后阶段,中间产物NiAl复合物也逐渐转变成最终产物Ni3Al复合物。
     使用“参数连续优化”方法在基于密度泛函理论的第一性原理的计算结果与实验值作为参考数据优化了铜的ReaxFF力场参数。优化铜的ReaxFF力场参数的训练基主要包含铜单质的A15、面心立方、体心立方及简单立方几种结构的状态方程,还包含铜单质的体积模量、晶格能和铜二聚体的解离曲线。对铜的ReaxFF力场参数的具体的验证计算包含了缺陷形成能、表面能及熔点。铜的ReaxFF力场参数描述铜的缺陷形成能、表面能及熔点的计算结果与文献上报道的结果符合较好。
     采用第一性原理研究了g-C_3N_4单层的结构稳定性和电子结构性质以及水在g-C_3N_4单层上的吸附性质以及缺陷对水的吸附的影响。计算结果表明:g-C_3N_4单层既可以为平面结构也可以为弯曲褶皱结构,弯曲褶皱结构的g-C_3N_4单层更稳定。水分子在平面结构的g-C_3N_4单层的一侧吸附时,平面结构的g-C_3N_4单层随即转变为弯曲褶皱的结构;水分子在平面结构的g-C_3N_4单层的两侧对称吸附时,平面结构的g-C_3N_4单层可以继续保持其平面结构。平面结构的g-C_3N_4单层是间接带隙半导体,而弯曲褶皱结构的g-C_3N_4单层为直接带隙半导体,具有更好的光吸收。水优先吸附在弯曲褶皱结构的g-C_3N_4单层的内在空位处。吸附的水分子可以降低g-C_3N_4单层的价带顶与导带底,这可以促进劈裂水生成氧气的效率。水的单体、二聚体、三聚体及四聚体在g-C_3N_4单层缺陷处都可以与g-C_3N_4单层以共面形式形成稳定的吸附结构。吸附能的结果对比:包含分子间氢键较多的水的团簇在缺陷处的结构更加稳定。分子动力学模拟结果表明:水在完美的g-C_3N_4单层上不发生解离,在带缺陷的g-C_3N_4单层上的缺陷处发生解离。水/g-C_3N_4单层界面处存在两种不同的吸附层。距离g-C_3N_4单层最近的水主要是吸附在g-C_3N_4单层固有的空位处,两个氢原子与g-C_3N_4单层固有的空位相互作用。距离g-C_3N_4单层次近的水层的结构是水分子中的一个氢氧键几乎垂直指向g-C_3N_4单层。水在g-C_3N_4单层的缺陷处的解离是首先水分子在缺陷处吸附,然后通过水分子的氢键缔合在解离时形成水分子与羟基结合的过渡态结构,解离的氢原子吸附在缺陷处的氮原子上。缺陷对于水分子的解离具有很强的促进作用。计算结果不仅可以为设计优良性能的光催化剂提供帮助,而且对于了解水在g-C_3N_4单层的吸附与解离机理提供有价值的参考。
With the progress in computer technology and numberical methods, moleculardynamics simulation and first-principles calculations have become the powerful toolsfor investigation of material properities and greatly promote the progress ofcomputational materials science. The results obtained from researches are thefollowings:
     Molecular dynamics simulations indicate that the ignition temperature is at about913K. Reducing the size of Al/Ni clad particles makes the propagation velocity ofreaction front increase but lowers both the adiabatic combustion temperature andpressure of the system. However, increasing either mass density or ignitiontemperature makes the propagation velocity of reaction front increase and raises theadiabatic temperature and pressure as well. The NiAl compound is an intermediateproduct in the reaction of Al/Ni (atomic ratio1:3) clad particles. The effect ofparticle size on the propagation of reaction is considered. For the system with largerparticle size (>4nm), part of the NiAl compound forms the phase of B2―NiAl bynucleation. The presence of NiAl precipitate retards the propagation of reaction. Theformation of the NiAl phase is dependent on the temperature below a certainthreshold. For longer time, the phase of B2―NiAl gradually transforms into Ni3Alcompound that is the final product of Al/Ni (atomic ratio1:3) clad particles.
     Using method we optimized the force field parameters of copper based on theexperimental and theoretical value. The training sets include the volume module,lattice energy, dissociation energy of copper dimer.and the equation of state (EOS) ofA15, fcc, bcc, and sc phase and so on. To ensure reliable force field parameters, theforce field parameters have been tested extensively. The tests show that the force fieldparameters can have a good description of the propertities of copper.
     The properties of single g-C_3N_4sheet, the water adsorption on single g-C_3N_4sheetand the role of defect in water adsorption and dissociation were thoroughly exploredbased on density functional theory (DFT) calculations. The results shows that single g-C_3N_4sheet can be either flat or buckle, and the buckle one is more stable.Interestingly, when water molecules adsorb on one side of the planar single g-C_3N_4sheet, the initial planar g-C_3N_4automatically becomes buckle one, while watermolecules adsorb on both sides of g-C_3N_4can avoid the presence of buckle structure.Fascinatingly, the flat g-C_3N_4is indirect semiconductor, but the band structure ofg-C_3N_4changes from indirect semiconductor to direct one because structuretransforms from flat to buckle one because of the water adsorption. Water moleculeprefers to adsorb around the intrinsic vacancy of single g-C_3N_4sheet at the lowcoverage, and further adsorbed water molecules will stay around this site because ofhydrogen bond between water molecules. More importantly, water can help todecrease the valence band maximum and conduction band minimum of g-C_3N_4, whichwill greatly promote the splitting of water. Water monomer, dimer, and clusters withthree and four molecules at the defect site can form a stable coplanar structure withthe g-C_3N_4sheet. The clusters help to stabilize the adsorption at the defect site.Molecular dynamics simulations show that on the perfect g-C_3N_4sheet water does notdissociation but on the defect g-C_3N_4sheet do. There are two reoriented water layersnear the g-C_3N_4sheet because of the interaction between water and the g-C_3N_4sheet.Our findings indicate that the defect within g-C_3N_4play a key role in the adsorptionand dissociation of water. These results not only help to design the new type of metal-freecatalyst for water-splitting.
引文
【1】.张跃,谷景华,尚家香,马跃,计算材料学基础.[M].北京航空航天大学出版社:北京,2007.
    【2】.Miziolek, A. W., Nanoenergetics: An Emerging Technology Area of NationalImportance.[J]. The AMPTIAC Newsletter Vol.6, No.2002, pp.43.
    【3】.莫红军,赵.,纳米含能材料的概念与实践.[J].火炸药学报Vol.28, No.2005, pp.79.
    【4】.Phung, X.; Groza, J.; Stach, E. A.; Williams, L. N.; Ritchey, S. B., Surfacecharacterization of metal nanoparticles.[J]. Materials Science and Engineering: A Vol.359, No.1–2,2003, pp.261-268.
    【5】.Rai, A.; Lee, D.; Park, K.; Zachariah, M. R., Importance of Phase Change ofAluminum in Oxidation of Aluminum Nanoparticles.[J]. The Journal of PhysicalChemistry B Vol.108, No.39,2004, pp.14793-14795.
    【6】.泰皮,含能材料.[M].国防工业出版社:2009.
    【7】.Committee onAdvanced Energetic Materials and Manufacturing Technologies,N. R. C., Advanced Energetic Materials.[M]. National Academy of Sciences:Washington, D.C.,2004.
    【8】.Beckstead, M. W., Correlating Aluminum Burning Times.[J]. Combust ExplosShock Waves Vol.41, No.5,2005, pp.533-546.
    【9】.Trunov, M. A.; Schoenitz, M.; Zhu, X.; Dreizin, E. L., Effect of polymorphicphase transformations in Al2O3film on oxidation kinetics of aluminum powders.[J].Combustion and Flame Vol.140, No.4,2005, pp.310-318.
    【10】.Trunov, M. A.; Schoenitz, M.; Dreizin, E. L., Effect of polymorphic phasetransformations in alumina layer on ignition of aluminium particles.[J]. CombustionTheory and Modelling Vol.10, No.4,2006, pp.603-623.
    【11】.Eisenreich, N.; Fietzek, H.; delMarJuez-Lorenzo, M.; Kolarik, V.; Koleczko,A.; Weiser, V., On the Mechanism of Low Temperature Oxidation for AluminumParticles down to the Nano-Scale.[J]. Propellants, Explosives, Pyrotechnics Vol.29,No.3,2004, pp.137-145.
    【12】.Park, K.; Lee, D.; Rai, A.; Mukherjee, D.; Zachariah, M. R., Size-ResolvedKinetic Measurements of Aluminum Nanoparticle Oxidation with Single ParticleMass Spectrometry.[J]. The Journal of Physical Chemistry B Vol.109, No.15,2005,pp.7290-7299.
    【13】.Ermoline, A.; Stamatis, D.; Dreizin, E. L., Low-temperature exothermicreactions in fully dense Al–CuO nanocomposite powders.[J]. Thermochimica ActaVol.527, No.0,2012, pp.52-58.
    【14】.Moore, D. S.; Son, S. F.; Asay, B. W., Time-Resolved Spectral Emission ofDeflagrating Nano-Al and Nano-MoO3Metastable Interstitial Composites.[J].Propellants, Explosives, Pyrotechnics Vol.29, No.2,2004, pp.106-111.
    【15】.Bockmon, B. S.; Pantoya, M. L.; Son, S. F.; Asay, B. W.; Mang, J. T.,Combustion velocities and propagation mechanisms of metastable interstitialcomposites.[J]. Journal of Applied Physics Vol.98, No.6,2005, pp.064903-7.
    【16】.Sanders, V. E., Reaction Propagation of Four Nanoscale Energetic Composites(Al/MoO3, Al/WO3, Al/CuO, and B12O3)[J]. Journal of Propulsion and Power Vol.23,No.4,2007, pp.707-714.
    【17】.Schoenitz, M., Kinetic Analysis of Thermite Reactions in Al-MoO3Nanocomposites [J]. Journal of Propulsion and Power Vol.23, No.4,2007, pp.683-687.
    【18】.Son, S. F., Combustion of NanoscaleAl/MoO3Thermite in Microchannels.[J].Journal of Propulsion and Power Vol.23, No.4,2007, pp.715-721.
    【19】.Umbrajkar, S. M.; Chen, C.-M.; Schoenitz, M.; Dreizin, E. L., On problems ofisoconversion data processing for reactions in Al-rich Al–MoO3thermites.[J].Thermochimica Acta Vol.477, No.1–2,2008, pp.1-6.
    【20】.Bazyn, T.; Lynch, P.; Krier, H.; Glumac, N., Combustion Measurements ofFuel-Rich Aluminum and Molybdenum Oxide Nano-Composite Mixtures.[J].Propellants, Explosives, Pyrotechnics Vol.35, No.2,2010, pp.93-99.
    【21】.Collins, E. S.; Pantoya, M. L.; Daniels, M. A.; Prentice, D. J.; Steffler, E. D.;D’Arche, S. P., Heat Flux Analysis of a Reacting Thermite Spray Impingent on aSubstrate.[J]. Energy&Fuels Vol. No.2012, pp.
    【22】.Stamatis, D.; Dreizin, E. L.; Higa, K., Thermal Initiation of Al-MoO3Nanocomposite Materials Prepared by Different Methods.[J]. Journal of Propulsionand Power Vol.27, No.5,2011, pp.1079-1087.
    【23】.Zhao, D. W.; Sun, X. W.; Jiang, C. Y.; Kyaw, A. K. K.; Lo, G. Q.; Kwong, D.L., Efficient tandem organic solar cells with an Al/MoO3intermediate layer.[J].Applied Physics Letters Vol.93, No.8,2008, pp.083305.
    【24】.Bouma, R. H. B.; Meuken, D.; Verbeek, R.; MartinezPacheco, M.; Katgerman,L., Shear Initiation of Al/MoO3-Based Reactive Materials.[J]. Propellants,Explosives, Pyrotechnics Vol.32, No.6,2007, pp.447-453.
    【25】.Umbrajkar, S. M.; Schoenitz, M.; Dreizin, E. L., Control of StructuralRefinement and Composition in Al-MoO3Nanocomposites Prepared by ArrestedReactive Milling.[J]. Propellants, Explosives, Pyrotechnics Vol.31, No.5,2006, pp.382-389.
    【26】.Dreizin, E. L., Metal-based reactive nanomaterials.[J]. Progress in Energy andCombustion Science Vol.35, No.2,2009, pp.141-167.
    【27】.Rossi, C.; Estève,A.; Vashishta, P., Nanoscale energetic materials.[J]. Journalof Physics and Chemistry of Solids Vol.71, No.2,2010, pp.57-58.
    【28】.Dikici, B.; Pantoya, M. L.; Levitas, V., The effect of pre-heating on flamepropagation in nanocomposite thermites.[J]. Combustion and Flame Vol.157, No.8,2010, pp.1581-1585.
    【29】.Stamatis, D.; Dreizin, E. L., Thermal initiation of consolidated nanocompositethermites.[J]. Combustion and Flame Vol.158, No.8,2011, pp.1631-1637.
    【30】.Ermoline, A.; Schoenitz, M.; Dreizin, E. L., Reactions leading to ignition infully dense nanocomposite Al-oxide systems.[J]. Combustion and Flame Vol.158,No.6,2011, pp.1076-1083.
    【31】.Levitas, V. I.; Dikici, B.; Pantoya, M. L., Toward design of the pre-stressednano-and microscale aluminum particles covered by oxide shell.[J]. Combustion and106Flame Vol.158, No.7,2011, pp.1413-1417.
    【32】.Weismiller, M. R.; Malchi, J. Y.; Lee, J. G.; Yetter, R. A.; Foley, T. J., Effectsof fuel and oxidizer particle dimensions on the propagation of aluminum containingthermites.[J]. Proceedings of the Combustion Institute Vol.33, No.2,2011, pp.1989-1996.
    【33】.Gesner, J.; Pantoya, M. L.; Levitas, V. I., Effect of oxide shell growth onnano-aluminum thermite propagation rates.[J]. Combustion and Flame Vol.159, No.11,2012, pp.3448-3453.
    【34】.Plantier, K. B.; Pantoya, M. L.; Gash, A. E., Combustion wave speeds ofnanocomposite Al/Fe2O3: the effects of Fe2O3particle synthesis technique.[J].Combustion and Flame Vol.140, No.4,2005, pp.299-309.
    【35】.高坤,李国平,罗运军,郑剑,王鲁,制备方法对Al/Fe2O3纳米铝热剂性能的影响.[J].火炸药学报Vol. No.3,2012, pp.11-14.
    【36】.高坤,李国平,罗运军,郑剑,王鲁,热处理对Al/Fe2O3纳米铝热剂性能的影响.[J].火炸药学报Vol. No.6,2012, pp.19-22.
    【37】.Tomar, V.; Zhou, M., Analyses of tensile deformation of nanocrystallineα-Fe2O3+fcc-Al composites using molecular dynamics simulations.[J]. Journal of theMechanics and Physics of Solids Vol.55, No.5,2007, pp.1053-1085.
    【38】.Cheng, J. L.; Hng, H. H.; Lee, Y. W.; Du, S. W.; Thadhani, N. N., Kineticstudy of thermal-and impact-initiated reactions in Al–Fe2O3nanothermite.[J].Combustion and Flame Vol.157, No.12,2010, pp.2241-2249.
    【39】.Cheng, J. L.; Hng, H. H.; Ng, H. Y.; Soon, P. C.; Lee, Y. W., Synthesis andcharacterization of self-assembled nanoenergetic Al–Fe2O3thermite system.[J].Journal of Physics and Chemistry of Solids Vol.71, No.2,2010, pp.90-94.
    【40】.Nixon, E.; Pantoya, M. L.; Sivakumar, G.; Vijayasai,A.; Dallas, T., Effect of asuperhydrophobic coating on the combustion of aluminium and iron oxidenanothermites.[J]. Surface and Coatings Technology Vol.205, No.21–22,2011, pp.5103-5108.
    【41】.Crane, C. A.; Collins, E. S.; Pantoya, M. L.; Weeks, B. L., Nanoscaleinvestigation of surfaces exposed to a thermite spray.[J]. Applied Thermal
    [NEnJ]ag.ni Conpehoeemrroiniugsst VrIyro olon. f-3MO1x, atiNedreoi.aP6lsa–r7Vti,2011, pp.1286-1292.
    【42】.Prakash, A.; McCormick, A. V.; Zachariah, M. R., Aero-Sol Gel Synthesis ofocll.e1s:6,A N Po.o8te,n2t0ia0l4O, pxpid. i1z4e6r6fo-1r4N7a1n.oenergetic Materials.
    【46】.Sullivan, K. T.; Kuntz, J. D.; Gash, A. E., Electrophoretic deposition andmechanistic studies of nano-Al/CuO thermites.[J]. Journal of Applied Physics Vol.112, No.2,2012, pp.024316.
    【47】.Wu, Y.; Lin, Y.-m.; Bol, A. A.; Jenkins, K. A.; Xia, F.; Farmer, D. B.; Zhu, Y.;Avouris, P., High-frequency, scaled graphene transistors on diamond-like carbon.[J].Nature Vol.472, No.7341,2011, pp.74-78.
    【48】.Séverac, F.; Alphonse, P.; Estève,A.; Bancaud,A.; Rossi, C., Nanocomposites:High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly.[J].Advanced Functional Materials Vol.22, No.2,2012, pp.230-230.
    【49】.Zhang, K.; Rossi, C.; Rodriguez, G. A. A.; Tenailleau, C.; Alphonse, P.,Development of a nano-Al/CuO based energetic material on silicon substrate.[J].Applied Physics Letters Vol.91, No.11,2007, pp.113117.
    【50】.Séverac, F.; Alphonse, P.; Estève, A.; Bancaud, A.; Rossi, C., High-EnergyAl/CuO Nanocomposites Obtained by DNA-Directed Assembly.[J]. AdvancedFunctional Materials Vol.22, No.2,2012, pp.323-329.
    【51】.Wang, J.; Hu, A.; Persic, J.; Wen, J. Z.; Norman Zhou, Y., Thermal stabilityand reaction properties of passivated Al/CuO nano-thermite.[J]. Journal of Physicsand Chemistry of Solids Vol.72, No.6,2011, pp.620-625.
    【52】.Ohkura, Y.; Liu, S.-Y.; Rao, P. M.; Zheng, X., Synthesis and ignition ofenergetic CuO/Al core/shell nanowires.[J]. Proceedings of the Combustion InstituteVol.33, No.2,2011, pp.1909-1915.
    【53】.Sullivan, K. T.; Piekiel, N. W.; Wu, C.; Chowdhury, S.; Kelly, S. T.; Hufnagel,T. C.; Fezzaa, K.; Zachariah, M. R., Reactive sintering: An important component inthe combustion of nanocomposite thermites.[J]. Combustion and Flame Vol.159, No.1,2012, pp.2-15.
    【54】.Bahrami Motlagh, E.; Vahdati Khaki, J.; Haddad Sabzevar, M., Welding ofaluminum alloys through thermite like reactions in Al–CuO–Ni system.[J]. MaterialsChemistry and Physics Vol.133, No.2–3,2012, pp.757-763.
    【55】.Collins, E.; Pantoya, M.; Vijayasai, A.; Dallas, T., Comparison of engineerednanocoatings on the combustion of aluminum and copper oxide nanothermites.[J].Surface and Coatings Technology Vol.215, No.0,2013, pp.476-484.
    【56】.Jian, G.; Piekiel, N. W.; Zachariah, M. R., Time-Resolved Mass Spectrometryof Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study.[J]. The Journal of Physical Chemistry C Vol.116, No.51,2012, pp.26881-26887.
    【57】.Kwon, J.; Ducéré, J. M.; Alphonse, P.; Bahrami, M.; Petrantoni, M.; Veyan,J.-F.; Tenailleau, C.; Estève, A.; Rossi, C.; Chabal, Y. J., Interfacial Chemistry inAl/CuO Reactive Nanomaterial and Its Role in Exothermic Reaction.[J]. ACSApplied Materials&Interfaces Vol.5, No.3,2013, pp.605-613.
    【58】.赵宁宁,贺翠翠,刘健冰,马海霞,安亭,赵凤起,超级铝热剂Al/MnO2的制备、表征及其与推进剂组分的相容性.[J].火炸药学报Vol. No.6,2012, pp.32-36.
    【59】.Wang, Y.; Jiang, W.; Cheng, Z.; Chen, W.; An, C.; Song, X.; Li, F., Thermitereactions of Al/Cu core-shell nanocomposites with WO3.[J]. Thermochimica ActaVol.463, No.1–2,2007, pp.69-76.
    【60】.Cervantes, O. G.; Kuntz, J. D.; Gash, A. E.; Munir, Z. A., Heat of combustionof tantalum–tungsten oxide thermite composites.[J]. Combustion and Flame Vol.157,No.12,2010, pp.2326-2332.
    【61】.Gibot, P.; Comet, M.; Vidal, L.; Moitrier, F.; Lacroix, F.; Suma, Y.; Schnell, F.;Spitzer, D., Synthesis of WO3nanoparticles for superthermites by the templatemethod from silica spheres.[J]. Solid State Sciences Vol.13, No.5,2011, pp.908-914.
    【62】.Xu, D.; Yang, Y.; Cheng, H.; Li, Y. Y.; Zhang, K., Integration of nano-Al withCo3O4nanorods to realize high-exothermic core–shell nanoenergetic materials on asilicon substrate.[J]. Combustion and Flame Vol.159, No.6,2012, pp.2202-2209.
    【63】.Siegert, B.; Comet, M.; Muller, O.; Pourroy, G. v.; Spitzer, D.,Reduced-Sensitivity Nanothermites Containing Manganese Oxide Filled CarbonNanofibers.[J]. The Journal of Physical Chemistry C Vol.114, No.46,2010, pp.19562-19568.
    【64】.Bockmon, B. S.; Pantoya, M. L.; Son, S. F.; Asay, B. W.; Mang, J. T.,Combustion velocities and propagation mechanisms of metastable interstitialcomposites.[J]. Journal of Applied Physics Vol.98, No.6,2005, pp.064903.
    【65】.Son, S. F.; Berghout, H. L.; Bolme, C.A.; Chavez, D. E.; Naud, D.; Hiskey, M.A., Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz.[J].Proceedings of the Combustion Institute Vol.28, No.1,2000, pp.919-924.
    【66】.Yang, Y.; Sun, Z.; Wang, S.; Dlott, D. D., Fast Spectroscopy of Laser-InitiatedNanoenergetic Materials.[J]. The Journal of Physical Chemistry B Vol.107, No.19,2003, pp.4485-4493.
    【67】.Naiborodenko, Y. S.; Lavrenchuk, G. V.; Filatov, V. M., Self-propagatinghigh-temperature synthesis of aluminides I. Thermodynamic analysis.[J]. PowderMetallurgy and Metal Ceramics Vol.21, No.12,1982, pp.909-912.
    【68】.Aleksandrov, V. V.; Gruzdev, V.A.; Kovalenko, Y.A., Thermal conductivity ofcertain aluminum-based SHS systems.[J]. Combustion, Explosion, and Shock WavesVol.21, No.1,1985, pp.93-99.
    【69】.Ma, E.; Thompson, C. V.; Clevenger, L. A.; Tu, K. N., Self-propagatingexplosive reactions in Al/Ni multilayer thin films.[J]. Applied Physics Letters Vol.57,No.12,1990, pp.1262-1264.
    【70】.Song, I.; Thadhani, N., Shock-induced chemical reactions and synthesis ofnickel aluminides.[J]. Metallurgical and Materials Transactions A Vol.23, No.1,1992, pp.41-48.
    【71】.Dyer, T. S.; Munir, Z. A.; Ruth, V., The combustion synthesis of multilayerNiAl systems.[J]. Scripta Metallurgica et Materialia Vol.30, No.10,1994, pp.1281-1286.
    【72】.Shilyaev, M. I.; Borzykh, V. é.; Dorokhov, A. R., Laser ignition ofnickel-aluminum powder systems.[J]. Combustion, Explosion, and Shock Waves Vol.30, No.2,1994, pp.147-150.
    【73】.Dyer, T.; Munir, Z., The synthesis of nickel aluminides by multilayerself-propagating combustion.[J]. Metallurgical and Materials Transactions B Vol.26,No.3,1995, pp.603-610.
    【74】.Michaelsen, C.; et al., Investigating the thermodynamics and kinetics of thinfilm reactions by differential scanning calorimetry.[J]. Journal of Physics D: AppliedPhysics Vol.30, No.23,1997, pp.3167.
    【75】.Ovcharenko, V.; Boyangin, E., High-temperature synthesis of intermetallideNi3Al by thermal shock of a powder mixture of pure elements with inert filler [J].Combustion, Explosion, and Shock Waves Vol.35, No.4,1999, pp.407-409.
    【76】.Gavens,A. J.; Van Heerden, D.; Mann,A. B.; Reiss, M. E.; Weihs, T. P., Effectof intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils.[J]. Journal of Applied Physics Vol.87, No.3,2000, pp.1255-1263.
    【77】.Shen, P.; Guo, Z. X.; Hu, J. D.; Lian, J. S.; Sun, B. Y., Study on laser ignitionof Ni-33.3at%Al powder compacts.[J]. Scripta Materialia Vol.43, No.10,2000, pp.893-898.
    【78】.Fan, Q.; Chai, H.; Jin, Z., Dissolution–precipitation mechanism ofself-propagating high-temperature synthesis of mononickel aluminide.[J].Intermetallics Vol.9, No.7,2001, pp.609-619.
    【79】.Mukasyan, A. S.; Lau, C.; Varma, A., Gasless Combustion of AluminumParticles Clad by Nickel.[J]. Combustion Science and Technology Vol.170, No.1,2001, pp.67-85.
    【80】.Besnoin, E.; Cerutti, S.; Knio, O. M.; Weihs, T. P., Effect of reactant andproduct melting on self-propagating reactions in multilayer foils.[J]. Journal ofApplied Physics Vol.92, No.9,2002, pp.5474-5481.
    【81】.Lapshin, O. V.; Ovcharenko, V. E.; Boyangin, E. N., Thermokinetic andThermal-Physics Parameters of High-Temperature Synthesis of Intermetallide Ni3Alby Thermal Shock of a Powder Mixture of Pure Elements.[J]. Combustion,Explosion, and Shock Waves Vol.38, No.4,2002, pp.430-434.
    【82】.Monagheddu, M.; Bertolino, N.; Giuliani, P.; Zanotti, C.; Tamburini, U. A.,Ignition phenomena in combustion synthesis: An experimental methodology.[J].Journal of Applied Physics Vol.92, No.1,2002, pp.594-599.
    【83】.Shafirovich, E.; Mukasyan, A.; Thiers, L.; Varma, A.; Legrand, B.; Chauveau,C.; G kalp, I., Ignition and Combustion of Al Particles Clad by Ni.[J]. CombustionScience and Technology Vol.174, No.3,2002, pp.125-140.
    【84】.Thiers, L.; Mukasyan, A. S.; Varma, A., Thermal explosion in Ni-Al system:influence of reaction medium microstructure.[J]. Combustion and Flame Vol.131,No.1-2,2002, pp.198-209.
    【85】.Zhu, P.; Li, J. C. M.; Liu, C. T., Reaction mechanism of combustion synthesisof NiAl.[J]. Materials Science and Engineering A Vol.329-331, No.2002, pp.57-68.
    【86】.Wang, J.; Besnoin, E.; Duckham, A.; Spey, S. J.; Reiss, M. E.; Knio, O. M.;Powers, M.; Whitener, M.; Weihs, T. P., Room-temperature soldering withnanostructured foils.[J]. Applied Physics Letters Vol.83, No.19,2003, pp.3987-3989.
    【87】.Zhu, P.; Li, J. C. M.; Liu, C. T.,Adiabatic temperature of combustion synthesisof Al-Ni systems.[J]. Materials Science and Engineering A Vol.357, No.1-2,2003,pp.248-257.
    【88】.Duckham, A.; Spey, S. J.; Wang, J.; Reiss, M. E.; Weihs, T. P.; Besnoin, E.;Knio, O. M., Reactive nanostructured foil used as a heat source for joining titanium.[J]. Journal of Applied Physics Vol.96, No.4,2004, pp.2336-2342.
    【89】.Hunt, E. M.; Plantier, K. B.; Pantoya, M. L., Nano-scale reactants in theself-propagating high-temperature synthesis of nickel aluminide.[J]. Acta MaterialiaVol.52, No.11,2004, pp.3183-3191.
    【90】.Moshksar, M. M.; Mirzaee, M., Formation of NiAl intermetallic by gradualand explosive exothermic reaction mechanism during ball milling.[J]. IntermetallicsVol.12, No.12,2004, pp.1361-1366.
    【91】.Wang, J.; Besnoin, E.; Duckham, A.; Spey, S. J.; Reiss, M. E.; Knio, O. M.;Weihs, T. P., Joining of stainless-steel specimens with nanostructured Al/Ni foils.[J].Journal of Applied Physics Vol.95, No.1,2004, pp.248-256.
    【92】.Hunt, E. M.; Pantoya, M. L., Ignition dynamics and activation energies ofmetallic thermites: From nano-to micron-scale particulate composites.[J]. Journal ofApplied Physics Vol.98, No.3,2005, pp.034909-8.
    【93】.Lapshin, O. V.; Boyangin, E. N.; Ovcharenko, V. E., Thermokineticcharacteristics of the final stage of the thermal shock of the3Ni+Al+TiC powdermixture.[J]. Combustion, Explosion, and Shock Waves Vol.41, No.1,2005, pp.64-70.
    【94】.Ovcharenko, V.; Lapshin, O.; Ramazanov, I., Formation of the granularstructure in the intermetallic compound Ni3Al in high-temperature synthesis undercompression.[J]. Combustion, Explosion, and Shock Waves Vol.42, No.3,2006, pp.302-308.
    【95】.Zhao, S.; Germann, T. C.; Strachan, A., Atomistic simulations ofshock-induced alloying reactions in Ni/Al nanolaminates.[J]. The Journal ofChemical Physics Vol.125, No.16,2006, pp.164707-8.
    【96】.Ovcharenko, V.; Lapshin, O.; Boyangin, E.; Ramazanov, I.; Chudinov, V.,High-temperature synthesis of the Ni3Al intermetallic compound under pressure.[J].Russian Journal of Non-Ferrous Metals Vol.48, No.4,2007, pp.297-302.
    【97】.Shijin Zhao, T. G., Alejandro Strachan, Molecular Dynamics Characterizationof the Response of Ni/Al Nanolaminates Under Dynamic Loading [J]. Journal ofPropulsion and Power Vol.23, No.4,2007, pp.693-697.
    【98】.Knepper, R.; Snyder, M. R.; Fritz, G.; Fisher, K.; Knio, O. M.; Weihs, T. P.,Effect of varying bilayer spacing distribution on reaction heat and velocity in reactiveAl/Ni multilayers.[J]. Journal of Applied Physics Vol.105, No.8,2009, pp.083504-9.
    【99】.Korchagin, M.; Filimonov, V.; Smirnov, E.; Lyakhov, N., Thermal explosion inmechanoactivated3Ni+Al mixtures.[J]. International Journal of Self-PropagatingHigh-Temperature Synthesis Vol.18, No.2,2009, pp.133-136.
    【100】.White, J. D. E.; Reeves, R. V.; Son, S. F.; Mukasyan, A. S., ThermalExplosion in Al Ni System: Influence of Mechanical Activation.[J]. The Journal ofPhysical Chemistry A Vol.113, No.48,2009, pp.13541-13547.
    【101】.Morris, C. J.; Mary, B.; Zakar, E.; Barron, S.; Fritz, G.; Knio, O.; Weihs, T. P.;Hodgin, R.; Wilkins, P.; May, C., Rapid initiation of reactions in Al/Ni multilayerswith nanoscale layering.[J]. Journal of Physics and Chemistry of Solids Vol.71, No.2,2010, pp.84-89.
    【102】.Mukasyan, A. S.; White, J. D. E.; Kovalev, D. Y.; Kochetov, N. A.;Ponomarev, V. I.; Son, S. F., Dynamics of phase transformation during thermalexplosion in the Al-Ni system: Influence of mechanical activation.[J]. Physica B:Condensed Matter Vol.405, No.2,2010, pp.778-784.
    【103】.Reeves, R. V.; Mukasyan, A. S.; Son, S. F., Thermal and Impact ReactionInitiation in Ni/Al Heterogeneous Reactive Systems.[J]. The Journal of PhysicalChemistry C Vol.114, No.35,2010, pp.14772-14780.
    【104】.Shteinberg, A. S.; Lin, Y.-C.; Son, S. F.; Mukasyan, A. S., Kinetics of HighTemperature Reaction in Ni-Al System: Influence of Mechanical Activation.[J]. TheJournal of Physical Chemistry A Vol.114, No.20,2010, pp.6111-6116.
    【105】.Weingarten, N. S.; Mattson, W. D.; Yau, A. D.; Weihs, T. P.; Rice, B. M., Amolecular dynamics study of the role of pressure on the response of reactive materialsto thermal initiation.[J]. Journal of Applied Physics Vol.107, No.9,2010, pp.093517-10.
    【106】.Baras, F.; Politano, O., Molecular dynamics simulations of nanometricmetallic multilayers: Reactivity of the Ni-Al system.[J]. Physical Review B Vol.84,No.2,2011, pp.024113.
    【107】.Crone, J. C.; Knap, J.; Chung, P. W.; Rice, B. M., Role of microstructure ininitiation of Ni--Al reactive multilayers.[J]. Applied Physics Letters Vol.98, No.14,2011, pp.141910-3.
    【108】.Delogu, F., Ignition of an exothermal reaction by collision betweenAl and Nicrystals.[J]. Journal of Applied Physics Vol.110, No.10,2011, pp.103505-12.
    【109】.Kim, J. S.; LaGrange, T.; Reed, B. W.; Knepper, R.; Weihs, T. P.; Browning,N. D.; Campbell, G. H., Direct characterization of phase transformations andmorphologies in moving reaction zones in Al/Ni nanolaminates using dynamictransmission electron microscopy.[J]. Acta Materialia Vol.59, No.9,2011, pp.3571-3580.
    【110】.Morris, C. J.; Wilkins, P.; May, C.; Zakar, E.; Weihs, T. P., Streakspectrograph temperature analysis from electrically exploded Ni/Al nanolaminates.[J]. Thin Solid Films Vol.520, No.5,2011, pp.1645-1650.
    【111】.Trenkle, J. C.; Koerner, L. J.; Tate, M. W.; Gruner, S. M.; Weihs, T. P.;Hufnagel, T. C., Phase transformations during rapid heating of Al/Ni multilayer foils.[J]. Applied Physics Letters Vol.93, No.8,2008, pp.081903-3.
    【112】.D.P. Adams, M. A. R., C.P. Tigges, P.G. Kotula Self-propagating,high-temperature combustion synthesis of rhombohedral AlPt thin films.[J]. Journalof Materials Research Vol.21, No.2006, pp.3168-3179.
    【113】.Picard, Y. N.; Adams, D. P.; Palmer, J. A.; Yalisove, S. M., Pulsed laserignition of reactive multilayer films.[J]. Applied Physics Letters Vol.88, No.14,2006, pp.144102-3.
    【114】.Joel, P. M.; Yoosuf, N. P.; Steven, M. Y.; David, P. A. Pulsed Laser IgnitionThresholds of Energetic Multilayer Foils, Optical Society of America:2009; p JWA3.
    【115】.Nguyen, N. H.; Hu,A.; Persic, J.; Wen, J. Z., Molecular dynamics simulationof energetic aluminum/palladium core–shell nanoparticles.[J]. Chemical PhysicsLetters Vol.503, No.1–3,2011, pp.112-117.
    【116】.Dunand, D. C., Reactive Synthesis ofAluminide Intermetallics.[J]. Materialsand Manufacturing Processes Vol.10, No.3,1995, pp.373-403.
    【117】.Ramos,A. S.; Vieira, M. T.; Morgiel, J.; Grzonka, J.; Sim es, S.; Vieira, M. F.,Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thinfilms—A comparative study.[J]. Journal of Alloys and Compounds Vol.484, No.1–2,2009, pp.335-340.
    【118】.Qiu, X.; Liu, R.; Guo, S.; Graeter, J.; Kecskes, L.; Wang, J., CombustionSynthesis Reactions in Cold-Rolled Ni/Al and Ti/Al Multilayers.[J]. Metallurgicaland Materials Transactions A Vol.40, No.7,2009, pp.1541-1546.
    【119】.Xiaotun, Q.; et al., Combustion Synthesis Reactions in Cold-Rolled Ni/Aland Ti/Al Multilayers.[J]. Metallurgical and Materials Transactions A Vol. No.2009,pp.
    【120】.Barron, S. C.; et al., Characterization of self-propagating formation reactionsin Ni/Zr multilayered foils using reaction heats, velocities, and temperature-timeprofiles.[J]. Journal of Applied Physics Vol.109, No.1,2011, pp.013519.
    【121】.Kikuchi, S.; Kuwahara, H.; Mazaki, N.; Urai, S.; Miyamura, H., Mechanicalproperties of Ag-Ni super-laminates produced by rolling.[J]. Materials Science andEngineering: A Vol.234–236, No.0,1997, pp.1114-1117.
    【122】.Sieber, H.; Park, J. S.; Weissmüller, J.; Perepezko, J. H., Structural evolutionand phase formation in cold-rolled aluminum–nickel multilayers.[J]. Acta MaterialiaVol.49, No.7,2001, pp.1139-1151.
    【123】.Rogachev, A. S., Exothermic reaction waves in multilayer nanofilms.[J].Russian Chemical Reviews Vol.77, No.1,2008, pp.21.
    【124】.Mann,A. B.; Gavens,A. J.; Reiss, M. E.; Van Heerden, D.; Bao, G.; Weihs, T.P., Modeling and characterizing the propagation velocity of exothermic reactions inmultilayer foils.[J]. Journal of Applied Physics Vol.82, No.3,1997, pp.1178-1188.
    【125】.Yoosuf N. Picard, D. P. A., Steven M. Yalisove, Femtosecond laserinteractions with Co/Al multilayer films.[J]. Mater. Res. Soc. Symp. Proc. MRSProceedings Vol.850, No.2005, pp.7.
    【126】.Illarionova, E. V.; et al., Electrothermographic study of reactive multilayernanofoils.[J]. International Journal of Self-Propagating High-Temperature SynthesisVol.17, No.4,2008, pp.222.
    【127】.Breiter,A. L.; Mal'tsev, V. M.; Popov, E. I., Means of modifying metallic fuelin condensed systems.[J]. Combust Explos Shock Waves Vol.26, No.1,1990, pp.86-92.
    【128】.Yih, P. Method for Electroplating of Micron Particulates with Metal Coatings.
    [P]5,911,865,1999.
    【129】.Yin, P. Method for Electroplating Metal Coating(s) Particulates at HighCoating Speed with High Current Density.[P]6,010,610,2000.
    【130】.Timothy, A.; Evgeny, S.; David, T.; Arvind, V., Studies on Ignition andCombustion Mechanisms of Single Ni-Coated Al Particles. In44th AIAA AerospaceSciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics:2006.
    【131】.Zhao, S.; Germann, T. C.; Strachan, A., Molecular dynamics simulation ofdynamical response of perfect and porous Ni/Al nanolaminates under shock loading.[J]. Physical Review B Vol.76, No.1,2007, pp.014103.
    【132】.Mukasyan, A. S.; Rogachev, A. S., Discrete reaction waves: Gaslesscombustion of solid powder mixtures.[J]. Progress in Energy and CombustionScience Vol.34, No.3,2008, pp.377-416.
    【133】.马研,范群成,顾美转,肖国庆,郭创立, Ni3Al金属间化合物自蔓延高温合成中的显微组织演变.[J].稀有金属材料与工程.2006(04) Vol.35, No.4,2006, pp.567-572.
    【134】.董虹星,贺跃辉, Ni3Al金属间化合物的研究进展.[J].粉末冶金材料科学与工程Vol.14, No.2,2009, pp.83-88.
    【135】.张维君,燃烧合成方式对形成Ni3Al的影响.[J].稀有金属材料与工程Vol.39, No.2010, pp.346-349.
    【136】.El-Sayed, S. A., Ignition characteristics of metal particles in thermalexplosion theory.[J]. Journal of Loss Prevention in the Process Industries Vol.9, No.6,1996, pp.393-400.
    【137】.Jiang, Q. C.; Wang, H. Y.; Wang, J. G.; Guan, Q. F.; Xu, C. L., Fabrication ofTiCp/Mg composites by the thermal explosion synthesis reaction in moltenmagnesium.[J]. Materials Letters Vol.57, No.16–17,2003, pp.2580-2583.
    【138】.高丕英,李江波,物理化学.[M].1ed.;科学出版社:北京,2007.
    【139】.Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at aSemiconductor Electrode.[J]. Nature Vol.238, No.5358,1972, pp.37-38.
    【140】.闫世成,罗.,李朝升,邹志刚,新型光催化材料探索和研究进展.[J].中国材料进展Vol.29, No.1,2010, pp.1-9.
    【141】.He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U., Local ordering andelectronic signatures of submonolayer water on anatase TiO2(101).[J]. NatureMaterials Vol.8, No.7,2009, pp.585-589.
    【142】.Liu, L.-M.; Zhang, C.; Thornton, G.; Michaelides, A., Structure anddynamics of liquid water on rutile TiO2(110).[J]. Physical Review B Vol.82, No.16,2010, pp.161415.
    【143】.Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Minton, T. K.;Yang, X., Stepwise Photocatalytic Dissociation of Methanol and Water on TiO2(110).[J]. Journal of the American Chemical Society Vol.134, No.32,2012, pp.13366-13373.
    【144】.Su, J.; Guo, L.; Bao, N.; Grimes, C. A., Nanostructured WO3/BiVO4Heterojunction Films for Efficient Photoelectrochemical Water Splitting.[J]. NanoLetters Vol.11, No.5,2011, pp.1928-1933.
    【145】.Ping, Y.; Li, Y.; Gygi, F.; Galli, G., Tungsten Oxide Clathrates for WaterOxidation: A First Principles Study.[J]. Chemistry of Materials Vol.24, No.21,2012,pp.4252-4260.
    【146】.Tacca, A.; Meda, L.; Marra, G.; Savoini, A.; Caramori, S.; Cristino, V.;Bignozzi, C. A.; Pedro, V. G.; Boix, P. P.; Gimenez, S.; Bisquert, J., PhotoanodesBased on Nanostructured WO3for Water Splitting.[J]. ChemPhysChem Vol.13, No.12,2012, pp.3025-3034.
    【147】.Chen, J.; Selloni, A., Water Adsorption and Oxidation at the Co3O4(110)Surface.[J]. The Journal of Physical Chemistry Letters Vol.3, No.19,2012, pp.2808-2814.
    【148】.Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H.; Li, C.; Zhang, L.; Liu, Z.; Li, Q.,Red phosphorus: An elemental photocatalyst for hydrogen formation from water.[J].Applied Catalysis B: Environmental Vol.111–112, No.0,2012, pp.409-414.
    【149】.Liu, G.; Niu, P.; Yin, L.; Cheng, H.-M., α-Sulfur Crystals as aVisible-Light-Active Photocatalyst.[J]. Journal of the American Chemical SocietyVol.134, No.22,2012, pp.9070-9073.
    【150】.Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.;Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light.[J]. Nature Materials Vol.8, No.1,2009,pp.76-80.
    【151】.Zhou, X.; Shen, R.; Ye, Y.; Zhu, P.; Hu, Y.; Wu, L., Influence of Al/CuOreactive multilayer films additives on exploding foil initiator.[J]. Journal of AppliedPhysics Vol.110, No.9,2011, pp.094505-6.
    【152】.Pantoya, M. L.; Granier, J. J., The effect of slow heating rates on the reactionmechanisms of nano and micron composite thermite reactions.[J]. J Therm AnalCalorim Vol.85, No.1,2006, pp.37-43.
    【153】.Puszynski, J. A.; Bulian, C. J.; Swiatkiewicz, J. J., Processing and IgnitionCharacteristics of Aluminum-Bismuth Trioxide Nanothermite System.[J]. Journal ofPropulsion and Power Vol.23, No.4,2007, pp.698-706.
    【154】.Pantoya, M. L.; Granier, J. J., Combustion Behavior of Highly EnergeticThermites: Nano versus Micron Composites.[J]. Propellants, Explosives,Pyrotechnics Vol.30, No.1,2005, pp.53-62.
    【155】.Li, H. P., Influence of ignition parameters on micropyretic synthesis of NiAlcompound.[J]. Materials Science and Engineering: A Vol.404, No.1-2,2005, pp.146-152.
    【156】.Henz, B. J.; Hawa, T.; Zachariah, M., Molecular dynamics simulation of theenergetic reaction between Ni and Al nanoparticles.[J]. Journal of Applied PhysicsVol.105, No.12,2009, pp.124310-10.
    【157】.Zhao, S.; Germann, T. C.; Strachan, A., Melting and alloying of Ni/Alnanolaminates induced by shock loading: A molecular dynamics simulation study.[J].Physical Review B Vol.76, No.10,2007, pp.104105.
    【158】.Wen, M.; Li, S., Computer simulation of superdislocation dissociation inNi3Al.[J]. Acta Materialia Vol.46, No.12,1998, pp.4351-4355.
    【159】.Nash, P.; Kleppa, O., Composition dependence of the enthalpies of formationof NiAl.[J]. Journal of Alloys and Compounds Vol.321, No.2,2001, pp.228-231.
    【160】.Babuk, V.A.; Vassiliev, V.A.; Sviridov, V. V., Propellant Formulation Factorsand Metal Agglomeration in Combustion of Aluminized Solid Rocket Propellant.[J].Combustion Science and Technology Vol.163, No.1,2001, pp.261-289.
    【161】.Yagodnikov, D. A.; Voronetskii, A. V., Experimental and theoretical study ofthe ignition and combustion of an aerosol of encapsulated aluminum particles.[J].Combust Explos Shock Waves Vol.33, No.1,1997, pp.49-55.
    【162】.Eric, B.; Ryan, H.; Kenneth, K., Ignition and Combustion of Nickel Coatedand Uncoated Aluminum Particles in Hot Post-Flame Environment. In45thAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, American Instituteof Aeronautics and Astronautics:2009.
    【163】.Shashank, V.; Yasmine, A.; Mirko, S.; Edward, D., Characterization of FineAluminum Powder Coated with Nickel as a Potential Fuel Additive. In48th AIAAAerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition, American Institute of Aeronautics and Astronautics:2010.
    【164】.Campbell, T.; Kalia, R. K.; Nakano,A.; Vashishta, P.; Ogata, S.; Rodgers, S.,Dynamics of Oxidation of Aluminum Nanoclusters using Variable ChargeMolecular-Dynamics Simulations on Parallel Computers.[J]. Physical ReviewLetters Vol.82, No.24,1999, pp.4866-4869.
    【165】.Shimizu, Y.; Ikeda, K. S.; Sawada, S.-i., Spontaneous alloying in binary metalmicroclusters: A molecular dynamics study.[J]. Physical Review B Vol.64, No.7,2001, pp.075412.
    【166】.Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.;Antonietti, M., Polymer Semiconductors for Artificial Photosynthesis: HydrogenEvolution by Mesoporous Graphitic Carbon Nitride with Visible Light.[J]. Journal ofthe American Chemical Society Vol.131, No.5,2009, pp.1680-1681.
    【167】.Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A., Chemical Synthesisof Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-FreeCatalyst for Friedel–Crafts Reaction of Benzene.[J]. Angewandte ChemieInternational Edition Vol.45, No.27,2006, pp.4467-4471.
    【168】.Jun, Y.-S.; Hong, W. H.; Antonietti, M.; Thomas, A., Mesoporous,2DHexagonal Carbon Nitride and Titanium Nitride/Carbon Composites.[J]. AdvancedMaterials Vol.21, No.42,2009, pp.4270-4274.
    【169】.Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C., Efficient synthesis ofpolymeric g-C3N4layered materials as novel efficient visible light drivenphotocatalysts.[J]. Journal of Materials Chemistry Vol.21, No.39,2011, pp.15171-15174.
    【170】.Zhang, Y.; Antonietti, M., Photocurrent Generation by Polymeric CarbonNitride Solids: An Initial Step towards a Novel Photovoltaic System.[J]. Chemistry–An Asian Journal Vol.5, No.6,2010, pp.1307-1311.
    【171】.Min, S.; Lu, G., Enhanced Electron Transfer from the Excited Eosin Y tompg-C3N4for Highly Efficient Hydrogen Evolution under550nm Irradiation.[J].The Journal of Physical Chemistry C Vol.116, No.37,2012, pp.19644-19652.
    【172】.Wang, Y.; Wang, X.;Antonietti, M., Polymeric Graphitic Carbon Nitride as aHeterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis toSustainable Chemistry.[J]. Angewandte Chemie International Edition Vol.51, No.1,2012, pp.68-89.
    【173】.Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbonnitride materials: controllable synthesis and applications in fuel cells andphotocatalysis.[J]. Energy&Environmental Science Vol.5, No.5,2012, pp.6717-6731.
    【174】.Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y., EnhancedPhotoresponsive Ultrathin Graphitic-Phase C3N4Nanosheets for Bioimaging.[J].Journal of the American Chemical Society Vol. No.2012, pp.
    【175】.Niu, P.; Zhang, L.; Liu, G.; Cheng, H.-M., Graphene-Like Carbon NitrideNanosheets for Improved Photocatalytic Activities.[J]. Advanced FunctionalMaterials Vol.22, No.22,2012, pp.4763-4770.
    【176】.Wu, F.; Liu, Y.; Yu, G.; Shen, D.; Wang, Y.; Kan, E.,Visible-Light-Absorption in Graphitic C3N4Bilayer: Enhanced by InterlayerCoupling.[J]. The Journal of Physical Chemistry Letters Vol. No.2012, pp.3330-3334.
    【177】.Ge, L.; Han, C., Synthesis of MWNTs/g-C3N4composite photocatalysts withefficient visible light photocatalytic hydrogen evolution activity.[J]. AppliedCatalysis B: Environmental Vol.117–118, No.0,2012, pp.268-274.
    【178】.Xiang, Q.; Yu, J.; Jaroniec, M., Preparation and Enhanced Visible-LightPhotocatalytic H2-Production Activity of Graphene/C3N4Composites.[J]. TheJournal of Physical Chemistry C Vol.115, No.15,2011, pp.7355-7363.
    【179】.Niu, P.; Liu, G.; Cheng, H.-M., Nitrogen Vacancy-Promoted PhotocatalyticActivity of Graphitic Carbon Nitride.[J]. The Journal of Physical Chemistry C Vol.116, No.20,2012, pp.11013-11018.
    【180】.Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K.,Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reductionand Oxidation under Visible Light.[J]. The Journal of Physical Chemistry C Vol.113,No.12,2009, pp.4940-4947.
    【181】.Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M., Metal-ContainingCarbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material.[J].Advanced Materials Vol.21, No.16,2009, pp.1609-1612.
    【182】.Di, Y.; Wang, X.; Thomas, A.; Antonietti, M., Making Metal Carbon NitrideHeterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light.[J]. ChemCatChem Vol.2, No.7,2010, pp.834-838.
    【183】.Sun, J.-X.; Yuan, Y.-P.; Qiu, L.-G.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu,J.-F., Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement ofphotocatalytic activity under visible light.[J]. Dalton Transactions Vol.41, No.22,2012, pp.6756-6763.
    【184】.Wang, X.; Blechert, S.; Antonietti, M., Polymeric Graphitic Carbon Nitridefor Heterogeneous Photocatalysis.[J]. ACS Catalysis Vol.2, No.8,2012, pp.1596-1606.
    【185】.Susan Me ezAspera, M. D., and Hideaki Kasai, First-Principles Study of theAdsorption of Water on Tri-s-triazine-based Graphitic Carbon Nitride.[J]. JapaneseJournal of Applied Physics Vol.49, No.2010, pp.115703.
    【186】.Goettmann, F.; Thomas, A.; Antonietti, M., Metal-Free Activation of CO2byMesoporous Graphitic Carbon Nitride.[J]. Angewandte Chemie International EditionVol.46, No.15,2007, pp.2717-2720.
    【187】.Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A., Metal-free catalysisof sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitridesto avoid the use of metal chlorides and halogenated compounds.[J]. ChemicalCommunications Vol. No.43,2006, pp.4530-4532.
    【188】.Alder, B. J.; Wainwright, T. E., Phase Transition for a Hard Sphere System.[J]. The Journal of Chemical Physics Vol.27, No.5,1957, pp.1208-1209.
    【189】.Strachan, A.; van Duin,A. C. T.; Chakraborty, D.; Dasgupta, S.; Goddard, W.A., Shock Waves in High-Energy Materials: The Initial Chemical Events inNitramine RDX.[J]. Physical Review Letters Vol.91, No.9,2003, pp.098301.
    【190】.Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.; Goddard Iii, W.A., Thermal decomposition of RDX from reactive molecular dynamics.[J]. TheJournal of Chemical Physics Vol.122, No.5,2005, pp.054502-10.
    【191】.Nomura, K.-i.; Kalia, R. K.; Nakano, A.; Vashishta, P.; van Duin, A. C. T.;Goddard, W. A., Dynamic Transition in the Structure of an Energetic Crystal duringChemical Reactions at Shock Front Prior to Detonation.[J]. Physical Review LettersVol.99, No.14,2007, pp.148303.
    【192】.Landerville,A. C.; Oleynik, I. I.; White, C. T., Reactive Molecular Dynamicsof Hypervelocity Collisions of PETN Molecules.[J]. The Journal of PhysicalChemistry A Vol.113, No.44,2009, pp.12094-12104.
    【193】.Zhou, T.-T.; Huang, F.-L., Effects of Defects on Thermal Decomposition ofHMX via ReaxFF Molecular Dynamics Simulations.[J]. The Journal of PhysicalChemistry B Vol. No.2010, pp. null-null.
    【194】.陈正隆,分子模拟的理论与实践[M].学工业出版社北京,2007.
    【195】.Feibelman, P. J., Partial Dissociation of Water on Ru(0001).[J]. Science Vol.295, No.5552,2002, pp.99-102.
    【196】.Daw, M. S.; Baskes, M. I., Embedded-atom method: Derivation andapplication to impurities, surfaces, and other defects in metals.[J]. Physical ReviewB Vol.29, No.12,1984, pp.6443-6453.
    【197】.Tersoff, J., Empirical Interatomic Potential for Carbon, with Applications toAmorphous Carbon.[J]. Physical Review Letters Vol.61, No.25,1988, pp.2879-2882.
    【198】.Brenner, D. W., Empirical potential for hydrocarbons for use in simulatingthe chemical vapor deposition of diamond films.[J]. Physical Review B Vol.42, No.15,1990, pp.9458-9471.
    【199】.Pauling, L.,Atomic Radii and Interatomic Distances in Metals.[J]. Journal ofthe American Chemical Society Vol.69, No.3,1947, pp.542-553.
    【200】.Mortier, W. J.; Ghosh, S. K.; Shankar, S., Electronegativity-equalizationmethod for the calculation of atomic charges in molecules.[J]. Journal of theAmerican Chemical Society Vol.108, No.15,1986, pp.4315-4320.
    【201】.杨忠志,电负性均衡[J].化学进展Vol.24, No.06,2012, pp.1038-1049.
    【202】.Rappe, A. K.; Goddard, W. A., Charge equilibration for molecular dynamicssimulations.[J]. The Journal of Physical Chemistry Vol.95, No.8,1991, pp.3358-3363.
    【203】.van Duin, A. C. T.; Baas, J. M. A.; van de Graaf, B., Delft molecularmechanics: a new approach to hydrocarbon force fields. Inclusion of ageometry-dependent charge calculation.[J]. Journal of the Chemical Society, FaradayTransactions Vol.90, No.19,1994, pp.2881-2895.
    【204】.Smit, D. F. B., Understanding Molecular Simulation: From Algorithms toApplications.[M]. Academic Press: California,2001.
    【205】.Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R., A computersimulation method for the calculation of equilibrium constants for the formation ofphysical clusters of molecules: Application to small water clusters.[J]. The Journal ofChemical Physics Vol.76, No.1,1982, pp.637-649.
    【206】.Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas.[J]. Physical ReviewVol.136, No.3B,1964, pp. B864-B871.
    【207】.Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange andCorrelation Effects.[J]. Physical Review Vol.140, No.4A,1965, pp. A1133-A1138.
    【208】.Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized GradientApproximationMade Simple.[J]. Physical Review Letters Vol.77, No.18,1996, pp.3865-3868.
    【209】.Perdew, J. P.; Wang, Y., Pair-distribution function and its coupling-constantaverage for the spin-polarized electron gas.[J]. Physical Review B Vol.46, No.20,1992, pp.12947-12954.
    【210】.Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on ascreened Coulomb potential.[J]. The Journal of Chemical Physics Vol.118, No.18,2003, pp.8207-8215.
    【211】.Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G., ThePerdew--Burke--Ernzerhof exchange-correlation functional applied to the G2-1testset using a plane-wave basis set.[J]. The Journal of Chemical Physics Vol.122, No.23,2005, pp.234102-13.
    【212】.Heyd, J.; Scuseria, G. E., Efficient hybrid density functional calculations insolids: Assessment of the Heyd--Scuseria--Ernzerhof screened Coulomb hybridfunctional.[J]. The Journal of Chemical Physics Vol.121, No.3,2004, pp.1187-1192.
    【213】.Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Erratum:``Hybrid functionals basedon a screened Coulomb potential''[J. Chem. Phys.[bold118],8207(2003)].[J]. TheJournal of Chemical Physics Vol.124, No.21,2006, pp.219906-1.
    【214】.Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D. A., Embedded-atompotential for B2-NiAl.[J]. Physical Review B Vol.65, No.22,2002, pp.224114.
    【215】.Puri, P.; Yang, V., Effect of Particle Size on Melting of Aluminum at NanoScales.[J]. The Journal of Physical Chemistry C Vol.111, No.32,2007, pp.11776-11783.
    【216】.Liu C. T., P. D. P., Intermetallic Compounds—Practice.[M]. Wiley:Chichester,1995.
    【217】.Purja Pun, G. P.; Mishin, Y., Development of an interatomic potential for theNi-Al system.[J]. Philosophical Magazine Vol.89, No.34,2009, pp.3245-3267.
    【218】.Wu, H.-Z.; Zhao, S.-J., Molecular Dynamics Study of the Response ofNanostructured Al/Ni Clad Particles System under Thermal Loading.[J]. The Journalof Physical Chemistry A Vol.115, No.46,2011, pp.13605-13610.
    【219】.van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., ReaxFF: AReactive Force Field for Hydrocarbons.[J]. The Journal of Physical Chemistry A Vol.105, No.41,2001, pp.9396-9409.
    【220】.van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard,W. A., ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems.[J].The Journal of Physical Chemistry A Vol.107, No.19,2003, pp.3803-3811.
    【221】.Zhang, L.; Zybin, S. V.; Van Duin, A. C. T.; Goddard, W. A., Modeling HighRate Impact Sensitivity of Perfect RDX and HMX Crystals by ReaxFF ReactiveDynamics.[J]. Journal of Energetic Materials Vol.28, No.1supp1,2010, pp.92-127.
    【222】.van Duin, A. C. T.; Zeiri, Y.; Dubnikova, F.; Kosloff, R.; Goddard, W. A.,Atomistic-Scale Simulations of the Initial Chemical Events in the Thermal Initiationof Triacetonetriperoxide.[J]. Journal of the American Chemical Society Vol.127, No.31,2005, pp.11053-11062.
    【223】.Zhang, L.; Zybin, S. V.; van Duin, A. C. T.; Dasgupta, S.; Goddard, W. A.;Kober, E. M., Carbon Cluster Formation during Thermal Decomposition ofOctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and1,3,5-Triamino-2,4,6-trinitrobenzene High Explosives from ReaxFF ReactiveMolecular Dynamics Simulations.[J]. The Journal of Physical Chemistry A Vol.113,No.40,2009, pp.10619-10640.
    【224】.Budzien, J.; Thompson, A. P.; Zybin, S. V., Reactive Molecular DynamicsSimulations of Shock Through a Single Crystal of Pentaerythritol Tetranitrate.[J].The Journal of Physical Chemistry B Vol.113, No.40,2009, pp.13142-13151.
    【225】.van Duin,A. C. T.; Bryantsev, V. S.; Diallo, M. S.; Goddard, W.A.; Rahaman,O.; Doren, D. J.; Raymand, D.; Hermansson, K., Development and Validation of aReaxFF Reactive Force Field for Cu Cation/Water Interactions and CopperMetal/Metal Oxide/Metal Hydroxide Condensed Phases.[J]. The Journal of PhysicalChemistry A Vol.114, No.35,2010, pp.9507-9514.
    【226】.Zhang, Q.; Ccedil; agcaronin, T.; van Duin, A.; Goddard, W. A.; Qi, Y.;Hector, L. G., Adhesion and nonwetting-wetting transition in the Al/alpha-Al2O3interface.[J]. Physical Review B Vol.69, No.4,2004, pp.045423.
    【227】.Bl chl, P. E., Projector augmented-wave method.[J]. Physical Review B Vol.50, No.24,1994, pp.17953-17979.
    【228】.Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set.[J]. Physical Review B Vol.54,No.16,1996, pp.11169-11186.
    【229】.Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of theelectron-gas correlation energy.[J]. Physical Review B Vol.45, No.23,1992, pp.13244-13249.
    【230】.Bl chl, P. E.; Jepsen, O.; Andersen, O. K., Improved tetrahedron method forBrillouin-zone integrations.[J]. Physical Review B Vol.49, No.23,1994, pp.16223-16233.
    【231】.Murnaghan, F. D., The compressibility of media under extreme pressures.
    [M]. Springer-Verlag: Berlin,1944; Vol.30.
    【232】.Birch, F., Finite Elastic Strain of Cubic Crystals.[J]. Physical Review Vol.71,No.11,1947, pp.809.
    【233】.Kittel, C., Introduction to Solid State Physics [M]. Wiley-Interscience: NewYork,1986.
    【234】.Wang, G. S. a. H., Single Crystal Elastic Constants and CalculatedAggregateProperties.[M]. Cambridge: MIT Press,1977.
    【235】.Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D.A.; Voter,A. F.; Kress, J. D.,Structural stability and lattice defects in copper: Ab initio, tight-binding, andembedded-atom calculations.[J]. Physical Review B Vol.63, No.22,2001, pp.224106.
    【236】.Properties and Interaction of Atomic Defects in Metals and Alloys.[M].Springer: Berlin,1991; Vol.25.
    【237】.Siegel, R. W., Vacancy concentrations in metals.[J]. Journal of NuclearMaterials Vol.69–70, No.0,1978, pp.117-146.
    【238】.Balluffi, R. W., Vacancy defect mobilities and binding energies obtained fromannealing studies.[J]. Journal of Nuclear Materials Vol.69–70, No.0,1978, pp.240-263.
    【239】.Tyson, W. R.; Miller, W.A., Surface free energies of solid metals: Estimationfrom liquid surface tension measurements.[J]. Surface Science Vol.62, No.1,1977,pp.267-276.Surface Science [M]. Springer-Verlag: Berlin,2009.VX【【【i.s;222i444bA201le】】】n-.LtZ.Go.Kinhrgiiaothen tett g,tlCi,,, A aJCt..Ma;,.,lCT Iy.;shhn ieetrsWnoo b r,eda yXtinuc gC.ct;a,i o TlopanXok tl.aoy, n SmaSboeyreliin,dz tK Sahte.ti;aos iMte ns. aP[oehJdfy].as,Aa iK csn. gC;[eaDMwrob]amo.8nnde tneeN,d K.; Cith.Wr;ie dEilmepe ipyeSi: n2Itnrg0ut,e0cJ4rt.nu.Daret.i;o Fnfouarl,Edition Vol.49, No.2,2010, pp.441-444.
    【243】.Vilela, F.; Zhang, K.; Antonietti, M., Conjugated porous polymers for energyapplications.[J]. Energy&Environmental Science Vol.5, No.7,2012, pp.7819-7832.
    【244】.Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X., Metal-freeactivation of H2O2by g-C3N4under visible light irradiation for the degradation oforganic pollutants.[J]. Physical Chemistry Chemical Physics Vol.14, No.4,2012, pp.1455-1462.
    【245】.Rahaman, O.; van Duin,A. C. T.; Goddard, W.A.; Doren, D. J., Developmentof a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect andTautomerization.[J]. The Journal of Physical Chemistry B Vol.115, No.2,2010, pp.249-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700