用户名: 密码: 验证码:
螺旋磁场搅拌对合金内在质量影响的模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金属凝固过程中施加电磁搅拌强迫熔体流动,对改变熔体中的传热与传质过程,控制凝固组织具有重要作用。本论文以常规条件下易产生成分偏析的低熔点Pb-Sn和Sn-Sb合金为目标金属,采用多功能电磁搅拌装置,在实验室条件下探讨不同磁场形式电磁搅拌对合金凝固过程、凝固组织、成分偏析及缩孔、疏松缺陷的影响,重点分析螺旋磁场的作用机理,结合温度场、电磁场数值模拟分析,优化电磁搅拌工艺参数,并将多种磁场与功率超声结合组成复合场应用于凝固过程中,研究其对凝固组织和宏观缺陷的影响及作用机理。论文得到的主要结果有:
     (1)旋转、行波和螺旋磁场的磁感应强度均随周向角度呈正弦分布,且随搅拌频率的增加而降低;旋转磁场在f=10Hz时达到磁感应强度最大值,螺旋磁场在户8-12Hz区间的磁场强而稳定。旋转和行波磁场中心最大磁感应强度出现在周向角度900和270°,而螺旋磁场出现在120°和180°。频率一定,磁感应强度随励磁电流的增加而增大。
     (2)在搅拌器轴线方向,磁感应强度呈现出“中间大、两端小”的分布特征;在搅拌器同一横断面上,边缘处磁感应强度最大而中心最小;螺旋磁场沿轴向分布较旋转磁场更为平稳,电磁搅拌覆盖范围更大;当R<60mm时,螺旋磁场沿径向衰减幅度更小分布更为平稳;行波磁场在搅拌器内壁处磁感应强度最大,但沿径向衰减程度也最大。测试和模拟结果均表明,螺旋磁场的磁感应强度大于旋转磁场和行波磁场。
     (3)数值模拟与实测结果均表明,螺旋磁场的电磁力使熔体主要产生切向和轴向上的大环流,而切向和轴向受力的分布对搅拌强度和效果起决定作用,随励磁电流的增强Fθ与Fz也显著增加,有利于金属熔体在横纵截面上的流动。熔体所受电磁合力Fsum随搅拌频率增加而增加,但幅度不大,在f=2~12Hz时电磁力的曲线几乎是重合的,但是沿半径方向逐渐增大。
     (4)螺旋磁场产生的感应热随着电流强度的增强而增大,沿着径向均匀分布;励磁电流较低时电磁搅拌对凝固组织起主要作用,当励磁电流达到一定值时感应热对凝固过程的影响占主导,导致冷却速度降低,冷却曲线斜率减小,共晶平台位置上移,共晶凝固时间延长。
     (5)励磁电流一定时,螺旋磁场频率较低时将产生反偏析,随着频率的增大反偏析逐步得到改善,在细化凝固组织及改善成分偏析方面合理的搅拌频率为f=10~13Hz,适宜的搅拌时间为15-20min,Pb-Sn合金晶粒尺寸由无磁场的175μm减至140μm,铸锭成分偏差值为1.5wt.%。
     (6)频率为f=10Hz时,螺旋磁场励磁电流越大,晶粒尺寸越细小,在改善成分偏析和凝固组织方面适宜的励磁电流为115-125A,平均晶粒尺寸最小为133μm,可以基本消除Pb-80%Sn过共晶合金的成分偏析。同时,螺旋磁场搅拌对合金共晶层片有明显的粗化作用,且共晶组织生长形态也发生从层片共晶向不规则共晶的转变。
     (7)螺旋磁场、旋转磁场和行波磁场电磁搅拌都可以有效的改善合金的凝固组织和成分偏析,综合对比不同形式的磁场搅拌对Pb-Sn和Sn-Sb合金内在质量的影响,可得到如下结论,在细化凝固组织的冶金效果是:螺旋磁场>旋转磁场>行波磁场,在改善成分偏析的冶金效果方面为:螺旋磁场>行波磁场>旋转磁场。
     (8)复合场在细化凝固组织和改善合金内部质量方面存在一个适宜的超声功率值和搅拌强度,获得较好的冶金效果。对比旋转磁场与超声场复合、螺旋磁场与超声场复合作用下合金凝固组织变化的结果发现,螺旋磁场切向分力扩大超声空化作用的覆盖面积,强化超声破碎枝晶、细化组织的作用;轴向分力与超声声流产生的轴向搅拌叠加,促进了功率超声在整个熔体内爆发生核,螺旋磁场与超声复合改善宏观缺陷和细化凝固组织效果最好。
Various laminar and turbulent flows caused by the application of electromagnetic field during the solidification could change the processes of heat and mass transfer in melt metal and proceed to affect the solidification structure and compositional distribution of alloy.
     With the application of the New-type multi-functional electromagnetic stirrer, low melting alloys Pb-Sn and Sn-Sb were selected as research object and the effects of different magnetic fields on the solidification process, composition segregation and defects such as shrinkage cavity, porosity of the alloy ingot were investigated.The action mechanism of the spiral magnetic field (SMF) emphatically was discussed, and stirring technologic parameters for EEMS was optimized by the numerical simulation analysis and experimental study, which would provide a guide for the practical application of the SMF stirrer in the factory. In addition, the study of compound field(combination of different kinds of electromagnetic field and power ultrasonic field) on the solidification process and the effects of compound field on the surface quality of the ingot, microstructures, composition segregation and macro-defects were studied. Moreover, the action mechanism of compound field on the microstructures of the metal was also analyzed.
     (1) The magnetic induction distribution of three magnetic fields exhibits sinusoidal relationship with the circumferential angle, and decreases with the increase of the stirring frequency. The magnetic field distribution under rotating magnetic field(RMF) is seriously affected by the frequency and reaches its maximum value f=10Hz, while under spiral magnetic field(SMF) at the range of f=8-12Hz is very stable. The magnetic induction reaches its maximum value in90°and270°under RMF and TMF, and under SMF is in120°and180°. The magnetic induction increases with the exciting current as well as increases with the frequency within limits.
     (2) The magnetic induction decreased gradually from the centre to the upper or lower part of the stirrer along the axial direction and from the inwall to the centre in the same height section along the radial direction; the coverage area of SMF was wider along the axial direction than the others and the decrease speed of rotating magnetic field was lower along the radial direction, though SMF showed a more stationary distribution when R<60mm. Experiments and simulation results show that magnetic induction intensity under the SMF is greater than the RMF or TMF.
     (3) The simulation calculation results show that:with the increase of exciting current, the electromagnetic force value on the metal melt increases along all directions. The electromagnetic force distribution acting on the metal melt is uneven, the electromagnetic force value near the stirrer lateral is greater than the value far away from the stirrer. The distribution of Fz and Fθ playes important role in stirring strength. And its value also increases with the increase of the excitating current, which is benificial to the metal melt flow along the longitudinal and cross section. The electromagnetic force Fsum increases with the increase of stirring frequency and its distribution is stable at frequency range f=2-12Hz and increases along the radial direction
     (4) The induction heat under the SMF increases with the increase of the exciting current and uniformly distributes along the radial direction. However, the influence of induction heat on the melt became more obvious while the exciting current is large. The cooling rate decreases, the position of eutectic plateau changes and eutectic reaction time is prolonged.
     (5) At the fixed exciting current, the alloy exhibits anti-segregation at lower frequency while segregation has been gradually improved at higher frequency, and the frequency of f=10-13Hz is the best value in the improvement of macro-segregation. The appropriate stirring time is15-20min, reasonable stirring frequency is10-13Hz has been obtained. The grain size of Pb-Sn alloy is reduced from175μm to140μm and composition deviation decreases to1.5wt.%.
     (6) when the frequency is10Hz, in a range of the exciting currents with the increase of its value, the grain size is finer. The minimum grain size is133μm at I=125A. To further increase the current, the grain coarsenes. When I=115A the SMF can basically eliminate segregation. So, the SMF has the appropriate exciting current in improving segregation and solidification structures of115-125A. Moreover, the eutectic lamellar spacing coarsened and the transition of eutectic structures morphology from lamellar to rod-like eutectic when the stirring strength is high enough under the SMF.
     (7) The SMF, RMF and TMF stirring can effectively improve microstructure and segregation of the alloy. Comparison results of effects on the intrinsic quality for Pb-Sn and Sn-Sb alloy under different magnetic stirring show that in the refinement of grain SMF is better than RMF, which is better than TMF; in the improving segregation as:SMF is better than TMF, which is better than RMF.
     (8) Compound field has the appropriate ultrasonic power value and the stirring intensity in improving solidification structure and internal quality for the surpose of better metallurgical results. Compared to the compound field of rotating magnetic with ultrasonic field, under spiral magnetic with ultrasonic field the results show that, the tangential component of spiral magnetic field force expands the coverage of ultrasonic cavitation area and strengthenes the role of refinement of microstructures. The supersition stirring, which is composed of axial component of electromagnetic force and an axial-flow generating by ultrasonic field, promotes nucleation in the all metal molten. Compound field of spiral magnetic and ultrasonic field achieves better effects in improving macro-defects and structure refinement.
引文
[1]史哀兴.实用连铸冶金技术[M].北京:冶金工业出版社,1998:4-15.
    [2]Lwata H., Yamada K., Fujii T., et al. Electromagnetic stirring of molten core in continuous casting of high carbon steel[J]. Transactions, ISIJ,1976,16:374-381.
    [3]周亮.重钢方坯连铸结晶器电磁搅拌数值模拟及应用研究[D].重庆:重庆大学,2007.
    [4]白丙中.世界高效连铸技术的发展现状及发展我国高效连铸技术的建议[J].鞍钢技术,1997,9:4-6.
    [5]殷瑞钰.我国炼钢-连铸技术发展和2010年展望[J].炼钢,2008,24(6):1-12.
    [6]Li B. Q. Solidification Processing of Materials in Magnetic Fields[J]. J. of Metal, 1998,50 (2):181-189.
    [7]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004:1-3.
    [8]李继高.电磁场作用下铝镁合金组织性能变化规律研究[D].武汉:武汉理工大学,2006.
    [9]朱庆丰,赵志浩,王静,崔建忠.组合电磁场在材料凝固过程中的应用和发展[J].材料导报,2007,21(5):109-114.
    [10]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991:778-779.
    [11]陈明,周代文.电磁搅拌技术在连铸上的应用[J].宽厚板,2009,15(5):7-11.
    [12]陈雷.连铸电磁搅拌的现状和展望[J].炼钢,1985, (2):26-38.
    [13]Huajie Wu, Ning Wei, Yanping Bao, Guoxin Wang, et al. Effect of M-EMS on the solidification structure of a steel billet[J]. International Journal of Minerals, Metallurgy and Materials,2011,18 (2):159-164.
    [14]王陈伟,王琛.电磁连铸技术的应用及发展[J].河北理工大学学报,2011,33(4):39-43.
    [15]张秀荣.电磁搅拌技术在合金钢连铸机中的研究与应用[J].莱钢科技,2008,(4):55-57.
    [16]毛斌,张桂芳,李爱武.连续铸钢用电磁搅拌的理论与技术[M].北京:冶金工业出版社,2012:2-5.
    [17]韩至成.电磁冶金学[M].北京:冶金工业出版社,2001:99-157.
    [18]Oh K. S., Chang Y. W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring[J].ISIJ International,1995,7 (35):866-875.
    [19]Jianchao Li, Baofeng Wang, Yonglin Ma, Jianzhong Cui. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom[J]. Materials Science and Engineering A,2006, (425):201-204.
    [20]曹红福.连铸复合电磁搅拌对低碳钢碳偏析的影响[J].特殊钢,2010,31(2):38-39.
    [21]Kyung Shik OH, Yong Won CHANG. Macrosegregation Behavior in Continuously Cast High Carbon Steel Blooms and Billets at the Final Stage of solidification in Combination Stirring[J]. ISIJ Intemational,1995,35 (7):866-875.
    [22]Hideaki YAMAMURA, Takehiko TOH, Hiroshi HARADA, et al. Optimum magnetic flux density in quality control of casts with level DC magnetic field in continuous casting mold[J]. ISKJ International,2001,41(10):1229-1235.
    [23]Yasuda H, Toh T, lwai K, et al. Recent progress of EPM in steelmaking, casting, and Solidification Processing [J]. ISIJ,2007,47(4):619-626.
    [24]吴存有,周月明,侯晓光.电磁搅拌技术的发展[J].世界钢铁,2010,2:36-41.
    [25]李俊.末端电磁搅拌对合金钢连铸坯中心偏析与缩松影响的试验研究[D].沈阳:东北大学,2005.
    [26]谢兵,甘永年.电磁搅拌在连铸钢中应用的评述[J].四川冶金,1987,3:41-46.
    [27]Szekely J., Chang C. W. Turbulent Electromagnetically Driven Flow in Metals Processing. Pt.1. Formulation[J].Ironmaking & steelmaking.1977,4 (3):190-195.
    [28]邢文彬.电磁搅拌对连铸坯质量的影响[J].连铸,1989,(3):61-68.
    [29]杨健.方坯连铸二冷区用行波磁场电磁搅拌实验室模拟研究[D].武汉:武汉科技大学,2006.
    [30]Garabedian H., Strickland-Constable R.F. Collision breeding of ice crystals[J]. J. Cryst. Growth,1974,22:188-192.
    [31]Garabedian H, Strickland-Constable R. F. Collision breeding of crystal nuclei:Sodium chlorate. I[J].J. Cryst. Growth,1972,13/14:506-509.
    [32]Jackson K. A., Hunt J. D., Uhlmann D. R., Seward T. P. On the origin of the equiaxed zone in castings[J]. Ⅲ:Trans. Metall. Soc. AIME,1966,236:149-158.
    [33]陈永,杨素波,朱苗勇.结晶器电磁搅拌改善重轨钢连铸坯内部质量的试验研究[J].钢铁,2007,42(2):24-27.
    [34]Szekely J., Nakanishi K. Stirring and its effects on aluminum deoxidation in the ASEA-SKF furnace:Part II. Mathematical representation of the turbulent flow field and of tracer dispersion[J]. Metall. Trans. B.,1975,6B:245-256.
    [35]李树索.Al-37%Si合金磷变质及电磁搅拌显微组织的研究[J].金属学报,1998,22(5):14-16.
    [36]Chen Zhao, Chen Changle, Wen Xiaoli, et al. Effect of frequency and intensity of rotating magnetic field on the microstructures of Pb-Sn alloys[J].Chinese Science Bulletin,2008,53 (17):2575-2581.
    [37]Reddy G. S., Sekhar J. A. Microstructure refinement with forced convection in aluminium and superalloys[J]. J. Mater. Sci.,1985,20:3535-3544.
    [38]Molenaar J. M. M., Salemanns F. W. H. C., Katgerman L. The structure of stircast Al-6Cu[J]. J. Mater. Sci.,1985,20:4335-4344.
    [39]Verhoeven J. Macrosegregation during growth of a dendrite array into a stirred melt at near steady-state conditions[J]. Metall. Trans.,1971,2:2673-2680.
    [40]苏华钦,朱鸣芳,高志强.半固态铸造的现状及发展前景[J].特种铸造及有色合金,1998,(5):1-5.
    [41]Zhang W, Yang Y, Liu Q, Zhu Y, Hu Z. Effects of forced flow on morphology of Al-CuAl2 eutectic solidified with electromagnetic stirring[J]. J. Mater. Sci. Letts.,1997, 16:1955-1957.
    [42]朱丽娟,王冬,等.铸造合金凝固过程补缩机理探讨及其应用[J].特种铸造及有色合金,1997(6):34-38.
    [43]王晓东.旋转电磁场作用下金属凝固补缩机理探讨[J].材料工程,2001,(11):3-5.
    [44]Birat J P, Chone J. Electromagnetic stirring on billet, bloom and slab continuous casters:state of art in 1982[J]. Ironmaking and Steelmaking,1983,110(6):269-281.
    [45]陶文铨.数值传热学[M].西安:西安交通大学出版社,2003:33-53.
    [46]Zavaliangos M. R. Three-dimensional thixotropic flow model. In:D H Kirkwood and P Kaparanos. Proceeding of the 4th International Conference on the semi-solid Processing of Alloys and Composites[C].P4ICSPAC, Sheffield,1996:110-114.
    [47]Andrew J.Walker, et al. Modeling Solid/Fluid Interaction in a Dendritic Semisolid[C].P4ICSPAC, Sheffield,1996:104-111.
    [48]Paradies C. J, et al. Two-Phase Model of Flow of Semi-Solid Processing[C]. P5ICPAC, Colorado,1998:217-214.
    [49]Gosman A. D., Pun W. M., Runchal A. K., Spalding D. B., Wblfstein M. Heat and Transfer in Recirculating Flows[M].New York:Academic Press Inc. Ltd.,1969.
    [50]Gosman A. D., Ideriah F. J. K. TEACH-2E. A general computer program for two-dimensional, turbulent, recirculating flows, Department of Mechanical Engineering[J]. Internal Report. Imperial College, University of London,1976.
    [51]Gosman A. D., Lockwood F. C, Syed S. A. Prediction of a Horizontal Free Turbulent Diffusion Flame[C].16th Symposium (International) on Combustion, The Combustion Institute,1976:1543-1555.
    [52]Spalding D. B. New Developments and Computed Results[J]. Mathematics and Computers in Simulation, CHAM HTS/81/2.
    [53]Create Ltd. FLUENT V3.02, New Hampshire, US,1987.
    [54]Brian G.THOMAS, Lifeng ZHANG. Mathematical Modeling of Fluid in Continuous Casting[J].ISIJ International,2001,41 (10):1181-1193.
    [55]Lantzsch R., Galindob V., Grants I., et al. Experimental and numerical results on the fluid flow driven by a traveling magnetic field [J].Journal of Crystal Growth, 2007,305:249-256.
    [56]Leonardo B., Trindade, Antotio C. F. Vilela, Aly F. F. Filho, et al. Numerical Model of Electromagnetic Stirring for Continuous Casting Billets[J]. IEEE TRANSACTIONS ON MAGNETICS,2002,38 (6):3658-3660.
    [57]Galindo V., Grants I., Lantzsch R., et al. Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth[J]. Journal of Crystal Growth,2007,303:258-261.
    [58]Vives Ch., Ricou R. Experimental study of Continuous Electromagnetic Casting of Aluminium Alloys[J]. Metal. Trans. B,1985,16 (8):377-379.
    [59]Lavers J. D. Force and Stirring Patterns Produced by all Electromagnetic Mold[J]. IEEE-Industry Application society,1982:954-958.
    [60]Li B. Q., Evans J. W., Cook D. P. An Improved Mathematical Model for Electromagnetic Casters and Testing by a Physical Model[J]. Metal. Trans. B,1991,22B:121-124.
    [61]Spizer K. H., Dubke M., Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands[J]. Metallurgical Transactions B,1986,17 (1): 119-131.
    [62]Partinen J., Saluja N., Szekely J., et al. Experimental and computational investigation of rotary EMS in woods metal system[J]. ISIJ international,1994,34 (9):707-714.
    [63]Partinen J., Szekely J., Charles V., et al. Fluid flow and free surface phenomena in rotary EMS of a metallic melt[J]. ISIJ international,1995,35 (3):292-301.
    [64]Fujisaki K., Sawada K., Ueyama T., et al. Fundamental Electromagnetic Characteristics of in-mold Electromagnetic Stirring in Continuous Casting[C]. International Symposium on EPM'94, Nagoya:ISIJ,1994:272-277.
    [65]Mapelli C., Gruttadauria A., Peroni M. Application of electromagnetic stirring for the homogenization of aluminium billet cast in a semi-continuous machine [J]. Journal of Materials Processing Technology,2010,210:306-314.
    [66]Natarajan T. T.,Nagy EI-Kaddah. Finite element analysis of electromagnetic and fluid flow phenomenon in rotary electromagnetic stirring of steel[J]. Applied Mathematical Modelling,2004,28:47-61.
    [67]Barman N., Kumar P., Dutta P. Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring[J]. Journal of Materials Processing Technology,2009,209:5912-5923.
    [68]高允安,贾光霖,史玉升,等.线性电磁搅拌时金属运动规律的数学模型[J].东北工学院学报,1991:12(3):292-297.
    [69]吴洁,赵沛,成国光,等.连铸结晶器内钢液弯月面区域速度场的测定[J].北京科技大学学报,1997,19(6):525-529.
    [70]王学东,张伟强,时海芳.旋转磁场电磁搅拌数值模拟[N].辽宁工程技术大学学报,2000,19(5):543-545.
    [71]张静,王恩刚,邓安元,郝冀成.大方坯结晶器电磁搅拌磁场流场耦合数值模拟[J].铸造,2011,60(5):469-472.
    [72]毛斌译.电磁搅拌对钢的凝固组织的影响[C].第一届欧洲连铸会议译文集,中国会属学会连铸学会,1991,355-361.
    [73]Chung S. L. Numerical analysis of effect of electromagnetic stirring on solidification phenomena in continuous casting[J]. Iron making and steelmaking,1996,23 (5): 425-433.
    [74]Jose N. Silva, Daniel J. Moutinho, Antonio L. Moreira, Ivaldo L. Ferreira, Otavio L. Rocha. Determination of heat transfer coefficients at metal-mold interface during horizontal unsteady-state directional solidification of Sn-Pb alloys[J].Material Chemistry and Physics,2011,130:179-185.
    [75]Dadzis K.,Ehrig J.,Niemietz K., Patzold 0., Wunderwald U.,Friedrich J. Model experiments and numerical simulations for directional solidification of multi-crystalline silicon in a traveling magnetic field[J]. Journal of Crystal Growth,2011, (333):7-15.
    [76]张琦,李廷举,王同敏,金俊泽.连铸空心管坯内置行波磁场对凝固组织的影响[J].稀有金属材料与工程,2007,36(9):1566-1569.
    [77]张琦,金俊泽,王同敏,李廷举,郭庆涛.金属液在旋转电磁搅拌器作用下的流动分析[J].中国有色金属学报,2007,17(1):98-104.
    [78]张琦,王进,褚忠.电磁搅拌金属熔体数值模拟的研究进展[J].材料导报A:综述篇,2011,25(8):135-140.
    [79]杨运猛.超声场对铝合金凝固作用机制试验研究[D].长沙:中南大学,2009.
    [80]白晓清.超声波作用下液体中夹杂物迁移行为[D].沈阳:东北大学,2002.
    [81]Sokolov S. influence des ondes ultrasoniques sur les reactions chimiques[J]. Techn. Phys. URSS,.1936,3:176-180.
    [82]Danilov V.I., Chedzhenov G. Problems in Metal Science and Physics of Metals[J]. Collected Papers of Central Research Institute of Pure Materials World, 1955, (4):152.
    [83]Eskin G. I. Ultrasonic Treatment of Molten Aluminum [J]. Metal lurgia,1985,4:105-110.
    [84]Rai G., Lavernia E., Grant N. J. Powder Size Distribution in Ultrasonic Gas Atomization[J]. Journal of Metals,1985,8:22-26.
    [85]Xu H., Jian X., Meek T. T., et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration[J].Materials Letters,2004,58 (29):3669-3673.
    [86]Jian X., Xu H., Meek T. T., et al. Effect of power ultrasound on solidification of aluminum A356 alloy[J].Materials Letters,2005,59 (2-3):190-193.
    [87]Xu H., Xu L. D., Zhang S. J., et al. Effect of the alloy composition on the grain refinement of aluminum alloys[J]. Scripta Materialia,2006,54 (12):2191-2196.
    [88]Han Q., Viswanathan S. Hydrogen evolution during directional solidification and its effect on porosity formation in aluminum alloys[J].Metallurgical and Materials Transactions A,2002,33 (7):2067-2072.
    [89]Eskin G. I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys[J]. Ultrason Sonochemistry,2001,8:319-325.
    [90]Jian X. G., Meek T. T., Han Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration[J]. Scripta Mater,2006,54: 893-896.
    [91]Liu X. B., Osawa Y., Takamori S., Mukai T. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Mater. Lett.,2008,62.-2872-2875.
    [92]Atamanenko T. V., Eskin D. G., Zhang L., Katgerman L. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti[J].Metall Mater Trans A,2010,41:2056-2066.
    [93]戚飞鹏,高守雷,侯旭等.超声功率对锡锑合金凝固组织的影响[J].上海大学学报,2003,9(1):42-46.
    [94]Zhang H. B., Zhai Q. J.,Qi F. P. Microstructure refinement of Sn-Sb Peritectic alloy by power ultrasonic[J]. China Foundry,2004,1:58-61.
    [95]Zhang H. B., Zhai Q. J., Qi F. P. et al. Effect of side transmission of power ultrasonic on structure of AZ81 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China,2004,14 (2):303-305.
    [96]Li X. T., Li T. J., Li X. M., et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy[J]. Ultrasonic Sonochemistry,2006,13(2):121-125.
    [97]高学鹏,李新涛,李廷举,等.超声场对Al-1%Si合金水平连铸坯显微组织及力学性能的影响[J].金属学报,2007,43(1):17-22.
    [98]郄喜望,李捷,李廷举,等.超声场对Al-Si合金的除气效果及晶粒细化[J].金属学报,2008,44(4):414-418.
    [99]宁韶斌,郄喜望,李喜孟,等.高能超声处理Al-1Si合金凝固组织分析[J].特种铸造及有色合金,2007,27(4):320-321.
    [100]翟薇,洪振宇,解文军,魏炳波.超声场中Sn-38.1%Pb共晶合金的动态凝固[J].科学通报,2010,55:(23):2276-2282.
    [101]姚磊.镁锂系合金微合金化及外场控制凝固研究[D].大连:大连理工大学,2010.
    [102]崔莹,李晓谦.超声对7050铝合金显微组织及溶质固溶度的影响[J].中南大学学报.2012,43(9):3420-3425.
    [103]Abramov V.0., Abramov 0. V., Sommer F., et al. Properties of Al-Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting[J]. Materias Letters, 1995,23:17-20.
    [104]张忠涛.外场对铝熔体异相粒子运动及其凝固行为影响研究[D].大连:大连理工大学,2009.
    [105]Shao Z. W., Le Q. C., Zhang Z. Q., et al. A new method of semi-continuous casting of AZ80 Mg Alloy billets by a combination of electromagnetic and ultrasonic fields[J].Materials and Design,2011,32 (8-9):4216-4224.
    [106]邢文彬,许诚信,房彩刚,毛斌,王世郁.新型螺旋磁场电磁搅拌的冶金效果[J].北京科技大学学报,1991,13(2):110-115.
    [107]Zhao Q., Zhang X. G., Fang C. F. The effects of electromagnetic stirring on solidification structure and macrosegregation of Pb-Sn alloy[J]. Advanced Materials Research,2012,482-484:1447-1452.
    [108]Xingguo ZHANG, Qian ZHAO, Jianshe GUO, Qingyuan XING, Liang DENG, Xiaoguang HOU, Canfeng FANG. Effects of Spiral Magnetic Field on Structures Transformation and Macrosegregation of Sn-Pb alloy [J].Acta Metallurgica Sinica,2013,26 (3):345-351.
    [109]张楠,赵倩,房灿峰,等.螺旋磁场对Pb-Sn合金成分偏析的影响[J].中国有色金属学报,2012,22(6):1731-1737.
    [110]郭建设,赵倩,侯晓光,等.电磁搅拌频率对Pb-Sn过共晶合金凝固组织的影响材料研究学报,2012,26(3):267-273.
    [111]Wang X. D., Li T. J., Fautrelle Y., Dupouy M. D., Jin J. Z. Two kinds of magnetic fields induced by one pair of rotating permanent magnets and their application in stirring and controlling molten metal flows[J]. J. Cryst. Growth,2005,275 (1):1473-1479.
    [112]El-Bassyouni T. A. Effect of electromagnetic forces on aluminum cast structure[J]. Light Metals.,1983,33 (12):733-741.
    [113]周尧和,胡壮麒,介万奇,凝固技术,(北京:机械工业出版社,1998)p.156
    [114]Zhang W., Yang Y., Liu Q., et al. Effect of forced flow on morphology of Al-CuAl2 eutectic solidified with electromagnetic stirring[J].J. Mater. Sci. Lett.,1997,16 (23):1955-1957.
    [115]刘立强,李秋书,李仁兴,等.脉冲磁场下铝液凝固组织的研究[J].中国铸造装备与技术,2004,(1):27-28.
    [116]ANSYS low-frequency electromagnetic analysis guide. ANSYS Inc.,1998:1.1-1.6.
    [117]唐兴伦,范群波.ANSYS工程应用教程—热与电磁学篇[M].北京:中国铁道出版社,2003:144.
    [118]夏莉.线性电磁搅拌过程三维电磁场、流场的数值模拟[D].沈阳:东北大学,2003.
    [119]吴扣根.圆坯连铸结晶器电磁搅拌过程数学模拟与实验研究[D].上海:上海大学,2001.
    [120]Willers B, Eckert S, Michel U, Haase I.Zouhar G. The columnar-to-equiaxed transition in Pb-Sn alloys affected [J]. Mater Sci Eng,2005:A402:55-65.
    [121]张琦.复合电磁场对连铸空心管坯质量的影响[J].大连:大连理工大学,2007.
    [122]荆涛,柳百成.凝固过程数值模拟[M].北京:电子工业出版社,2002:5-10.
    [123]程军.计算机在铸造中的应用[M].北京:机械工业出版社,1993:127-130.
    [124]班春燕,崔建忠,巴启先,张北江.电磁场对7075铝合金液固相线温度的影响[J].特种铸造及有色合金,2004,(1):26-28.
    [125]Vives C., Perry C. Effects of magnetically damped convection during the controlled solidification of metals and alloys[J]. Int. J. Heat Mass Transfer.,1987,30 (3): 479-496.
    [126]Uhlmann D. R., Seward T. P., Chalmers B. The effect of magnetic fields on the structure of metal alloy castings[J]. Trans. Metall. Soc. AIME,1996,236:527-531.
    [127]Meyer J. L., Durand F., Ricou R., Vives C. Steady flow of liquid aluminum in a rectangular-vertical ingot mold, thermally or electromagnetically activated[J].Metall.Trans.B.,1984,15B:471-478.
    [128]Szekely J., Nakanishi K. Stirring and Its Effects on Aluminium Ik-oxidation in the ASEA-SKF Furnace:Part II Mathematical Representation of the turbulent Flow Field and of Tracer Dispersion[J]. Metall. Trans. B.,1975,6B:245-256.
    [129]Gau C., Viskanta R. Melting and solidification of a metal system in a rectangular cavity[J]. Int. J. Heat Mass Transfer.,1984,27:113-123.
    [130]Jackson K. A., Hunt J. D. Lamellar and rod eutectic growth [J]. Trans. Metall. Soc AIME, 1966,236:1129-1142.
    [131]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:187.
    [132]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004:87-90.
    [133]Zhang W., Fu H., Yang Y., Hu Z. J. A numerical model for spacing selection of lamellar eutectics grown from flowing liquids[J]. Crystal Growth,1998,194:263-271.
    [134]WANG H. X., XU C. X., XUN L, et al. Effects of rotating magnetic field on microstructure and properties of Pb-Sn-Sb ternary alloys [J]. Materials Science & Technology,2009, 17 (1):70-74.
    [135]王晓东,赵恂,李廷举,等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):1-5.
    [136]METAN V., EIGENFELD K., RABIGER D., et al. Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring[J]. Jouranl of Alloy and Compounds,2009, 487:163-172.
    [137]MAO W.M., ZHEN Z. S., CHEN H.T. Effects of electromagnetic stirring parameters on microstrusture of semi-solid AZ91D Mg alloy [J]. Special Casting & Nonferrous Alloy, 2005,25 (9):538-541.
    [138]王红霞,许春香,徐林,梁伟,韩富银.旋转磁场对Pb-Sn-Sb合金组织及性能的影响[J].材料科学与工艺,2009,17(1):70-74.
    [139]张楠.末端电磁搅拌对钢连铸坯成分偏析及缩松影响的模拟研究[D].大连:大连理工大学,2012.
    [140]Flemings M. C. Behavior of metal alloys in the semisolid state[J]. Metallurgical transactions A,1990,22A:957-981.
    [141]Spencer D. B., Mehrabian R., Flemings M. C. Rheological behavior of Sn-15%Pb in the crystallization range[J].Metallurgical transactions,1972,3:1925-1932.
    [142]谢辉,丁雨田,郭学峰,许广济.电磁搅拌对Al-5%Cu初生相形貌的影响[J].热加工工艺,2000,6:5-7.
    [143]张宏丽,王恩刚,贾光霖,赫冀成.电磁搅拌提高铸坯等轴晶比率的数值模拟[J].东北大学学报(自然科学版),2001,22(5):535-538.
    [144]陈钊,陈长乐,温晓莉,朱建华,高文帅,旋转磁场强度和频率对Pb-Sn合金凝固组织的影响,科学通报,2008,53(8):882-887.
    [145]毛卫民,赵爱民,崔成林,钟雪友.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律[J].金属学报,1999,3(9):971-974.
    [146]Galenko P. K., Funke 0., Wang J. Kinetics of dendritic growth under the influence of convective flow in solidification of under-cooled droplets[J]. Mater.Sci. Eng., 2004,375-377:488-492.
    [147]大泽嘉昭,佐藤彰.超音波振勤にょる凝固组织の微细化[J].铸造工学,2000,72(11):733-738.
    [148]胡化文,陈康华,黄兰萍.超声波熔体处理对铝合金组织和性能的影响[J].特种铸造及有色合金,2004,4:11-13.
    [149]高守雷,张家涛,李祖齐,等.超声场下熔体温度对SnSb合金凝固组织的影响[J].特种铸造及有色合金,2003,23(3):21-23.
    [150]李军文,桃野正.超声波振动处理时间对铸锭组织的影响[J].铸造技术,2004,25(1):44-49.
    [151]Eskin G.I. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrasonic Sonochemistry,1995,10 (2):137-141.
    [152]Xu H. B., Meek T. T. Degassing of molten aluminum A356 alloy using ultrasonic vibration[J].Mater. Lett.,2004,58(29):3669-3673.
    [153]Moraru L., Macuta S. Acoustical Degassing of Molten Aluminium[C]. SISOM 2006, Bucharest,17-20 Mail, CD-ROM.
    [154]Sanchez C., Livage J., Henry M., et al. Chemical modification of alkoxide precursors[J].Non-cryst. Solids,1988,100:65-76.
    [155]陈锋,舒光冀,马立群,等.高能超声作用下数种金属基复合材料的制备及机制[J].复合材料学报,1998,15(3):12-16.
    [156]Campbell J. Effects of Vibration during solidification[J]. Int Met Rev,1981, (2): 71-104.
    [157]刘清梅.超声场对金属凝固特性及组织影响的研究[D].上海:上海大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700