用户名: 密码: 验证码:
基于d-e-p模型的氧化铝生产过程能耗分析及节能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会工业化进程的加快,能源与环境问题日益成为当前全球亟待解决的问题,工业行业尤其是冶金工业能耗问题尤为突出。氧化铝工业是我国冶金工业中的重点行业,针对氧化铝生产过程展开企业能源利用状况研究,深入挖掘企业节能降耗潜力,对提高氧化铝产品国际竞争力,保持我国经济可持续发展有着重要意义。
     本文在收集大量氧化铝生产过程原始数据的基础上,借用钢铁冶金行业‘e-p能耗分析法”对混联法生产氧化铝工艺过程进行能耗初步计算分析,计算结果表明蒸发工序、熟料烧成工序、焙烧工序以及管道化溶出工序是其主要能耗工序,其直接能耗与间接能耗均对企业能耗有着显著的影响。
     运用(?)分析中的复杂灰箱模型建立混联法生产氧化铝工艺的(?)分析模型,对各子工序的主要耗能环节及有效利用程度进行了评价,发现熟料溶出与脱硅工序的平均(?)效率最高,达到80%以上;熟料烧成、焙烧工序的外部(?)损失较大,可回收利用空间大,具有较大的节能潜力。
     在(?)分析的基础上,首次提出并建立了企业系统能耗的“d-e-p分析模型”,利用该模型对氧化铝生产过程的能耗、(?)耗以及(?)损分布进行了计算与分析,影响各工序供给(?)变化的因素主要包括两个部分:受工序能耗水平影响的直接(?)耗及受折合比变化影响的间接(?)耗;影响各工序(?)损变化的因素主要包括直接(?)损和间接(?)损两个部分。折合比对系统能耗的影响显著,有些工序虽然工序能耗与工序供给(?)降低了,但考虑折合比后,其综合能耗仍然是升高的。管道化溶出和熟料溶出及脱硅工序虽然能耗降低,但其(?)损失并没有随之降低,反而有所增加。
     在d-e-p模型分析的基础上,以减少工序(?)损为目标,对石灰煅烧与熟料烧结工序进行了优化设计与技术改造,直接节能效果明显;分析了铝硅比变化对氧化铝生产能耗的影响,预测分析了当铝硅比提高到10后折合比的变化及间接节能效果。在此基础上,从宏观的角度对企业能源管理提出了建议以降低企业能耗。
     从能源利用的数量以及品质两个层面对氧化铝生产过程节能技术进行全面研究,有助于全方位挖掘企业节能潜力,对工业行业的节能降耗具有重要的理论与实际意义。
As the process of industrialization of human society speeds up, energy and environmental issues are becoming more urgent to resolve for the whole world. Energy consumption of industrial sectors, especially metallurgical industry is obviously prominent. Since alumina refinery is the backbone of China's metallurgical industry, to research the energy utilization in alumina refinery process and tap the potential of energy saving for the enterprises as much as possible are of great significance to improving the products'international competitiveness and maintaining China's sustainable development in economy.
     This paper presented a preliminary energy consumption analysis of an alumina refinery process with Bayer-Sinter combination method based on a large number of raw data of this process and the e-p method which has been widely used in ferrous metallurgy. The result shows that evaporation, slurry sintering, lime calcining and tube digestion are the mainly intensive-energy consumption sub processes. Their direct and indirect energy consumptions have remarkable impact on that of the enterprise.
     The exergy analysis model of the Bayer-Sinter combination process was established in the form of the grey box model and subsequently the energy consumption and effective utilization degree of all sub processes were evaluated. The results show that the average exergy efficiencies of sinter digestion and desilication are the highest, which are in excess of80%. The extrinsic exergy losses in slurry sintering and lime calcining are large and can be recovered to a considerable extent. Thus the two sub processes have large energy saving potentials.
     The d-e-p analysis model of an enterprise's system energy consumption was put forward and established at the first time on basis of exergy analysis theory, and then applied to calculate and analyze the energy consumption, exergy losses and their distribution in the alumina refinery process. The results indicate that there are mainly two factors influences the supply exergy of all sub processes:the direct exergy consumptions affected by the energy consumption levels of sub processes and the indirect exergy consumptions affected by alumina-process product-ratios. The factor influences the exergy losses in sub processes primarily include two items:the direct exergy losses and the indirect exergy losses. The impact of product-ratios on the comprehensive energy consumptions is significant. The energy consumptions and supply exergies of several sub processes reduced, however, the related comprehensive energy consumptions increased after taking the product-ratios into account. Although the energy consumptions of tube digestion, sinter digestion and desilication reduced, the exergy losses didn't decline accordingly but raised.
     On the basis of the analysis using d-e-p model, the sub processes of lime calcining and slurry sintering were optimized and improved according to the distribution of exergy loss, which brought significant energy saving. The effect on the product ratio brought by the change of Al-Si ratio was analyzed, and the change of the product ratio and indirect energy saving were forecasted when the Al-Si ratio increased to10. Then suggestions about energy management were given in order to decrease the energy consumption.
     To conduct a comprehensive study of energy saving in alumina refinery process from the quantity and quality of energy can contribute to tapping the potential of energy saving for the enterprises systematically and has important theoretical and practical significance to energy saving and consumption reducing of the alumina industry sector.
引文
[1]贾振航,姚伟,高红.企业节能技术.北京:化学工业出版社,2006
    [2]国家发展和改革委员会.九个耗能行业重点节能技术概要.http://www.sdpc.gov.cn
    [3]国家发展和改革委员会科学技术部.中国节能技术政策大纲(2006年).http://www.sdpc.gov.cn
    [4]殷瑞钰.冶金流程工程学.北京:冶金工业出版社,2004
    [5]格隆G著,陆震维译.过程系统工程.北京:化学工业出版社,1983
    [6]Szekely J.Rate Phenomena in Process Metallurgy.New York:Wiley Interscience,1971
    [7]沈贤春,李旺兴.世界铝工业可持续发展分析.轻金属,2004,(1):3-7
    [8]曹异生,唐健.氧化铝工业现状及市场前景分析.世界有色金属,2003,(12):10-14
    [9]毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的发展,矿业研究与开发,2003,(S1):33-35
    [10]钮因健.对我国铝土矿资源和氧化铝工业发展的认识.轻金属,2003,(3):3-8
    [11]罗天骄,魏昶,黄孟阳等.世界铝工业的现状与发展.云南冶金,2004,33(1):42-46
    [12]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993
    [13]毕诗文.氧化铝生产工艺.北京:化学工业出版社,2006
    [14]http://www.altech.pechiney.com/Gardanne/WebGardanne.nsf/vwUrl/MondeAl umine_Bauxite_Ⅵ
    [15]《联合法生产氧化铝》编写组.联合法生产氧化铝—分解与蒸发.北京:冶金工业出版社,1974
    [16]刘慰俭,陶鑫良.工业节能技术.北京:中国环境科学出版社,1989
    [17]国家计划委员会《企业热平衡》组.节能技术.北京:机械工业出版社,1982
    [18]Andreassi L, Ciminelli M V, Feola M et al. Innovative method for energy management:Modeling and optimal operation of energy systems. Energy and Buildings,2009,41:436-444
    [19]Kara S, Manmek S, Kaebernick H. An integrated methodology to estimate the external environmental costs of products. CIRP Annals,2007,56:9-12
    [20]Janz D, Sihn W. Product redesign using value-oriented Life Cycle Costing. CIRP Annals,2005,54:9-12
    [21]Kaebenick H, Sun M, Kara S. Simplified Life Cycle Assessment for the early design stages of industrial products. CIRP Annals,2003,52:25-28
    [22]Hyman B, Reed T. Energy intensity of manufacturing processes. Energy,1995, 20:593-606
    [23]王其藩.系统动力学.北京:清华大学出版社,1994
    [24]陆钟武、蔡九菊.系统节能基础.北京:科学出版社,1993
    [25]贝塔朗菲,林康义译.一般系统论基础、发展和应用.北京:清华大学出版社,1987
    [26]J W Forrester. Industrial Dynamics--A Major Breakthrough for Decision Makers.1990,36 (4):37-66
    [27]徐寿波.广义节能.长沙:湖南人民出版社,1982
    [28]陆钟武,周大刚.钢铁工业的节能方向和途径.钢铁,1981,16(10):63-66
    [29]陆钟武.我国钢铁工业吨钢综合能耗的剖析.冶金能源,1992,11(1):14-19
    [30]陆钟武,蔡九菊,于庆波等.钢铁生产流程的物流对能耗的影响.金属学报,2000,36(4):370-378
    [31]邹宽.宝钢系统节能技术的开发与创新.中国冶金,2004,(10):3-7
    [32]刘丽孺.氧化铝生产的能耗分析及环境负荷评价[博士学位论文].沈阳:东北大学,2003
    [33]陈光,顾明言,郭伟.钢铁企业系统节能发展与现状.中国金属学会能源与热工2002年年会,北京:2002,65-71
    [34]Abdallah A S. Artificial neural network for forecasting residential electrical energy.Intenrational Jounral of Energy Research,1999,23(8):649-661.
    [35]Soma J.The new energy hypercquation and its implications.Energy Engineering.1985,82(2):139-145
    [36]Hansen L K, Salamon P.Neural network ensembles. IEEE Trans Pattern Analysis and Machine Intelligence,1990,12 (10):993-1001
    [37]Rabah M A, Barakat M A. Energy saving and pollution control for short rotary furnace in secondary lead smelters. Renewable Energy,2001,23:561-577
    [38]Ye Yao, Zhiwei Lian, Weiwei Liu et al. Evaluation program for energy-saving of variable-air-volume systems. Energy and Buildings,2009,39:558-568
    [39]Xiaoping Jia, Fang Wang, Shuguang Xiang et al. Minimum energy consumption process synthesis for energy saving. Resources, Conservation and Recycling,2008,52:1000-1005
    [40]Yohji Uchiyama. Present efforts of saving energy and future energy damand/supply in Japan. Energy Conversion and Management,2002,43: 1123-1131
    [41]Efthimeros G A, Tsahalis D T. Intensified energy-saving technologies developed in EU-funded research:a review. Applied Thermal Engineering, 2000,20:1607-1613
    [42]Greening L A, Boyd G, Roop J M. Modeling of industrial energy consumption: An introduction and context. Energy Economics,2007,29:599-608
    [43]Robert E.Markland.Analysis of steel mill fuel distribution using linear programming.Proceedings Annual Meeting of the American Institute for Decision, New Orleans:1979,1(11):374-379
    [44]Cho C H.Optimal boiler load allocation.Instrumental Technology,1978, (10): 55-58
    [45]Robert D Doering. Modeling an energy management system for a large central energy plant complex.Industrial Engineering,1981,3(7):60-70
    [46]Thomas L Saaty.Mathematical methods of operations research. Dover Phoenix Editions,2004
    [47]陆钟武,谢安国,周大刚.再论我国钢铁工业节能方向和途径.钢铁,1996,31(2):54-58
    [48]谢安国,陆钟武.连铸节能量的e-p分析.冶金能源,1995,14(6):3-6
    [49]Hansen L K, Salamon P.Neural network ensembles.IEEE Trans Pattern Analysis and Machine Intelligence,1990,12 (10):993-1001
    [50]Venkatesan J, Reddy S R Neural network controlled energy saver for induction motor drive. Journal of Industrial Technology,2010,26:1-10
    [51]Jingwen Tian, Meijuan Gao, Shiru Zhou et al. Energy-saving control system of beam-pumping unit based on Wavelet neural network. Natural Computation, ICNC'08,4th Internation Conference,Jinan,2008:509-513
    [52]Gao X Z, Osaka S J. Neuralnetworks-based approxima-tion of fuzzy systems. Intergrated Computer-Aided Engineering,2003,10(4):319-331
    [53]Aydinalp M, Ugursai V I, Fung A S. Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks. Applied Energy,2004,79:159-178
    [54]Villar J R, Enrique C, Sedano J. A fuzzy logic based efficient energy saving approach for domestic heating systems. Integrated Computer-Aided Engineering,2009,16:151-163
    [55]谢安国,陆钟武.用灰色系统对吨钢综合能耗进行分析及预测.钢铁(增刊),1997,32:40-42
    [56]朱明善.能量系统的(?)分析.北京:清华大学出版社,1988
    [57]Gardel A. Energy-Economy and Prospective. Pergamon Press,1981
    [58]Reistad G M.Available Energy Conversion and Utilization in the United States. Trans. OfASME, Journal of Engineering for Power,1975,97:429-433
    [59]傅秦生.能量系统的热力学分析方法.西安:西安交通大学出版社,2005
    [60]杨东华.火用分析与能级分析.北京:科学出版社,1986
    [61]Reistad G M, Fabrycky W J.Available-Energy Costing,Thermodynamics: Second Law Analysis. ACS Symposium Series,1980,122:143-159
    [62]Steco S S, Manfrida G.The Exergy and Capital Xost Factors:A New Approach to Energy Conbersion Economics, Second Law Analysis of Thermal Systems. ASME, New York,1987
    [63]Ahamarian A, Thomas W R, Robertson J L.Heat Exchanger Networks: Economical Minimum Approach Temperature, Second Law Analysis of Thermal Systems.ASME, New York,1987
    [64]刘桂玉,钱立伦.也论“能级平衡”.西安交通大学学报,1986,20(4):119-125
    [65]Utlu Z, Sogut Z, Hepbasli A, Oktay Z.Energy and exergy analyses of a raw mill in a cement production. Applied Thermal Engineering,2006,26:2479-2489
    [66]Kazakov V Q Lipin V A.Exergy analysis of alumina production heat flow diagrams.Light Metals,2009,2:169-173
    [67]Oladiran M T, Meyer J P. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa. Applied Energy,2007,84:1056-1067
    [68]Som S K, Datta A. Thermodynamic irreversibilities and exergy balance in combustion process. Prog. Energy Combust. Sci.,2008,34:351-376
    [69]Rosen M A. Evaluation of energy utilization efficiency in Canada using energy and exergy analyses. Energy,1992,17:339-350
    [70]Szargut J, Morris D R, Stewart F R. Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere Publishing Corporation,1988
    [71]Reistad G M, Fabrycky W J. Available-energy costing, thermodynamics: second law analysis. ACS Symposium Series,1980,122:143-159
    [72]Hua B. A systematic methodology for analysis and synthesis ofprocess energy systems. ASME AES,1986,2-1:57
    [73]陆钟武,蔡九菊.系统节能基础.科学出版社,1993
    [74]Sakamoto Y, Tonooka Y, Yanagisawa Y. Estimation of energy consumption for each process in the Japanese steel Industry. International Journal of Energy Conversion and Management,1999,40 (11):1129-1140
    [75]梅炽,王前普等.有色冶金炉窑的仿真与优化.中国有色金属学报,1996,(4):19-23
    [76]梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001
    [77]蔡自兴,徐光祜.人工智能及其应用.北京:清华大学出版社,1996
    [78]张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996
    [79]中南工业大学石灰炉课题组.石灰炉计算机仿真与优化技术研制报告.湖南:中南工业大学,1999
    [80]黄可鸣.专家系统.南京:东南大学出版社,1991
    [81]王立新.自适应模糊系统与控制——设计与稳定性分析.北京:国防工业出版社,1995
    [82]梅炽,游旺.铝电解槽槽膛内形在线显示仿真软件的研究与开发.中南工业大学学报,1997(2):138-141
    [83]周孑民.镍冶炼矿热电炉及自焙电极的电、热解析模型与计算机仿真[博士学位论文].湖南:中南工业大学,1990
    [84]游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究[博士学位论文].湖南:中南工业大学,1997
    [85]姚俊峰.热工智能与混沌理论在铜锍吹炼炉实时仿真与优化决策中的应用研究[博士学位论文].湖南:中南大学,2001
    [86]胡军.铜锍吹炼仿真和操作优化研究[博士学位论文].湖南:中南大学,2000
    [87]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化[博士学位论文].湖南:中 南大学,2001
    [88]梅炽.冶金传递过程原理.湖南:中南工业大学出版社,1987
    [89]Thom A. The flow past circular cylinder at low speeds. Proceedings of Royal Society of London,1933, (A141):652-666
    [90]Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of field with free surface. Phys. Fluids,1952,8:2182-2188
    [91]Gentry R A, Martin R E, Daly B J. An Eulerian differencing method for unsteady compressible flow problems. J Comp Phys,1966,1:87-93
    [92]Patankar S V, Spalding D B. A finite difference procedure for solving the equations of the two-dimensional boundary layer. Int J Heat Mass Transfer, 1967,10:1389-1411
    [93]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat and Mass Transfer,1972,15:1787-1806
    [94]岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1989
    [95]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991
    [96]周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究:[博士学位论文].长沙:中南大学,2002
    [97]陈卓.铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究:[博士学位论文].长沙:中南大学,2002
    [98]周乃君.基于风粉监测的煤粉锅炉燃烧工况动态仿真与操作优化专家系统研究:[博士学位论文].长沙:中南大学,2003
    [99]陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [100]周力行.湍流气粒两相流动与燃烧的理论与数值模拟.北京:科学出版社,1994
    [101]陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [102]曲正.铝土矿锚硅比与拜耳法生产能耗的关系.轻金属,1998,(11):20-23
    [103]葛世恒.氧化铝生产工业的能耗分析及节能研究:[硕士学位论文].长沙:中南大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700