用户名: 密码: 验证码:
氧化铝熟料制备的基础理论和工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论上烧结法铝硅分离彻底,氧化铝回收率可达100%,是高效处理我国中低品位铝土矿的主要方法。而熟料烧结工序是铝酸钠和硅酸钙生成、铝硅分离的关键工序,传统熟料烧结因钙比高、氧化铝含量较低,导致其能耗和生产成本高。针对我国铝土矿资源~80%属中低品位铝土矿的现状,在熟料烧结过程中,通过设计高稳定性低钙比硅酸钙,提高熟料中氧化铝含量,以降低烧结能耗和生产成本。因此,深入研究熟料烧结中组份反应机理和相互间影响规律以及开发低钙比熟料烧结工艺显得尤为重要。
     本文通过热力学计算,借助于热分析技术,结合物相分析,研究了熟料烧结过程中铝、硅、铁等反应规律和相互影响规律,通过分析熟料中组份的溶出率,评价熟料烧结中各因素的影响规律,提出熟料烧结过程中生料浆配方和烧结工艺。结合工业实验和产业化,优化了熟料烧结工艺。主要研究结论如下:
     1.热力学计算结果表明:无论Na2O·Al203、Na2O·Al203·2Si02,还是Na2O·Fe203和2CaO·Fe2O3在高温度下均可生成。同时铁酸钠可与硅酸钙反应生成硅酸钠钙,但铁酸钙与铝酸钠难以反应生成铁铝酸钙。在CaO-SiO2系或Al2O3-CaO-SiO2系中,钙量充足的条件下,各种硅酸钙均可生成;钙比和烧结温度影响各硅酸钙物相的生成。当[CaO]:[SiO2]=3:2时,在CaO-SiO2系最可能生成的化合物为3CaO·2Si02;在Na2O-Al203-CaO-SiO2系中可生成3CaO·2SiO2,同时3CaO·2Si02和2CaO-SiO2可与Na2O·Al2O3稳定存在。
     2.在非等温条件下,Na2CO3-Al2O3、Na2C03-AlOOH、Na2CO3-Al2O3·2SiO2、Na2CO3-Al2O3·2SiO2·2H2O、Na2C03-Fe2O3、Na2O·A203-Fe2O3和Na2O·Al2O3·2SiO2-CaO系组份的反应动力学机理均符合Jander模型,反应由二维或三维扩散控制,可表示为[1-(1-x)1/3]2=Ae-Ea/RTt或1-(2/3)x-(l-x)2/3=Ae-Ea/RTt; Na2CO3与A1203在650~970℃温度段间反应活化能(268.0kJ/mol)大于Na2CO3与Fe203反应活化能(99.20kJ/mol),铝硅酸钠与氧化钙反应生成硅酸钙在780~800℃反应活化能为189.29kJ/mol, Na2O·Fe2O3与A12O3反应的活化能为246.37kJ/mol上述反应模型均获实验证明。
     3.实验研究结果表明,无论是二元体系或多元体系,钙比减小,烧结温度升高,烧成时间延长,加入矿化剂等均可提高氧化钙的反应率,减少游离氧化钙量,有利于低钙比硅酸钙的生成。同时,在较低烧结温度下,Na2CO3与Fe203反应生成Na2O-Fe2O3的反应速率比Na2CO3与A12O3反应生成Na2O·Al2O3的反应速率大。在高温下,Fe2O3的存在有利于促进Na2CO3与A12O3的反应速率。同时,获得了熟料烧结的炉料配方和烧结工艺条件:碱比为1,钙比为1.5,铁铝比~0.1,烧成温度在1250~1300℃间,烧成时间30min左右。此时熟料中氧化铝溶出率大于95%,碱溶出率大于98%。该工艺条件适用中低品位铝土矿的熟料烧结
     4.工业试验结果表明,实验结果与小实验结果一致。优化后的工艺指标为:(1)生料浆制备:H2O<40%,碱比[N]/([A]+[F])1.02土0.04,钙比[C]/[S]1.5土0.05, A/S 7.5-7.8;(2)熟料烧结:A/S 7.0-7.4,[N]/([A]+[F])0.9-0.98,[C]/[S]1.3土0.05,容重0.9-1.15,ηA标>95%ηN标>97%。
     5.在工业应用过程中,提出提高窑皮挂结温度、缩短挂结时间挂窑皮方案,采用偏上限温度控制的思路进行窑皮维护,以长火焰操作、控制火焰落着点、控制窑尾温度等控制窑内温度,调整喷煤管位置,始终保持火焰中心与料层距离1.5米的喷煤管调整方法,从而提出了适当增强前风、拉大后风、长火焰操作以调整系统温度制度,保证熟料窑作业稳定高产。
     6.熟料烧结新技术应用后,在同等条件下,相对于传统烧结法,工艺能耗降低39.9%,单台窑产能增加70%,窑龄由100天提高到200多天;在相同产量情况下,中州分公司可节省大量的原煤和石灰石,减少赤泥和CO2排放。
As alumina can be separated from silica thoroughly in the sintering process and thus the extraction of alumina can reach 100% theoretically, the sintering process is a very important technology to deal with the medium or even low grade diasporic bauxite in China alumina industry. The sintering operation is the key to the formation of sodium aluminate and calcium silicate, The energy consumption and production cost is high by the traditional sintering process with high mole ratio of calcium oxide to silica and low alumina content. As for the-80% of Chinese diasporic bauxite with high silica, the objective of saving energy greatly and reducing production cost significantly may come into true by controlling the species of calcium silicate, strengthening the stability of calcium silicate, increasing the content of alumina in sinter, So the studies on the reaction mechanism of components and the influencing law among the components in the sintering process are of great importance to improve the sintering technology with low molar ratio of calcium oxide to silica ([C]/[S]).
     By means of thermodynamic calculation, thermal analysis and XRD analysis, the reaction rule of alumina, silica and iron oxide, as well as the influencing principle of the components were systematically investigated in this work. And the influence of factors on the sintering process was assessed by the extraction of alumina, sodium oxide and silica. Then the formula for the raw material slurry and the sintering technology was proposed. Finally, the proposed sintering technology was optimized based on the results of industrial scale experiments and industrial alumina production. The main conclusions were listed as follows.
     1. Thermodynamic calculation shows that Na2O-Al2O3 and Na2O·Al203-2Si02, as well as Na2O·Fe203 and 2CaO·Fe2O3, can be formed at elevated temperatures; that calcium sodium silicate can be formed by the reaction of sodium ferrite and calcium silicate, while calcium iron aluminate can not be formed by the reaction of calcium ferrite and sodium aluminate; that all kinds of calcium silicates may be formed in CaO-SiO2 system or Al2O3-CaO-SiO2 system when the lime is sufficient, and [C]/[S] and sintering temperature affect the formation of calcium silicate species; and that 3CaO·2Si02 is the most possible species in CaO-SiO2 system when [C]/[S] is 1.5. In contrast, in addition to 2CaO·Si02,3CaO·2SiO2 may be formed in Na20-Al2O3-CaO-SiO2 system with [C]/[S] of 1.5, and 2CaO·Si02 and 3CaO·2Si02 can not readily react with Na2O·Al203.
     2. All the reaction kinetic equations of components in Na2CO3-Al2O3, Na2CO3-AlOOH,Na2CO3-Al2O3·2SiO2, Na2CO3-Al2O3-2SiO2·2H2O, Na2CO3-Fe2O3, Na2O-Al2O3-Fe2O3 and Na2O·Al2O3·2SiO2-CaO system correspond with the Jander model, being controlled by two-dimension or three- dimension diffusion, and can be expressed as [1-(1-x)1/3]2=Ae-Ea/RTt or 1-(2/3)x-(1-x)2/3=Ae-Ea/RTt. The apparent activation energy of the reaction of Na2CO3 and Al2O3(268.0kJ/mol) is larger than that of the reaction of Na2CO3 and Fe2O3 (99.20kJ/mol) at the temperature range from 650℃to 970℃, and the activation energy of the reaction of sodium aluminosilicate and calcium oxide, where calcium silicate can be formed, is 189.29kJ/mol at the temperature range from 780℃to 800℃. The activation energy of reaction between Na2O·Fe203 and AI2O3 is 246.37kJ/mol. The experiments prove the models above are reasonable.
     3. The conclusions obtained by the experiment results can be made as following: the reaction rate of calcium oxide can be improved by reducing [C]/[S], increasing the sintering temperature and sintering duration time, and adding mineralizer in two-element systems or mutil-element systems, favoring the formation of calcium silicate with low [C]/[S]. The reaction rate of Na2CO3 with Fe2O3 is larger than that of Na2CO3 with Al2O3 at relatively low sintering temperature. The reaction rate of Na2CO3 and Al2O3 can be accelerated with the present of Fe2O3 at elevated sintering temperature. Based on the experimental research results, the favorable formula for the charge and the detailed sintering technological parameters being suitable for the sintering operations of diasporic bauxite with high silica are determined:molar ratio of Na2O to the sum of A12O3 and Fe2O3 ([N]/([A]+[F])) of 1, [C]/[S] of 1.5, molar ratio of Fe2O3 to Al2O3 ([F]/[A]) of about 0.1, sintering temperature at the range of 1250℃~1300℃, sintering duration time of approximate 30min. The leaching rate of Al2O3 and Na2O exceeds 95% and 98%, respectively, under the above sintering conditions. This technology applies to sintering process of high-silica diasporic bauxite.
     4. The results of industrial experiments are consistent with those of the laboratorial experiments. The optimized technological parameters are as follows:1) the preparation of raw material slurry:[N]/([A]+[F]) 1.02±0.04, [C]/[S] 1.5±0.05, mass ratio of alumina to silica(A/S) 7.5-7.8, H2O<40%; (2) the sinter:A/S 7.0-7.4, [N]/([A]+[F]) 0.9-0.98, [C]/[S] 1.3±0.05, bulk density 0.9-1.15,ηAstandard>95%,ηN standard>97%.
     5. In the industrial applications, the measures to form kiln skin are proposed by increasing the sintering temperature, decreasing the sintering duration time and maintaining the kiln skin at upper temperature limit. Maintaining stability of the sintering operation and improving productivity of the sintering rotary kiln need to control the temperature and regulate the temperature system in the kiln, by regulating the amount of the first and second wind to form long-flame operation, controlling kiln tail temperature, modifying the coal-spraying gun positon to maintain the distance from the flame center to the charge of 1.5 meter.
     6. After applying the new sintering technology in Zhongzhou Branch, Chalco, comparing with the traditional sintering process, there was a reduction of 39.9% and an increase of 70% in the technological energy consumption and the production capacity of single rotary kiln, respectively. In addition, the lifespan of the liner in rotary kiln increased from 100 days to 200 days. This means that the enterprise can greatly reduce the consumption of raw materials of coal and limestones, and thus obviously reduce the emission of CO2 and the discharge of red mud to the environment with the same annual alumina yields.
引文
[1]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2004,14(1):92~97.
    [2]穆新和.我国铝土矿资源合理开发利用的探讨[J].矿产与地质,2002,16(5):313~315
    [3]赵恒勤,李劫,王立卓等.中国铝土矿资源及氧化铝生产技术状况透析[J].矿产保护与利用,2001,(5):38~42
    [4]刘祥民.中国铝土矿资源可持续发展战略研究[J].中国通报.2005,(14):9~12
    [5]邵志博.中国氧化铝工业的发展方向[J].世界有色金属,1999,(3):8~12
    [6]黄茜蕊,黄仲权.我国铝资源、铝工业现状、问题与发展[J].矿产保护与利用,2007,(3):11.
    [7]王秋霞,张克仁,赵军伟,马化龙.我国铝土矿资源及开发利用现状、问题及对策[J].矿产保护与利用,2008,(5):46~50.
    [8]李宏建.山西铝土矿资源特征及开发利用探讨[J].有色矿山,2003,(4):8~9.
    [9]姚育弘,关西安,王俐等.氧化铝工业可持续发展战略研究[J].世界有色金属,1999,(11):4~7
    [10]张伦和,何静华,张颖.我国氧化铝工业现状及发展对策[J].轻金属,2006,(2):3~7
    [11]史金东,刘义伦.我国氧化铝工业可持续发展问题的思考[J].轻金属,2006,(11):3~6
    [12]姚育弘,关西安,王俐等.氧化铝工业可持续发展战略研究[J].世界有色金属,1999,(11):4~7
    [13]王恭敏.国内外铝工业发展状况及我国铝工业政策[J].有色设备.2007,(3):1~9
    [14]史金东,刘义伦.我国氧化铝工业可持续发展问题的思考[J].轻金属.2006,(11):3~6
    [15]车玲.我国氧化铝工业技术现状与发展趋势[J].世界有色金属.2002,(5):14~18
    [16]曹异生,唐健.氧化铝工业现状和前景分析[J].世界有色金属:2003,(12):11~14
    [17]周国宝.略论发展我国氧化铝工业战略取向[J].世界有色金属.2004,
    (1):25~29
    [18]刘中凡,杜雅君.我国铝土矿资源综合分析[J].轻金属.2000,(12):8~13
    [19]赵秀富.氧化铝投资热的冷思考[J].金属世界.2007,(1):12~13
    [20]邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状与分析[J].采矿技术,2001,1(2):53~55
    [21]Satpathy B.K., Mohanty R.C.. Development of special grade hydrate and alumina[C]. Light Metals,1996:11~16
    [22]申慧.世界铝土矿和氧化铝的发展趋势[J].有色金属工业.2003,(8):24~28
    [23]Shuren Guan. Measures for saving energy in alumina production[C]. Light Metals,1990:1011~1014.
    [24]Yan D O, Li H L. Discussion on heat consumption in the manufacture of alumina by soda-lime sintering process[C]. Light Metals,1990:157~160
    [25]Zhao Qingjie, Chen Qiyuan, Yang Qiaofang. The trends of Chinese alumina production with combined process[C]. Light Metals,2004:127~130.
    [26]Leonard Jacob. Bauxite. New York:Society of Mining Engineers of American Institute of Mining[M], Metallurgical and Petroleum Engineer. Inc, 1984:780~786
    [27]Shang Guanzheng. Improvements of hydrometallurgical flowsheet in soda-lime sintering process[C]. Light Metals,1999:77~83
    [28]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991:70~72,100~104.
    [29]傅崇说.有色冶金原理[M]..北京:冶金工业出版社,1984:157~177
    [30]阿布拉莫夫B.Я.碱法综合处理含铝原料的物理化学原理[M].陈谦德,唐贤柳,黄国芬,李小斌译.长沙:中南工业大学出版社,1988.7-19
    [31]曾庆衡主编.物理化学[M].长沙:中南工业大学出版社,1992,8
    [32]李小斌,张志强,刘伟,刘桂华,彭志宏,周秋生.Na2O-Al2O3-Fe2O3系烧结过程中铝、铁的反应行为[J].过程工程学报,2009,9(5):877~881.
    [33]Liu Gui-hua, Li xiao-bin, Peng zhi-hong, Zhou Qiu-sheng. Behavior of Calcium Silicate in Leaching Process [J]. Transactions of Nonferrous Metals Society of China,2003,13(1):213~216.
    [34]Arlyuk B I. Study of an effect of a nepheline raw material composition on process parameters of alumina production by the sintering methods[C]. Light metals,1994:59~66
    [35]唐贤容主编.烧结理论与工艺[M].长沙:中南工业大学出版社,1992:170-185
    [36]Liu Guihua, Li Xiaobin, Peng Zhihong, et al. Stability of calcium silicate in basic solution[J]. Transactions of Nonferrous Metals Society of China,2003, 13(5):1235~1238.
    [37]浙江大学,武汉建筑材料工业学院,上海化工学院等主编.硅酸盐物理化学[M].北京:中国建筑工业出版社,1980:207
    [38]Leonard Jacob. Bauxite. New York:Society of Mining Engineers of American Institute of Mining[M].Metallurgical and Petroleum Engineer. Inc,1984: 780~786
    [39]陈念贻.氧化铝生产的物理化学[M].上海:上海科学技术出版社,1962
    [40]张景智.烧结过程固相反应热力学分析{J},江苏冶金.986,(2):42-46
    [41]张明.氧化铝熟料烧结过程硅、铁矿物反应行为的研究[D].长沙:中南大学,2008:11~12.
    [42]张西民,张际强.中州分公司能源消耗现状分析及节能途径探讨[C].第十四届全国氧化铝学术会议论文集,2004:241.
    [43]李太昌,刘国红.提高氧化铝熟料窑产能的途径[J].有色金属(冶炼部分),2000(4):26~29.
    [44]勒古功.降低烧结法氧化铝工艺能耗的节能措施[J].有色冶金节能,2004,21(6):1~4.
    [45]李新存,方正.烧结法生产中熟料窑的余热利用探讨[J].冶金能源,2006,25(2):50~51.
    [46]张衡中.碳酸盐分解温度的变化规律[J].有色金属,1994,46(3):58~60
    [47]杨长付,武福运,刘少洛.提高熟料氧化铝含量及其A/S新工艺的研究[J].轻金属,2000,(12):21~24
    [48]杨振民,邱伟文.[F/A]对熟料烧结的影响及工业控制办法[J].世界有色金属,2002,11(特刊):52~55
    [49]陈辉杰.熟料烧结炉料碱比(N/A+F)配方浅析[J].世界有色金属, 2004,(7):48~49.
    [50]薛生辉.低铝硅比生料烧结和熟料溶出试验研究[J].矿冶工程,1996,17(4):44~47
    [51]陈辉杰.熟料烧结炉料碱比(N/A+F)配方浅析[J].世界有色金属,2004,(7):48~49.
    [52]韩佳东.生料与熟料钙比差值变化规律初探[J].轻金属,2004,(4):17~19
    [53]项阳,袁艺,黄芳等.熟料烧结炉料配方浅析[J].贵州工业大学学报,1999,28(4):51~55
    [54]Thonstad J., Nordmo F., Paulsen J.B.. Dissolution of alumina in molten cryolite melts[C]. Light Metals 1971, New York, USA:TMS,1971:213~222
    [55]Winkhaus G.. Dissolution of alumina in cryolite melts[C]. Light Metals 1970, New York, USA:TMS,1970:1-11
    [56]H.C.马里茨,串联法生产氧化铝的新进展[M],贵州铝厂译,北京:中国科学技术出版社,1991:20
    [57]王佳东,翟玉春,申晓毅.碱石灰烧结法从脱硅粉煤灰中提取氧化铝[J].轻金属,2009,(6):14~16.
    [58]李小斌,刘翔民,刘桂华,彭志宏,刘业翔.强化烧结法生产氧化铝新工艺的研究与实践[J].中国有色金属学报,2004,14(6):1031-1035.
    [59]郭晋梅,冯文洁,焦淑红,魏壮强.浅析氧化铝生产工艺节能途径[J].有色冶金节能,2004,21(4):27~28.
    [60]Guan Shuren. Measures for saving energy in alumina production[C], Light Metals,1990:1011~1014.
    [61]奎瑟(Queisser H.J.)主编,.X射线光学在固体领域中的应用[M].王煜,李家宝译,北京:科学出版社,1985
    [62]刘桂华,李小斌,李永芳等.复杂无机化合物组成与热力学数据间的线性关系及其初步应用[J].科学通报,2000,45(7):1386~1392
    [63]许志宏,王乐珊编著.无机热化学数据库[M].北京:科学出版社1987.136~149
    [64]李小斌,李永芳,刘祥民等.复杂硅酸盐矿物Gibbs自由能和焓的一种近似算法[J].硅酸盐学报,2001,29(6):232~237.
    [65]巴布什金Β.Ν.,马特维耶夫Γ.Μ.,别特罗骧Ο.Π.Μ.硅酸盐热力学[M].蒲心诚,曹建华译.北京:中国建筑工业出版社,1983
    [66]孟芸.氧化铝生产热力学数据库的优化与完善[D]:[硕士学位论文].长沙:中南大学,2004
    [67]Ihsan Barin. Thermochemical Properties of Inorganic Substance I and Ⅱ[M].Berlin:Springer-Verlag,1991
    [68]Barin.Thermodynamic Data of Pure Substance[M]. Weinheim.VCH Verlags Gesellschaft,1993
    [69]Bale C.W., P.Chartrand, S.A.Degterov et al.Thermochemical software and databases[J]. calphad,2002,26:189~228
    [70]Bo Sundman.Thermodynamic Databanks,Vision and Facts. Scandinavian[J] Journal of Metallurgy,1991,20:79~85
    [71]Rayzman V. More complete desilication of aluminate solution is the key-factor to radical improvement of alumina refining[C]. Light Metals,1996:109~114
    [72]Van Wylen G.J., Sonntag R.E.. Fundamentals of Classical Thermodynamics[M]. New York:John Wiley and Sons Incorporation,1978
    [73]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993
    [74]Angulo Brown F., Arias Hernandez L.A. Van't Hoff equation for ensoreversible chemical reaction[J]. Journal of Physical Chemistry, 1996,100(21):9193~9195
    [75]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001
    [76]苏勉曾.固体化学导论[M].北京:北京大学出版社,1986
    [77]Reyes J.A., Conesa J.A., Marcilla A, et al.. Solid-liquid equilibrium thermodynamics:Checking stability in multiphase systems using the gibbs energy function[J]. Industrial and Engineering Chemistry Research, 2001,40(3):902~907
    [78]McGlashan M L. Chemical Thermodynamics[M]. New York:Academic Press, 1979:72~86
    [79]李小斌,谭培龙,吕卫君,刘桂华,彭志宏,周秋生.高岭石碱石灰的烧结过程[J].硅酸盐学报,2006,34(4):422-426.
    [80]宫金生,邓兆营.快速测定熟料游离氧化钙的乙二醇—乙醇法[J].水泥.1987,8:31~32
    [81]范付忠,钱光人,赖振宇,徐光亮.CaO-MgO-SiO2-H2O体系的热力学基础研究[J].硅酸盐通报,2001,20(1):18~23.
    [82]Liu Guihua, Li Xiaobin, Peng Zhihong et al. Stability of calcium silicate in basic solution[J]. Transactions of Nonferrous Metals Society of China,2003, 13(5):1235~1238.
    [83]巴布什金B.И.,马特维耶夫Γ.M.,编著.硅酸盐热力学[M].蒲心诚,曹建华译,北京:中国建筑工业出版社,1983
    [84]周秋生,齐天贵,彭志宏,刘桂华,李小斌.熟料烧结过程中氧化铁反应行为的热力学分析[J].中国有色金属学报,2007,17(6):973~978.
    [85]James H. Eepenson.Chemical Kinetics and reaction Mechanisms[M]. New York:Megraw-Hill,1981
    [86]Cox J D, Wagman D D, Medvedev VA. Key values for thermodynamics[M]. New York:Hemisphere Publishing Corporation,1989:21
    [87]饶东升主编.硅酸盐物理化学[M].北京:冶金工业出版社,1991
    [88]Bhatty M S Y, Greening N R. Interaction of Alkaline with Hydrating and Hydrated Calcium Silicates in Proceedings of the 4th Conference on the Effects in Cement and Concrete[M]Purdue University, West Lafayette,1978: 87~111
    [89]Lan G Richardson, Adrian R Brough, Rik Brydson, et al. Location of Aluminum in Substituted Calcium Silicate Hydrate(C-S-H)Gels as Determined by Si and Al NMR and EELS[J]. Journal of the American Ceramic Society,1993,76(9):85~88
    [90]Danielle S, Klimesch, AbhiRay. DYA-TGA evaluations of the CaO-Al2O3-SiO2-H2O system treated hydro thermally[J].Thermochimica Acta,1999,334:115-122
    [91]Klimesch D S, Ray A.DTA-TG study of the CaO-SiO2-H2O and CaO-Al2O3-SiO2-H2O systems under hydrothermal conditions[J]. Jounal of Thermal Analysis and Calorimetry,1999,1(56):24~27
    [92]Klimesch D S, Ray A. Effects of quartz particle size and kaolin on hydrogarnet formation during autoclaving[J]. Cement and Concrete Research 1998;9(28):1317~1323
    [93]LAURENT B, CATHERINE B, DOMINIQUE M, et al.29Si MASNMR study of dicalcium silicate:the structural influence of sulfate and alumina stabilizers[J]. Journal of the American Ceramic Society, 1995,78(10):2603~2608
    [94]LI Haoxuan, AGRAWAL D K, CHENG Jiping, et al. Formation and hydration of C3S prepared by microwave and conventional sintering[J]. Cement and Concrete Research,1999,29(10):1611~1617
    [95]《联合法生产氧化铝》编写组.联合法生产氧化铝控制分析[M].北京:冶金工业出版社,1977.153~165
    [96]李小斌,张宝琦,程裕国等.强化烧结法氧化铝生产工艺[P].中国专利,CN 99109676,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700