用户名: 密码: 验证码:
对地观测卫星系统顶层设计参数优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对地观测卫星系统( Earth Observation Satellite System, EOSS )是进行地面信息收集的主要太空平台,具有覆盖区域广、安全性能高、不受空域国界、地理条件限制等优点。过去几十年中,我国对地观测卫星无论数量、还是质量都有极大的提升,但系统的整体性能并不高,尤其在应急灾害响应、重点区域覆盖等方面能力较差。本文提出了EOSS顶层设计参数优化问题,通过优化系统的关键性能参数配置,实现对EOSS整体性能的改进和提高,尤其是系统的快速响应能力和重点区域观测能力,围绕此文章的主要工作可概括为:
     首先,提出了对地观测卫星系统顶层设计参数优化问题,并从应用角度分析了问题的来源和研究意义。同时从EOSS的物理组成和性能计算两个角度分析了问题的复杂性,在此基础上,结合试验优化与仿真优化的思想,分析了求解中所存在的问题,提出了基于试验设计和代理模型的求解框架。
     EOSS通过对特定目标成像以实现对用户需求的满足,本文将EOSS性能归结为覆盖性能。在点覆盖数字仿真方法基础上,从空间和时间两个方面构建了EOSS的性能指标体系,给出了每个指标的计算方法,研究了影响这些指标的系统因素,并通过定量分析验证了各个因素对不同指标的影响。
     在求解EOSS顶层设计参数优化问题的过程中,系统的性能指标需要借助仿真进行计算。为了尽可能控制仿真次数,提出了综合拉丁方试验设计方法(CLHD)生成仿真方案,该方法保证所选择的采样点均匀充满整个设计空间,同时保证不同采样点之间相关性较小。论文分析了拉丁方矩阵的优化准则,定义了多目标的收益函数,采用快速模拟退火算法控制方案的生成过程,用正交性较好的拉丁方矩阵作为初始解,算法分别构建了4种变换邻域用以生成改进解和跳出局部最优,采用服从Cauchy分布的降温函数模拟算法的退火过程。通过与其它方法的对比发现,CLHD能够兼顾设计方案的正交性和均匀性,且对试验因素数、因素水平数之间无特殊的要求。
     针对EOSS仿真所产生的仿真数据,本文提出了基于多点更新的Kriging代理模型对其进行拟合分析;通过代理模型最优与最大化期望提高相结合的机制选择代理模型插值点,提出了基于函数改进的插值点过滤机制,构建了基于改进广义模式搜索算法的Kriging代理模型构建和优化框架。其中,搜索步通过遗传算法和序列二次规划算法实现,筛选步通过不完全动态筛选实现。在此基础上,引入多个标准测试函数对所提方法进行了验证,计算结果证明本文方法具有较好的全局搜索能力,能够有效地跳出局部最优。
     最后,论述了本文的仿真结构、仿真流程、想定设计和优化过程。根据实际应用设计了两个仿真实例:以最大化区域覆盖率为目标,设计了面向突发事件的小卫星应急发射实例;以最小重访时间为目标,设计了面向全球重点区域覆盖的实例。这两个实例一方面是对本文方法求解流程的细化,另一方面也是对方法有效性的验证,通过与通用商业软件STK/Analyzer优化结果的对比可以发现,相同条件下本文方法所得解的质量更高。
As main ground information collecting platforms in space, earth observation satellite systems (EOSS) are charactered by broad coverage, high security performance and unlimited to airspace and national boundaries. As a result, they play outstanding roles in both military demands and civil applications, owning extrusive strategic significance and importance. In the past decades, earth observation satellites in China have been developed greatly, which are incarnated on not only the number but also quality of the satellites. However, the holistic system performance is not high; especially the capabilities of fast response and coverage for important area are bad. Therefore, we propose problem of top design parameters optimization for EOSS.
     Through configuring system key parameters in a reason way, we can improve performance of EOSS. Based on the research background mentioned above, the main work and innovative points in this paper are as follows.
     Firstly, bring forward the problem of top design parameters optimization for EOSS, introducing the necessaries of our research from the view of engineering. Also we analyze the complexity of the problem from both physical structure and its performance computation. Grounded on the analysis, a simulation based optimization method is put forward. More precisely, a framework which incorporated design of experiment and surrogate models is constructed.
     EOSS is designed to image particular targets to fulfill different user requests. Hence, performances of EOSS are mainly defined as coverage performance. By adopting the method of point based numeral simulation we can research performance of EOSS. And a series of measures, which can be divided into two groups: space and time, are proposed to describe the capability of EOSS. Also, we figured out system variables that might affect proposed measures. And many simulation tests are carried out to validate effects of different variables.
     According to the above discuss, to optimize top design parameters of EOSS we need simulation to calculate its performance. To create simulation plans with fewer test points, we proposed comprehensive latin hyper-cube (CLHD) method. The plans generated by CLHD ensure its sampling points are uniformly distributed in the design space and correlations between points are small. To realize CLHD, we first analyze optimal criterions for Latin hypercube array and define a multi-objective benefit function. The main body of CLHD is carried out by very fast simulated annealing (VFSA) algorithm, in which four transforming neighborhoods are defined and its annealing schedule follows a Cauchy function. Arrays with good orthogonality, which are constructed by Cholesky decomposition, are used as initial solution for VFSA. Finally, many instances are introduced to testify the effectiveness of CLHD. We also analyze the influence of different system variables.
     EOSS simulation will produce abundant simulation data. And a multi-point updated Kriging surrogate model is constructed to simulate and approximate these data. Points with optimized value or maximal expected improvement are selected to update our surrogate model. And a measure named objective improvement versus distance is defined to filter the selected points. To get optimized solution of the surrogate model, we construct improved generalized pattern search algorithm. In search step, genetic algorithm and sequential quadratic programming are used to find potential update points. In poll step, dynamic incompletion poll is carried out to find points with greater value. And several benchmark functions are used to test the proposed method and the results show that our method own an outstanding global search ability.
     Finally, we address the simulation structure, flow of EOSS and detail the scenario design and process of system optimization. Then two application examples are designed. One is back grounded on the fast launch of micro-satellite, which is to maximize the coverage percentage of target area. The other is for global coverage and its objective is to minimize revisit time of EOSS. These two instances are used to illustrate the flow of our method. They also testify the validity of the method we put forward. Comparing to the results got by Analyzer, our method is more effective.
引文
[1]关晖,唐治华.发展我国高分辨率资源卫星的技术途径及应用前景[C].首届中国宇航学会学术年会.广西北海: 2005.
    [2]李德仁.对地观测与抗震救灾[J].测绘科学, 2009, 1: 8-10.
    [3] Rajkumar Roy, Srichand Hinduja, Roberto Teti. Recent advances in engineering design optimisation: Challenges and future trends [J]. CIRP Annals - Manufacturing Technology, 2008, 57: 697-715.
    [4]王振国,陈小前,罗文彩,张为华.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.
    [5] Nicolas R. Gauger Antonio Fazzolari, Joel Brezillon. Efficient aerodynamic shape optimization in MDO context [J]. Journal of Computational and Applied Mathematics, 2007, 203: 548 - 560.
    [6] S.Bertrand N. Bérend. MDO approach for early design of aerobraking orbital transfer vehicles [J]. Acta Astronautica, 2009, 65: 1668-1678.
    [7]黄海,谭春林,裴晓强.卫星总体参数多学科优化与建模探讨[J].航天器工程, 2007, 16 (3): 38-42.
    [8]谭春林,庞宝君.对地观测卫星总体参数多学科优化[J].北京航空航天大学学报, 2008, 34 (5): 529-532.
    [9]朱华光,刘莉.长航时高燃油质量系数小型无人飞行器总体参数优化设计[[J].北京理工大学学报, 2009, 29 (5): 382-385.
    [10]陈琪峰.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科学技术大学, 2003.
    [11]张帆.光学遥感小卫星星座总体优化设计与系统分析[D].哈尔滨:哈尔滨工业大学, 2001.
    [12]张育林,范丽,张艳,项军华.卫星星座理论与设计[M].北京:科学出版社, 2008.
    [13] F WGobetz. Satellite networks for global coverage [J]. Advances in the Astronautical Sciences, 1963, 9.
    [14] R L Easton, R Brescia. Continuously visible satellite constellations [R]. 1969.
    [15] J G Walker. Coverage predictions and selection criteria for satellite constellations [R]. 1982.
    [16] J. G.Walker. Continuous whole earth coverage by circular Orbit satellite patterns [R]. 1977.
    [17] J. G Walker. Circular orbit patterns providing continuous whole earth coverage [R]. 1970.
    [18] J E Draim. Continuous Global N-tuple Coverage with 2N+2 Satellites [J].Journal of Guidance,Control and Dynamics, 1991, 14 (1): 17-23.
    [19] D.C. BESTE. Design of Satellite Constellations for Optimal Continuous Coverage [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1978, 14 (3): 466-473.
    [20] Lang Thomas J. Optimal Low Earth Orbit Constellations for Continuous Global Coverage [J]. Advances in the Astronautical Sciences, 1993, 85: 1199-1216.
    [21] Evans M J. Optimization of Satellite Constellation for Partial Coverage [R]. Colorado: University of Colorado, 1999.
    [22] Asvial M, Tafazolli R, Evans B G. Genetic Hybrid Satellite Constellation Design [R]. AIAA 2003~2283:1~6: 2003.
    [23] Ely T A. Satellite Constellation Design for Zonal Coverage Using Genetic Algorithms [J]. The Journal of the Astronautical Science, 1999, 47 (3): 207~228.
    [24] Doufer. F. Zonal Coverage Optimization of Satellite Constellation with an Extended Satellite Triplet Method [J]. Advances in the Astronautical Sciences, 2002, 109 (1): 609-623.
    [25] Emery, John D. Et. The Utility and logistics Impact of Small-Satellite Constellation in Matched Inclination Orbits [D]. Air University, 2001.
    [26] Axel Rendon. Optimal coverage of the theater targets with small satellite constellations [D]. Air University, 2006.
    [27] Christopher J. Didier. A Commercial Architechture for Satellite Imagery [D]. MONTEREY, CALIFORNIA: NAVAL POSTGRADUATE SCHOOL, 2006.
    [28] Douglas J. Pegher and Jason A. Parish. Optimizing Coverage and Revisit Time in Sparse Military Satellite Constellations: A Comparison of Traditional Approaches and Genetic Algorithms [D]. Monterey, CA: Naval Postgraduate School, 2004.
    [29]张育林,曾国强,王兆魁,郝继刚.分布式卫星理论及应用[M].北京:科学出版社, 2008.
    [30] Graeme B. Shaw. The Generalized Information Network Analysis Methodology for Distributed Satellite Systems [D]. Massachusetts Institute of Technology, 1998.
    [31] Cyrus D. Jilla. A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed Satellite Systems [D]. Massachusetts Institute of Technology, 2002.
    [32] A.M. Ross. Multi-Attribute Tradespace Exploration with Concurrent Design as a Value-centric Framework for Space System Architecture and Design [D]. Massachusetts Institute of Technology, 2003.
    [33] N. Diller. Utilizing Multiple Attribute Tradespace Exploration with Concurrent Design for Creating Aerospace Systems Requirements [D]. Massachusetts Institute of Technology, 2002.
    [34] Matthew G. Richards. Multi-attribute Tradespace Exploration for Survivability [D]. Massachusetts Institute of Technology, 2009.
    [35] Scott A. Uebelhart, Lucy E. Cohany, David W. Miller. Design Exploration for a Modular Optical Space Telescope Architecture Using Parameterized Integrated Models [C]. 47th AIAA/ASC Structures, Structural Dynamics and Materials Conference. Newport, Rhode Island: 2006.
    [36] Lucy E. Cohan, Elizabeth O.Jordan, David W. Miller. Tradespace Exploration for a Parameterized Modular Optical Space Telescope (MOST) [C]. 48th AIAA/ASC Structures, Structural Dynamics and Materials Conference . Honolulu, Hawaii: 2007.
    [37]白鹤峰.卫星星座的分析设计与控制方法研究[D].长沙:国防科学技术大学博士学位论文, 1999.
    [38]贺勇军.面向效能优化的复杂多卫星系统综合建模与仿真方法研究[D].长沙:国防科学技术大学, 2004.
    [39]谢金华.遥感卫星轨道设计[D].郑州:中国人民解放军信息工程大学硕士学位论文, 2005.
    [40] Andrew Booker. Design Explorer Training Manual, Mathematics & Computing Technology [M]. Boeing Phantom Works, 2004.
    [41]杨颖,王琦. STK在计算机仿真中的应用[M].北京:国防工业出版社, 2005.
    [42]苏子健.多学科设计优化的分解、协同及不确定性研究[D].武汉:华中科技大学, 2008.
    [43]王希季,李大耀.卫星设计学[M].上海:上海科学技术出版社, 1997.
    [44]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000.
    [45]汪定伟.基于仿真的优化的研究综述和主要问题的探讨[J].系统工程理论与实践, 2008: 94-102.
    [46]高镜媚.供应链分销网络多级库存控制的基于仿真的优化方法[D].东北大学, 2010.
    [47]任露泉.试验优化设计与分析[M].北京:高等教育出版社, 2003.
    [48] Fisher R.A, The Design of Experiments. 2nd ed. [M]. Rinehart and Winston: New York, 1972, 67-69.
    [49] R. K. Roy. Design of Experiments using the Taguchi Approach [J]. John Wiley and Sons, 2001.
    [50] LIU Xiao-lu, CHEN Ying-guo, JING Xian-rong, CHEN Ying-wu. Design of Experiment Method for Microsatellite System Simulation and Optimization [C]. The 2010 International Conference on Computational and Information Sciences . Chengdu: 2010.
    [51]刘晓路,陈盈果,荆显荣,陈英武.对地观测卫星系统优化问题的求解框架与方法[J].系统工程理论与实践, 2011, 31 (6): 1103-1111.
    [52] Mathias L. Kolleck, Booz Allen Hamilton. The Use Of Design Of Experiments (DOE) Methodology In A Modeling And Simulation (M&S) World [C]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference . California: 2004.
    [53]陈魁.试验设计与分析[M].北京:清华大学出版社, 2005.
    [54] Douglas C. Montgomery. Design and analysis of experiments [M]. John Wiley & Sons, Inc., 1991.
    [55] Anthony A. Giunta, Steven F. Wojtkiewicz Jr., Michael S. Eldred. Overview of Modern Design of Experiments Methods for Computational Simulations [C]. 41st Aerospace Sciences Meeting and Exhibit . Reno, Nevada: 2003.
    [56]丁娣,秦子增.基于正交试验的大型降落伞开伞冲击载荷影响因素分析[J].国防科技大学学报, 2009, 31 (3): 11-15.
    [57] S.D. Georgiou. Orthogonal designs for computer experiments [J]. Journal of Statistical Planning and Inference, 2011, 141: 1519–1525.
    [58] Taguchi G. Quality engineering through design optimization. [M]. New York: Krauss International Press, 1986.
    [59]庞善起.正交表的构造方法及其应用[J].西安电子科技大学[D], 2003.
    [60]史奎凡,董吉文,李金屏,曲守宁.正交遗传算法[J].电子学报, 2002, 30 (10): 1501-1504.
    [61]马晓丽,马履中,周兆忠.正交--遗传试验算法的分析与应用[J].工程设计学报, 2005, 12 (6): 334-337.
    [62] V. Roshan Joseph, Ying Hung. ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS [J]. Statistica Sinica, 2008, 18: 171-186.
    [63]窦毅芳.稳健性优化设计理论与方法及其在固体发动机中的应用研究[D].长沙:国防科学技术大学, 2007.
    [64] K. T. Fang. The Uniform Design: Application of Number-Theoretic Methods in Experimental Design [J]. Acta Math Application Sinica, 1980, (3): 363-372.
    [65] K. T. Fang, C. X. Ma, R. Mukerjee. Uniformity in Fractional Factorials [C]. Techincal Report MATH-274 . Hong Kong Baptist University: 2000.
    [66] Fang Yan. Relationships between uniform design and orthogonal design [C]. The 3rd International Chinese Statictical Association Statistical Conference . Beijing: 1995.
    [67] K. T. Fang, D. K. J. Lin, H. Qin. A note on optimal foldover design [J]. Statist. & Prob Letters, 2003, 62: 245-250.
    [68] K. T. Fang, P. Winker. Uniformity and Orthogonality [C]. Technical Report, MATH-175 . Hong Kong Baptist University: 1998.
    [69] K. T. Fang, C. X. Ma, P. Winker. Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform design [J]. Math. Computation, 2002, 71: 275-296.
    [70] K. T. Fang, C. X. Ma. Wrap-around L2-discrepancy of random sampling, Latin hypercube and uniform designs [J]. J. Complexity, 2001: 608-624.
    [71]方开泰.均匀试验设计的理论、方法和应用--历史回顾[J].数理统计与管理, 2004, 23 (3): 69-80.
    [72] Fang K.T., Ge,G.N., Liu,M.Q. Uniform supersaturated design and its construction [J]. Science in China, 2002, 45: 1080-1088.
    [73] M. D. McKay, R. J. Beckman, Conover W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. [J]. Technometrics, 1979, 21: 239-245.
    [74] Sigal Levy, David M. Steinberg. Computer experiments: a review [J]. AStA Adv Stat Anal, 2010, 94: 311-324.
    [75] Bradley Jones, Rachel T. Johnson. DesignandAnalysis for the Gaussian ProcessModel [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2009, 25: 515-524.
    [76]荆显荣.面向对地观测卫星系统顶层设计的试验设计方法研究[D].国防科学技术大学硕士学位论文, 2010.
    [77] Min-Qian Liu, Dennis K. J. Lin. CONSTRUCTION OF OPTIMAL MIXED-LEVEL SUPERSATURATED DESIGNS [J]. Statistica Sinica, 2009, 19: 197-211.
    [78]袁志发,宋世德.多元统计分析[M].北京:科学出版社, 2009.
    [79] Stefan Jakobsson·Michael Patriksson, Johan Rudholm·AdamWojciechowski. A method for simulation based optimization using radial basis functions [J]. Optim Eng, 2010, 11: 501-532.
    [80] Sakata S, Ashida F, Zako M. An efficient algorithm for kriging approximation and optimization with large scale sampling data [J]. Computer methods in applied mechanics and engineering Aerospace Science and Technology, 2004, 193: 385-404.
    [81]唐云岚.集成神经网络和多目标进化算法的卷烟产品参数优化设计方法及应用研究[D].长沙:国防科学技术大学博士学位论文, 2008.
    [82] AlexanderI.J.Forrester, AndyJ.Keane. Recent advances in surrogate-based optimization [J]. Progress in AEROSPACE SCIENCES, 2009, 45: 50-79.
    [83] Ozgur Yeniay, Resit Unal, Roger A. Lepsch. Using dual response surfaces to reduce variability in launch vehicle design: A case study [J]. Reliability Engineering and System Safety, 2006, 91: 409.
    [84] Zhangjun Huang, Chengen Wang , Jian Chen, Hong Tian. Optimal design of aeroengine turbine disc based on kriging surrogate models [J]. Computers and Structures, 2011, 89: 27-37.
    [85] Agte J S Sobieszczanski-sobieski J, Sandusky R R. . Bi-Level Integrated System Synthesis (BLISS). NASA/TM, [R]. 1998.
    [86] M Bjorkman, K Holmstrom. Global optimization of costly nonconvex functions using radial basis functions [J]. Optimization and Engineering, 2000, 1 (4): 373-397.
    [87] Buhmann. Radial Basis Functions [M]. U.K: Cambridge University Press, 2003.
    [88] R.G Regis, C.A Shoemaker. Constrained global optimization of expensive black box functions using radial basis functions [J]. Journal of Global Optimization, 2005, 31: 153-171.
    [89] Nestor V. Queipoa, Raphael T. Haftkaa, Wei Shyya, Tushar Goela. Surrogate-based analysis and optimization [J]. Progress in AEROSPACE SCIENCES, 2005, 41: 1-28.
    [90] Jack P.C. Kleijnen, Robert G. Sargent. A methodology for fitting and validating metamodels in simulation [J]. European Journal of Operational Research, 2000, 120: 14-29.
    [91] S. Shan G. Gary Wang. Review of Metamodeling Techniques in Support of Engineering Design Optimization [J]. ASME Transactions, Journal of Mechanical design, 2006.
    [92]李建平.仿真元建模中的拟合方法及其应用研究[D].长沙:国防科学技术大学博士学位论文, 2007.
    [93]高月华.基于kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学, 2009.
    [94]穆雪峰,姚卫星,余雄庆,刘克龙.多学科设计优化中常用代理模型的研究[J].计算机力学学报, 2005, 22 (5): 608-611.
    [95]王晓峰,席光,王尚锦. Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报, 2005, 26 (3): 422-425.
    [96] JIN R, CHEN W, SIMPSON T W. Comparative studies of meta modeling techniques under multiple modeling criteria [J]. Structural and Multidisciplinary Optimization, 2001, 23 (1): 1-13.
    [97] Wiley J. Larson James R. Wertz.航天任务的分析与设计[M].北京:航空工业出版社, 1992.
    [98]贺勇军,戴金海,王海丽.复杂多卫星系统有效覆盖特性的仿真分析[C].全国仿真技术学术会议论文集. 2003.
    [99] J.J. Morfison. A system of sixteen synchronous satellites for world-wide navigation and surveillance, Report FAA-RD-73-30 [R]. 1973.
    [100] A.H. Bogen. Geometric performance of the global positioning system,Aerospace Corp Report SAMSO-TR-74-169 [R]. 1974.
    [101] Christopher J. Didier. A Commercial Architecture for Satellite Imagery [D]. MONTEREY, CALIFORNIA: Master Thesis of Naval Postgraduate School, 2006.
    [102] MARTIN W. LO. SATELLITE-CONSTELLATIONDESIGN [J]. computation incommunication, 1999.
    [103] Alan R. Washburn. Earth Coverage by Satellites in Circular Orbit [R]. Naval Postgraduate School, 1990.
    [104] F. R.A. The Design of Experiments [M]. New York: Rinehart and Winston, 1972.
    [105] M.E. Johnson, L.M. Morre, D. Ylvisaker. Minimax and maximum distance designs [J]. Journal of Statistical Planning and Inference, 1990, 26 (2): 131-148.
    [106] J.-S. Park. Optimal Latin hypercube designs for computer experiments [J]. Journal of Statistical Planning and Inference, 1994, 39 (1): 95-111.
    [107] M.D. Morris, T.J. Mitchell. Exploratory designs for computational experiments [J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381-402.
    [108] F. J. Hickernell. A generalized discrepancy and quadrature error bound [J]. Math. Comp, 1998, 67: 299-322.
    [109] KAI-TAI FANG, CHANG-XING MA, PETER WINKER. Centered L2-discrepancy of random sampling and latin hypercube design and construction of uniform designs. [J]. Mathematics of Computation, 2000, 71 (237): 275-296.
    [110] Ruichen JIN, Wei CHEN, Sudjlanto Agus. An efficient algorithm for constructing optimal design of computer experiments [J]. Journal of Statistical Planning and Inference, 2005, 134 (1): 268-287.
    [111] Bart Husslage, Gijs Rennen, Edwin R. van Damy , Dick den Hertog. Space-filling Latin hypercube designs for computer experiments [R]. Department of Econometrics and Operations Research, Tilburg University, 2006.
    [112] Florian. An Efficient Sampling Scheme: Updated Latin Hypercube Sampling [J]. Probabilistic Engineering Mechanics, 1992, 7.123-130.
    [113] Iman R.L., Conovero W. J. A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables [J]. Commun. Statist, 1982, B11: 11-34.
    [114] A. B. Owen. Orthogonal arrays for computer experiments, integration and visualization [J]. Statistica Sinica, 1992, 2: 439-452.
    [115] B. Tang. Orthogonal array based Latin hypercubes [J]. Journal of the American Statistical Association, 1993, 88 (424): 1392-1397.
    [116] Owen A. B. Controlling correlations in Latin hypercube samples [J]. Amer. Statist. Assoc, 1994, 89: 1517-1522.
    [117] B. Tang. Selecting latin hypercubes using correlation criteria [J]. Statistica Sinica, 1998, 8: 965-977.
    [118] Kenny Q. YE. Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments [J]. Journal of the American Statistical Association, 1998, 93 (444.): 1430-1439.
    [119] Butler N.A. Optimal and orthogonal Latin hypercube designs for computer experiments [J]. Biometrika, 2001, 88: 847-857.
    [120] Ang J. K. Extending Orthogonal and Nealy Orthogonal Latin Hypercube Designs for Complex Simulation and Experimentation [D]. Naval Postgraduate School,2006.
    [121] Fang Pang, Min-qian LIU, Dennis K.J.Lin. A construction method for orthogonal latin hypercube designs with prime power levels [J]. Statistica Sinica, 2009, 19: 1721-1728.
    [122] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [C]. European Conference on Artificial Life. Paris, France: Elsevier Publishing, 1991.
    [123] Cioppa. Efficient Nealy Orthogonal and Space-filling Experimental Designs for High-dimensional Complex Models [D]. Naval Postgraduate School, 2002.
    [124] Thomas M Cioppa, Thomas W Lucas. Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes [J]. Technometrics, 2007, 49 (1): 45-55.
    [125] M. Lundy, A. Mees. Convergence of an annealing algorithm [J]. Math. Program, 1986, 34: 111-124.
    [126]刘新亮.技术引入对武器装备体系能力影响的评估方法研究[D].长沙:国防科学技术大学, 2009.
    [127]刘新亮,郭波.适用于复杂系统仿真试验的试验设计方法[J].国防科技大学学报, 2009, 31.95-99 (6).
    [128]刘新亮,郭波.基于改进ESE算法的多目标优化试验设计方法[J].系统工程与电子技术, 2010, 32(2) 410-414.
    [129] Liefvendahl M., Stocki R. A study on algorithms for optimization of Latin hypercubes [J]. Journal of Statist. Plann. Inference, 2006, 136: 3231-3247.
    [130] M.D. Morris, T.J. Mitchell. Exploratory designs for computational experiments [J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381-402.
    [131]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社, 2001.
    [132] Ruichen Jin, Wei Chen, Agus Sudjianto. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments [J].
    [133] Alejandro S. Hernandez. Breaking Barriers To Design Dimensions in Nearly Orthogonal Latin Hypercubes [D]. MONTEREY, CALIFORNIA: NAVAL POSTGRADUATE SCHOOL, 2008.
    [134]王凌,郑大钟.邻域搜索算法的统一结构和混合优化策略[J].清华大学学报(自然科学版), 2000, 40 (9): 125-128.
    [135] Metropolis N, Rosenbluth A, Rosenbluth M. Equation of state calculations by fast computing machines [J]. Journal of Chemical Physics, 1953, 21: 1087-1092.
    [136] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220: 671-680.
    [137]陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版), 2004, 32 (6): 802-805.
    [138] Ingber L. Very Fast Simulated Re-annealing [J]. Math Compute Modelling, 1989, 12: 967-973.
    [139] Sudarshan Banerjee, Nikil Dutt. R. Technical Report, CECS-TR-04-17 [R]. UC,Irvine: 2004.
    [140]陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版), 2006, 8 (34): 1121-1125.
    [141] Geman S, Geman D. Stochastic relaxation,Gibbs distribution and the Bayesian restoration in images [J]. IEEE Trans Patt Anal Mac Int, 1984, 6 (6): 721-741.
    [142]白保存.考虑任务合成的成像卫星调度问题模型与算法研究[D].长沙:国防科学技术大学博士学位论文, 2008.
    [143] Lester Ingber. Simulated annealing: Practice versus theory [J]. Journal of Mathl. Comput. Modelling, 1993, 18 (11): 29-57.
    [144]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社, 2005.
    [145] Martin JD, Simpson TW. A study on the use of kriging models to approximate deterministic computer models [C]. Design Engineering Technical Conferences and Compters and Information in Engineering Conference . Chicago: 2003.
    [146] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black—box functions [J]. Journal of Global 0ptimization, 1998, 13: 445-492.
    [147] Lophaven SN, Nielsen HB, Sondergaard J. DACE—A Matlab Kriging Toolbox [J]. Informatics and mathematical modelling, 2002.
    [148]尹大伟,李本威,王永华,冯向军.基于Kriging方法的航空发动机压气机特性元建模[J].航空学报, 2011, 32 (1): 99-106.
    [149] Jones DR,Schonlau M,Welch WJ. Efficient global optimization of expensive black—box functions [J]. Journal of Global 0ptimization, 1998, 13: 445-492.
    [150] Giunta AA, Watson LT. A comparison of approximation modeling techniques:polynomial VS interpolating models [J]. AIAA, 1998: 4758.
    [151] Booker AJ, Conn AR, Dennis JE et al. Global modeling for optimization:Boeing/IBM/Rice collaborative project [R]. ISSTECH-95-032, The Boeing Company, Seattle 1995.
    [152] Sacks J, Welch WJ, Mitchell TJ et al. Design and analysis of computer experiments [J]. Statistics Science, 1989, 4 (4): 409-435.
    [153] Maroussa Zagoraiou Alessandro Baldi Antognini. Exact optimal designs for computer experiments via Kriging metamodelling [J]. Journal of Statistical Planning and Inference, 2010, 140: 2607–2617.
    [154] Simpson TW, Mauery TW, Korte JJ, Mistree F. Comparision of response surface and kriging models for multidisciplinary design optimization [C]. 7th Symposium on Multidisciplinary Analysis and Optimization . 1998.
    [155] Timothy W. Simpson, Timothy M. Mauery, John J. Korte, Farrokh Mistree. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization [J]. AIAA JOURNAL, 2001, 39 (12): 2233-2241.
    [156] Mazzieri C and Rossi M Lucifredi A. Application of multi-regressive linearmodels,Dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems. [J]. Mechanical Systems and Signal Processing, 2000, 14 (3): 471-494.
    [157] Sakata S, Ashida F, Zako M. Structural optimization using kriging approximation [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 923-939.
    [158] A.J. Booker, Dennis, J.E., Frank, P.D., Serafini, D.B. and Torczon. Optimization using surrogate objectives on a helicopter test example [R]. Boeing Shared Services GroupTechnical Report . SSGTECH-97-027, 1997.
    [159]王红涛,竺晓程,杜朝辉.基于Kriging代理模型的改进EGO算法研究[J].工程设计学报, 2009, 16 (4): 266-270.
    [160] Lee SH,Kim HY. Cyindrical tube optimization using response surface method based on stochastic process [J]. Journal of Material Processing Technology, 2002, 130: 490-496.
    [161]高月华,王希诚.基于Kriging代理模型的稳健优化设计[J].化工学报, 2010, 61 (3): 676-681.
    [162] Koch PN, Wujek B, Golovidov. Facilitating probabilistic multidisciplinary design optimization using kriging approximation models [C]. 9th AIAA/USAF/ NASA/ISSMO Symposium on Multidisciplinary Analysis and 0ptimization . Atlanta, Georgia: 2002.
    [163] V. Roshan Joseph, Ying Hung, Agus Sudjianto. Blind Kriging: A New Method for Developing metamodels [J]. J. Mech. Des, 2008, 130 (3): 1-8.
    [164] Lophaven S.N., H.B. Nielsen, J. Sondergaard. DACE: a Matlab Kriging toolbox, version 2.0. [R]. IMM Technical University of Denmark, Lyngby: 2002.
    [165] http://www.sumo.intec.ugent.be/?q=sumo_toolbox.
    [166] F. Declercq I. Couckuyty, T. Dhaeney, H. Rogier, L. Knockaert. Surrogate-Based Infill Optimization Applied to Electromagnetic Problems [J]. 2010.
    [167] Couckuyt Gorissen, Demeester, Dhaene and Crombecq. A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design [J]. Journal of Machine Learning Research, 2010, 11: 2051-2055.
    [168] M. C Shewry, H. P. J Wynn. Maximum entropy sampling [J]. Journal of Applied Statistics, 1987, 14: 165-170.
    [169] Matthias Schonlau. Computer Experiments and Global Optimization [D]. Waterloo: University of Waterloo, 1997.
    [170] Audet C, Dennis J E. A pattern search filter method for nonlinear programming without derivatives [J]. SIAM Journal on Optimization, 2004, 14 (4): 980-1010.
    [171]陈昊.基于遗传算法与代理模型的协同优化方法的研究[D].南昌航空大学, 2007.
    [172] Wilson R.B. A simplicial algorithm for concave programming [D]. Harvarduniversity, PhD thesis, 1963.
    [173]石国春.关于序列二次规划(SQP)算法求解非线性规划问题的研究[D].兰州:兰州大学, 2009.
    [174]段丽娟,吴成富,张闻乾,陈怀民.基于序列二次规划算法的控制律寻优设计[J].火力与指挥控制, 2009, 34 (1): 53-56.
    [175] D.R. Jones, C.D. Perttunen, B.E. Stuckman. Lipschitzian optimization without the Lipschitz constant [J]. Optimization Theory & Application, 1993, 79: 157-181.
    [176] D.R. Myatt, V.M. Becerra, S.J. Nasuto, J.M. Bishop. Advanced Global Optimisation for Mission Analysis and Design [R]. 2004.
    [177]张更新.现代小卫星及其应用[M].北京:人民邮电出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700