用户名: 密码: 验证码:
煤炭分级利用与富氧燃烧技术机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国能源结构在未来较长的一段时期内仍将以煤炭为主。因此开发煤炭资源的高效清洁利用技术是关系我国能源安全与发展的关键课题之一。煤炭资源的分级利用结合富氧燃烧的多联产技术是一种新型的煤炭清洁利用技术,同时煤的富氧燃烧技术也是实现CO2减排的重要可能途径之一。
     本文根据煤的分级利用结合富氧燃烧的多联产系统对煤粉的利用方式,按照“煤粉富氧燃烧热重实验—煤粉热解挥发分析出特性—半焦燃烧及综合应用—煤粉富氧燃烧水平管式炉试验—煤粉富氧燃烧沉降炉试验—热态卧式炉石油焦粉富氧燃烧器着火试验”的研究思路探究了煤粉的富氧燃烧特性,煤粉热解过程的挥发分析出特性以及煤部分热解后半焦的富氧燃烧特性和吸附性变化,最后在2MW实验台上以石油焦粉模拟半焦进行富氧燃烧器的着火特性试验,得到了石油焦粉不同氧气配比下的火焰温度分布。
     在热重试验台上进行了煤粉的富氧燃烧特性及反应动力学研究,发现富氧燃烧气氛中的CO2对煤粉燃烧的抑制作用对煤阶低的煤种更为明显。在氧浓度低于60%的范围内,氧浓度对煤粉的燃烧特性参数的影响更为明显,氧浓度由21%提高至100%可以使无烟煤的最大燃烧速率提高至原速率的8.1倍,褐煤和烟煤也可提高5.5倍以上,从而大幅缩短煤粉富氧燃烧过程的反应时间,降低煤粉热重曲线的燃尽温度。通过不同的反应动力学参数计算方法发现高氧浓度的富氧燃烧过程多重扫描速率法计算过程的线性拟合度较差。通过改进单一扫描速率法提高了动力学参数的线性拟合度。计算结果发现,气氛中CO2以及氧浓度对动力学参数的影响主要体现在指前因子中。使用动力学补偿效应对改进的动力学参数计算方法的结果进行了验算,计算结果可靠。
     使用快速裂解仪对煤种在超过5000℃/s可控升温速率下对煤粉的热裂解过程进行研究,发现H2在裂解温度高于800℃后产量明显增加;煤阶更高的煤种CH4的产量更大。此外,延长热裂解反应时间对CO2的产量影响较小。煤阶更高的烟煤相对于褐煤热裂解过程释放的大分子产物种类更多,产量也更大,但轻质挥发分如H2,CO和CO2等则小于煤阶较低的褐煤等煤种。
     半焦的富氧燃烧试验发现提高氧浓度至40%时半焦的燃烧特性参数已经接近该煤种的空气燃烧工况,燃尽温度和最大失重速率等均优于煤粉空气燃烧工况。但氧浓度对着火温度的影响较小。对半焦吸附性的初步试验发现试验褐煤800℃半焦孔容积达到椰壳活性炭的76.3%,比表面积为椰壳活性炭的66.7%,与垃圾焚烧电站使用的吸附剂相比,吸附特性参数差异不大,鉴于褐煤与吸附剂价格之间的巨大价格差异,褐煤半焦作为吸附剂原料具有极其广阔的市场前景。
     通过煤粉水平管式炉富氧燃烧发现氧浓度对于高阶煤种焦炭燃尽过程的影响更为明显,提高反应速率,缩短燃尽时间。而在900℃反应温度下,CO的产量随氧浓度的升高而下降,在5%~10%的氧浓度范围内CO产量下降最快,10%~60%的过程中下降趋势减缓,氧浓度达到60%以上时CO产量的下降速度进一步减缓。
     在沉降炉上模拟了煤粉的富氧燃烧过程。在较低氧浓度下发现富氧气氛中的CO2加剧了无烟煤的难燃性,与O2在CO2中的扩散速率降低有关。过量氧气系数从1.05提高至1.3,无烟煤30%氧浓度富氧燃烧烟气中CO的浓度由3.63%下降至0.97%。将燃烧工况的氧浓度由21%提高至50%使试验无烟煤着火位置由距离喷口30mm处提前至10mm处,由于烟气量的下降,50%工况下尾部烟气CO2浓度降至70%左右。反应温度由900℃提高至1300℃的过程中,烟气CO的生成由于气化反应的影响由0.08%升高至0.81%。
     最后在2MW卧式炉上使用低挥发分的石油焦粉模拟半焦进行了富氧燃烧器的着火试验,得到不同氧气配比工况下石油焦火焰的温度分布,燃烧组织最好的工况火焰核心高温区温度达到1474℃,而燃烧组织较差的工况火焰核心高温区温度为1320℃左右。根据试验结果对煤粉及半焦的燃烧器设计建议如下:在未进行氧气预热的情况下,大量低温氧气与燃料一同喷入炉膛虽然增加了燃料周围的氧浓度,但会降低燃料与气体混合物的温度,并不利于着火。其他氧气喷口应尽量平均布置于送粉气流周围,喷口流量过高虽然会提高反应区域氧浓度,但低温氧气流速的增加会导致燃料着火位置后移,不利于燃烧器的稳燃。
The energy structure of China will still be coal-based in a long period of time. Therefore the technical development of coal clean efficient utilization is a key issue related with our country's energy security and development. The staged utilization of coal combined with oxy-fuel combustion is a novel coal clean utilization technology, and is one of the possible ways to achieve CO2emission reduction.
     This thesis based on the coal staged utilization combined with oxy-fuel combustion system, investigated the combustion characteristics of pulverized coal, the devolatilization characteristics of coal pyrolysis, and semi-coke oxy-fuel combustion characteristics, in according with research ideas of "thermogravimetric analyse of pulverzied coal oxy-fuel combustion—pulverized coal devolatilization characteristics of pyrolysis—semi-coke oxy-fuel combustion characteristics and comprehensive application—pulverized coal oxy-fuel combustion in horizontal tube furnace—pulverized coal oxy-fuel combustion in drop tube furnace—petroleum coke powder oxy-fuel burner test with2MW horizontal furnace."
     Investigated the pulverized coal oxy-fuel combustion characteristics by the thermogravimetric experiments. It is found that CO2in oxy-fuel combustion atmosphere has more apparent inhibition to low rank coal. When the oxygen concentration is lower than60%, the effection of oxygen concentration to the combustion characteristics is more obvious. The maximum reaction rate of anthracite increased to8.1times faster, and the maximum reaction rates of lignite and bituminous coal are also5.5times faster, when the oxygen concentration is increased from21%to100%. It will significantly reduce the reaction time of the pulverized coal oxy-fuel combustion, and will decrease the burnout temperature. Investigated three different ways of kinetics calculation, and found that the model-free methods are not suitable for the oxy-fuel combustion. Then retrofit a model-fitting method and improve the linear fit of the kinetic calculation for oxy-fuel combustion. The kinetic analysis found that the CO2and oxygen concentration effection is mainly reflected in the pre-exponential factor. Using the kinetic compensation effect calculation method to check the kinetic calculation results, and the calculation results showed that the retrofitting model-fitting method calculation result were reliable.
     Investigated the pulverized coal pyrolysis process with the fast pyrolyzer under a controllable heating rate over5000℃/s. Discovered that the H2production increased significantly when the pyrolysis temperature is higher than800℃. And High rank coal pyrolysis will produce more CH4. In addition, the extension of pyrolysis time has less effection on CO2production. The pyrolysis macromolecular product of high coal rank bituminous has more types and larger production than the low coal rank lignite. But the lightweight volatiles products such as H2, CO and CO2is less than the low coal rank lignite.
     According to the semi-coke oxy-fuel combustion thermogravimetric experiment results, the semi-coke combustion characteristics is close to the air combustion condition when the oxygen concentration in the combustion atmosphere is over40%and the burnout temperature and the maximum reaction rate are better than the air combustion condition. It is also found that the ignition temperature was less affected by the oxygen concentration. The absorption experiments of semi-coke results showed that the pore volume of test lignite semi-coke in800℃is76.3%of the coconut shell activated carbon, and the specific surface area is66.7%of the coconut shell activated carbon. Compared with the absorbent using by the garbage power plants, the adsorption characteristic parameters is nearly the same. Based on the huge price difference between lignite and the adsorbent, using the lignite semi-coke as the adsorbent raw material has a very broad market prospects.
     According to the pulverized coal oxy-fuel combustion in horizontal tube furnace experiment results, it is found that the oxygen concentration effection to high coal rank char burnout process is more obvious. The high oxygen concentration will increase the reaction rate, and reduce the reaction time. When the furnace temperature is900℃, and the oxygen concentration increased from5%to10%, the amount of CO in flue reduced quickly. And when the oxygen concentration increased from10%to60%, the CO amount decreasing speed slow down. When O2concentration is over60%, the CO amount decreasing speed slowed down further.
     Simulate oxy-fuel combustion process of pulverized coal on drop tube furnace. The CO2in oxy-fuel combustion atmosphere increase the flame resistance of anthracite with low oxygen concentration conditions. This is because the diffusion rate of O2in CO2is slower than in N2. When the excess oxygen coefficient increased from1.05to1.3, the CO concentration of anthracite oxy-fuel combustion flue gas is decreased from3.63%to0.97%. When oxygen concentration increased from21%to50%, the ignition distance from the burner decreased from30mm to10mm. The CO concentration of flue gas increased from0.08%to0.81%, when the furnace temperature rised from900℃to1300℃
     At last, a burner ignition test of petroleum coke powder was carried out on the2MW horizontal furnace. The flame temperature distribution of the petroleum coke powder was obtained in different oxygen ratio conditions. The maximum temperature of the best organized burning condition was1474℃, and the normal combustion condition highest temperature of the flame is around1320℃. According to the burner test results, some suggestions for oxy-fuel combustion burner design of pulverized coal and semi-coke were obtained:When the oxygen is not preheated, injecting fuel with large amount of cold oxygen will decrease the flow temperature, and obstruct the ignition process. Other oxygen nozzles should be arranged homogenized around the powder delivery flow nozzle. If the oxygen flow rate is too high or too low will delay the ignition postion and not conducive to the combustion stability.
引文
[1]赵黛青,余颖琳,万英.我国能源的现状与发展.科学对社会的影响[J],2006,(02):25-29.
    [2]李琼慧,郭基伟,王乾坤.2030年世界能源与电力发展展望.电力技术经济[J],2009,21(04):4-9.
    [3]倪维斗,陈贞,李政.我国能源现状及某些重要战略对策.中国能源[J],2008,30(12):5-9.
    [4]中华人民共和国国家统计局.中国统计年鉴-2010.2011
    [5]朱成章.煤炭是我国电力安全的命脉.中外能源[J],2009,14(07):15-18.
    [6]中国电力企业联合会.2011年全国电力工业统计快报2012.
    [7]B. J. P. Buhre, L. K. Elliott, C. D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science[J],2005, 31 (4):283-307.
    [8]L. Li, N. Zhao, W. Wei, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel[J], (In press):
    [9]马蓓蓓,鲁春霞,张雷.中国煤炭资源开发的潜力评价与开发战略.资源科学[J],2009,31(02):224-230.
    [10]李志坚.煤资源与煤气化技术的选择.泸天化科技[J],2008,26(02):114-119.
    [11]毛节华,许惠龙.中国煤炭资源分布现状和远景预测.煤田地质与勘探[J],1999,27(03):2-5.
    [12]任玉明.中国无烟煤资源与性质.洁净煤技术[J],2004,10(03):8-10.
    [13]陈武,唐辛,张希诚.我国煤炭资源及其开发利用研究.煤炭经济研究[J],2003,(07):6-11.
    [14]张绍强,张运章.我国煤炭资源、生产与环境概况.环境保护[J],2006,(13):53-57.
    [15]刘海滨,王立杰.我国煤炭资源综合开发布局与模式研究.自然资源学报[J],2004,19(03):401-407.
    [16]陈守建,王永,伍跃中,等.西北地区煤炭资源及开发潜力.西北地质[J],2006,39(04):40-56.
    [17]尹立群.我国褐煤资源及其利用前景.煤炭科学技术[J],2004,32(08):12-14+23.
    [18]赵振新,朱书全,马名杰,等.中国褐煤的综合优化利用.洁净煤技术[J],2008,14(01):28-31.
    [19]张殿奎.我国褐煤综合利用的发展现状及展望.神华科技[J],2010,8(01):51-56.
    [20]董洪峰,云增杰,曹勇飞.我国褐煤的综合利用途径及前景展望.煤炭技术[J],2008,27(09):122-124.
    [21]黄建湘,李明,袁翠翠,等.褐煤煤化工利用现状及前景.广州化工[J],2011,39(21):34-36.
    [22]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1998.
    [23]陈冰冰,池海.谈对褐煤的加工利用.煤炭技术[J],2005,24(11):117-118.
    [24]侯英,张文军,吕政超,等.褐煤资源综合利用工艺的探讨.选煤技术[J],2011,(01):44-46+76.
    [25]孟凡英,孟欣.褐煤利用的新技术.中国科技信息[J],2009,(23):33+39.
    [26]沈国娟,张明旭,王龙贵.浅谈褐煤的利用途径.煤炭加工与综合利用[J],2005,(06):25-27.
    [27]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探.神华科技[J],2009,7(02):17-22.
    [28]宋贝,周江红.我国褐煤煤化工技术现状及发展前景.科协论坛(下半月)[J],2010,(09):34.
    [29]S. SATORU, D. TETSUYA, S. TAKUO. UBC (Upgraded Brown Coal) Process Development. Kobe Steel Engineering Reports[J],2003.53(2):41-45.
    [30]倪维斗,李政.煤的超清洁利用——多联产系统.节能与环保[J],2001,(05):16-21.
    [31]倪维斗,张斌,李政.多联产能源系统与二氧化碳减排.中国能源[J],2005,27(04):17-20+42.
    [32]倪维斗.中国式低碳的关键:煤的清洁利用.能源技术与管理[J],2010,(03):3.
    [33]徐振刚.多联产是煤化工的发展方向.洁净煤技术[J],2002,8(02):5-7.
    [34]岑建孟,方梦祥,王勤辉,等.煤分级利用多联产技术及其发展前景.化工进展[J],2011,30(01):88-94.
    [35]倪维斗,郑洪弢,李政.多联产系统实施的障碍和政策措施.煤炭转化[J],2004,27(02):1-6.
    [36]倪维斗,李政,江华.煤基多联产系统(化工过程-动力装置)的分析.煤炭转化[J],2003,26(04):1-4.
    [37]徐昕,罗方涛,路学红.煤气化多联产系统研究现状与进展.广东化工[J],2010,37(07):85-86.
    [38]李春学,王宇光,司崇殿,等.煤基多联产系统的研究进展.广州化工[J],2012,40(08):46-48.
    [39]P. Chiesa, S. Consonni, T. Kreutz, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A:Performance and emissions. International Journal of Hydrogen Energy[J],2005,30(7):747-767.
    [40]T. Kreutz, R. Williams, S. Consonni, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B:Economic analysis. International Journal of Hydrogen Energy[J],2005,30(7):769-784.
    [41]M. E. Walker, J. Abbasian, D. J. Chmielewski, et al. Dry Gasification Oxy-combustion Power Cycle. Energy Fuels[J],2011,25(5):2258-2266.
    [42]倪维斗,陈贞.低碳经济:以煤的清洁利用为基.今日中国论坛[J],2010,(11):62-63.
    [43]林湖,金红光,高林,等.煤基多联产系统热力与经济性分析.中国电机工程学报[J],2009,(08):1-5.
    [44]武晋强.利用鲁奇技术发展煤化工多联产系统.煤化工[J],2002,30(04):6-11.
    [45]韩梅.以煤气化为核心的坑口多联产系统.洁净煤技术[J],2004,10(03):4-7.
    [46]金红光,高林,郑丹星,等.煤基化工与动力多联产系统开拓研究.工程热物理学报[J],2001,22(04):397-400.
    [47]岑可法,骆仲泱,王勤辉,等.煤的热电气多联产技术及工程实例[M].北京:化学工业出版社,2004.
    [48]张宗飞,任敬,李泽海,等.煤热解多联产技术述评.化肥设计[J],2010,48(06):11-15+21.
    [49]关珺,何德民,张秋民.褐煤热解提质技术与多联产构想.煤化工[J],2011,39(06):1-4+9.
    [50]王五一.以煤的热解为基础的经济、洁净利用煤的多联产技术.洁净煤技术[J],2009,(06):9-12.
    [51]姚建中,郭慕孙.煤炭拔头提取液体燃料新工艺.化学进展[J],1995,7(03):205-208.
    [52]徐向东,钊丽,朱为民.载热气化燃煤联合循环性能研究.热能动力工程[J],1996,]1(06):337-342+414.
    [53]方梦祥,骆仲泱,王勤辉,等.循环流化床热、电、气三联产装置的开发和应用前景分析.动力工程[J],1997,17(04):26-32+82.
    [54]吕清刚,刘琦,范晓旭,等.双流化床煤气化试验研究.工程热物理学报[J],2008,29(08):1435-1439.
    [55]李春晓,李云峰,冷杰.利用循环流化床锅炉进行热、电、煤气三联产试验.东北电力技术[J].2002,(10):12-13+31.
    [56]肖军,蔡宁生,章名耀,等.第二代PFBC-CC中试电站初步方案及性能分析.工程热物理学报[J],2002,(1):13-16.
    [57]李政,倪维斗,潘克西.以煤气化为核心的多联产及其在我国未来能源中的战略意义.发电设备[J],2004,(03):117-120+129.
    [58]方梦祥,曾伟强,岑建孟,等.循环流化床煤分级转化多联产技术的开发及应用.广东电力[J],2011,(09):1-7.
    [59]方梦祥,岑建孟,王勤辉,等.25MW循环流化床热、电、煤气多联产装置.动力工程[J],2007,27(04):635-639.
    [60]刘耀鑫,黄军军,李润东,等.煤部分空气气化多联产工艺中焦油裂解脱除试验研究.热力发电[J],2008,37(03):8-11+34.
    [61]刘耀鑫,李润东,杨天华,等.煤热解燃烧多联产方案试验研究.热力发电[J],2008,37(05):1-5.
    [62]徐旭,俞自涛,张夏博,等.基于热经济学结构理论的煤多联产系统性能分析.浙江大学学报(工学版)[J],2010,(03):489-493+580.
    [63]王勤辉,骆仲泱,方梦祥,等.12兆瓦热电气多联产装置的开发.燃料化学学报[J],2002,30(02):141-146.
    [64]F. L. Horn, M. Steinberg. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel[J],1982,61(5):415-422.
    [65]B. Abraham, J. Asbury, E. Lynch, et al. Coal-oxygen process provides CO2 for enhanced recovery. Oil Gas Journal[J],1982,80(11):68-70,75.
    [66]M. B. Toftegaard, J. Brix, P. A. Jensen, et al. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science[J],2010,36(5):581-625.
    [67]W. Terry F. Combustion processes for carbon capture. Proceedings of the Combustion Institute[J],2007,31(1):31-47.
    [68]P. H. M. Feron, C. A. Hendriks. CO2 capture process principles and costs. Oil & Gas Science and Technology[J],2005,60(3):451-459.
    [69]J. Gibbins, H. Chalmers. Carbon capture and storage. Energy Policy[J],2008, 36(12):4317-4322.
    [70]M. Pehnt, J. Henkel. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control[J], 2009,3 (1):49-66.
    [71]M. Kanniche, R. Gros-Bonnivard, P. Jaud, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering[J],2010,30(1):53-62.
    [72]M. T. Sander, C. L. Mariz. The Fluor Daniel econamine FG process:Past experience and present day focus. Energy Conversion and Management[J],1992, 33(5-8):341-348.
    [73]C. Descamps, C. Bouallou, M. Kanniche. Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy[J], 2008,33(6):874-881.
    [74]J. Oexmann, A. Kather. Post-combustion CO2 capture in coal-fired power plants:Comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA. Energy Procedia[J],2009,1(1):799-806.
    [75]J. Oexmann, C. Hensel, A. Kather. Post-combustion CO2-capture from coal-fired power plants:Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. International Journal of Greenhouse Gas Control[J],2008,2(4):539-552.
    [76]J. Oexmann, A. Kather. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption:The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control[J], 2010,4(1):36-43.
    [77]I. Pfaff, J. Oexmann, A. Kather. Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy[J],2010,35(10):4030-4041.
    [78]U. Liebenthal, S. Linnenberg, J. Oexmann, et al. Derivation of correlations to evaluate the impact of retrofitted post-combustion CO2 capture processes on steam power plant performance. International Journal of Greenhouse Gas Control[J],2011, 5 (5):1232-1239.
    [79]D. John. Performance and costs of power plants with capture and storage of CO2. Energy[J],2007,32(7):1163-1176.
    [80]M. Okawa, N. Kimura, T. Kiga, et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2CO2. Energy Conversion and Management[J], 1997,38 S123-S127.
    [81]D. Singh, E. Croiset, P. L. Douglas, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management[J],2003,44(19):3073-3091.
    [82]R. Notz, N. Asprion, I. Clausen, et al. Selection and Pilot Plant Tests of New Absorbents for Post-Combustion Carbon Dioxide Capture. Chemical Engineering Research and Design[J],2007,85(4):510-515.
    [83]S. Lee, S. Maken, J.-W. Park, et al. A study on the carbon dioxide recovery from 2 ton-CO2/day pilot plant at LNG based power plant. Fuel[J],2008,87 (8-9): 1734-1739.
    [84]T. C. Williams, C. R. Shaddix, R. W. Schefer. Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor. Combustion Science and Technology[J],2007,180(1):64-88.
    [85]K. Damen, M. v. Troost, A. Faaij, et al. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A:Review and selection of promising conversion and capture technologies. Progress in Energy and Combustion Science[J],2006,32(2):215-246.
    [86]J. M. Be e r. High efficiency electric power generation:The environmental role. Progress in Energy and Combustion Science[J],2007,33(2):107-134.
    [87]J. M. Be e r. Combustion technology developments in power generation in response to environmental challenges. Progress in Energy and Combustion Science[J], 2000,26(4-6):301-327.
    [88]C. Chen, E. S. Rubin. CO2 control technology effects on IGCC plant performance and cost. Energy Policy[J],2009,37(3):915-924.
    [89]A. J. Minchener. Coal gasification for advanced power generation. Fuel[J], 2005,84(17):2222-2235.
    [90]J. Gibbins, H. Chalmers. Preparing for global rollout:A'developed country first'demonstration programme for rapid CCS deployment. Energy Policy[J],2008, 36 (2):501-507.
    [91]Y. Tan, E. Croiset, M. A. Douglas, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel[J],2006,85(4):507-512.
    [92]Y. Tan, M. A. Douglas, K. V. Thambimuthu. CO2 capture using oxygen enhanced combustion strategies for natural gas power plants. Fuel[J],2002,81(8): 1007-1016.
    [93]H. Herzog, D. Golomb, S. Zemba. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean. Environmental Progress[J], 1991,10(1):64-74.
    [94]S. Nakayama, Y. Noguchi, T. Kiga, et al. Pulverized coal combustion in O2/CO2 mixtures on a power plant for CO2 recovery. Energy Conversion and Management[J], 1992,33(5-8):379-386.
    [95]C.-P. Fabienne, V. Rajani, P. Pavol, et al. Applications of oxygen for NOx control and CO2 capture in coal-fired power plants. Thermal Science[J],2006,10 (3): 119-142.
    [96]M. Anheden, J. Yan, G. D. Smedt. Denitrogenation (or Oxy-fuel Concepts). Oil & Gas Science and Technology[J],2005,60(3):485-495.
    [97]R. J. Allam, C. G. Spilsbury. A study of the extraction of CO2 from the flue gas of a 500MW pulverised coal fired boiler. Energy Conversion and Management [J], 1992,33 (5-8):373-378.
    [98]K. Andersson, F. Johnsson. Large scale CO2 capture-applying the concept of O2/CO2 combustion to commercial process data. VGB PowerTech[J],2003,83 (10): 1-5.
    [99]K. Andersson, F. Johnsson. Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Conversion and Management[J],2006,47(18-19): 3487-3498.
    [100]S. Hellfritsch, P. Gilli, N. Jentsch. Concept for a lignite-fired power plant based on the optimised oxyguel process with CO2 recovery. VGB PowerTech[J],2004, 84(8):76-82.
    [101]A. Darde, R. Prabhakar, J.-P. Tranier, et al. Air separation and flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia[J],2009,1 (1):527-534.
    [102]A. R. Smith, J. Klosek. A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology[J],2001, 70(2):115-134.
    [103]L. Stromberg, G. Lindgren, J. Jacoby, et al. Update on Vattenfall's 30MWth oxyfuel pilot plant in Schwarze Pumpe. Energy Procedia[J],2009,1(1):581-589.
    [104]K. E. Zanganeh, A. Shafeen. A novel process integration, optimization and design approach for large-scale implementation of oxy-fired coal power plants with CO2 capture. International Journal of Greenhouse Gas Control[J],2007,1 (1):47-54.
    [105]D. Dillon, R. Panesar, R. Wall, et al. Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant[C]. In:7th international conference on greenhouse gas control technologies, September 5-9. Vancouver, Canada; 2004.
    [106]D. Woycenko, W. v. d. Kamp, P. Roberts. Combustion of pulverised coal in a mixture of oxygen and recycled flue gas[C]. In:The Netherlands:International Flame Research Foundation (IFRF), October. Ijmuiden; 1995.
    [107]P. Heil, D. Toporov, H. Stadler, et al. Development of an oxycoal swirl burner operating at low O2 concentrations. Fuel[J],2009,88(7):1269-1274.
    [108]D. Toporov, P. Bocian, P. Heil, et al. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combustion and Flame[J],2008,155(4): 605-618.
    [109]D. Toporov, M. Forster, R. Kneer. Burning pulverized coal in CO2 atmosphere at low oxygen. International Journal of Energy for a Clean Environment[J],2007,8 (4):321-338.
    [110]H. Nikzat, H. Pak, T. Fuse, et al. Characteristics of Pulverized Coal Burner Using a High-Oxygen Partial Pressure. Chemical Engineering Research and Design[J], 2004,82(1):99-104.
    [111]B. Vitalis. Overview of oxy-combustion technology for utility coal-fired boilers. Advances in Materials Technology for Fossil Power Plants[C]. In: Proceedings from the 5th International Conference,2008.
    [112]S. Gonschorek, S. Hellfritsch, S. Weigl, et al. Entwicklungsstand des Oxyfuel-Prozesses fur Braunkohlekraftwerke[C]. In:Kraftwerkstechnisches Kolloquium, September,26-27. Zittau; 2006.
    [113]A. Kather, M. Klostermann, C. Hermsdorf, et al. Konzept fur ein 600 MWei Steinkohlekraftwerk mit CO2-Abtrennung auf Basis des Oxyfuel-Prozesses[C]. In: Kraftwerksbetrieb unter kunftigen Rahmenbedingungen,38., October 24-25. Kraftwerkstechnisches Kolloquium. Dresden, Germany; 2006.
    [114]K. Jordal, M. Anheden, J. Yan, et al. Oxyguel combustion for coal-fired power generation with CO2 capture-opportunities and challenges[C]. In:The 7th International conference on greenhouse gas control technologies (GHGT-7), September. Vancouver, Canada; 2004.
    [115]R. Varagani, F. Chatel-Pelage, P. Pranda, et al. Performance simulation and cost assessment of oxy-combustion process for CO2 capture from coal-fired power plants[C]. In:The fourth annual conference on carbon sequestration, May 2-5. Alexandria, VA; 2005.
    [116]A. Suriyawong, C. J. Hogan Jr, J. Jiang, et al. Charged fraction and electrostatic collection of ultrafme and submicrometer particles formed during O2 CO2 coal combustion. Fuel[J],2008,87(6):673-682.
    [117]S. Schnurrer, L. Elliott, T. Wall, et al. Influence of oxy-fuel environment on sulphur species in ash from pulverized coal combustion.[C]. In:Impacts of fuel quality on power production and the environment, September 29-October 3. Banff, Alberta, Canada:The Banff Centre; 2008.
    [118]S. Hellfritsch, S. Gonschorek, R. Vilhelm, et al. Entwicklungsstand des Oxyguel-Prozesses fur Braunkohlekraftwerke[C]. In:Kraftwerksbetrieb unter kunftigen Rahmenbedingungen,38, October 24-25. Kraftwerkstechnisches Kolloquium, Dresden, Germany; 2006.
    [119]D. McDonald, T. Flynn, D. DeVault, et al.30 MWt clean environment development oxy-coal combustion test program.[C]. In:The 33rd international technical conference on coal utilization and fuel systems., Clearwater, Florida; 2008.
    [120]H. Farzan, D. McDonald, K. McCauley, et al. Oxy-coal combustion pilot. [C]. In:3rd Workshop of the IEA GHG international oxy-combustion network, March 5-6. Yokohama, Japan; 2008.
    [121]D. Oryshchyn, S. Gerdemann, J. Armstrong, et al. Oxy-firing flue gas character and its effect on FGD-a process study for integrated pollutant removal[C]. In:23rd Annual international Pittsburgh coal conference, PCC-coal-energy, environment and sustainable development,2006.
    [122]M. Klostermann. Efficiency Increase of the oxyfuel process by waste heat recovery considering the effects of flue gas treatment. [C]. In:3rd workshop of the IEA GHG international oxy-combustion network., March 5-6. Yokohama, Japan; 2008.
    [123]C. S. Wang, G. F. Berry, K. C. Chang, et al. Combustion of pulverized coal using waste carbon dioxide and oxygen. Combustion and Flame[J],1988,72 (3): 301-310.
    [124]T. Nozaki, S.-i. Takano, T. Kiga, et al. Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture. Energy[J],1997,22 (2-3): 199-205.
    [125]H. Liu, R. Zailani, B. M. Gibbs. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel[J],2005,84 (7-8):833-840.
    [126]E. Croiset, K. Thambimuthu, A. Palmer. Coal combustion in O2/CO2 mixtures compared with air. The Canadian Journal of Chemical Engineering[J],2000,78 (2): 402-407.
    [127]K. Andersson, F. Normann, F. Johnsson. Experiments and modeling on oxy-fuel combustion chemistry during lignite-firing[C]. In:The 32nd international technical conference on coal utilization and fuel systems.,10-15, July. Clearwater, Florida; 2007.
    [128]G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, et al. Oxy-fuel coal combustion-A review of the current state-of-the-art. International Journal of Greenhouse Gas Control[J],2011,5 S16-S35.
    [129]N. Kimura, K. Omata, T. Kiga, et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management[J],1995,36(6-9):805-808.
    [130]E. Croiset, K. V. Thambimuthu. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel[J],2001,80(14):2117-2121.
    [131]S. P. Khare, T. F. Wall, A. Z. Farida, et al. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel[J],2008,87(7): 1042-1049.
    [132]A. Molina, C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings of the Combustion Institute [J],2007,31(2):1905-1912.
    [133]A. Mackrory, S. Lokare, L. Baxter, et al. An investigation of nitrogen evolution in oxy-fuel combustion[C]. In:The 32nd international technical conference on coal utilization and fuel systems, the power of coal.,10-15, June. Clearwater, Florida; 2007.
    [134]C. Sheng, Y. Li. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel[J],2008,87(7):1297-1305.
    [135]A. Suriyawong, M. Gamble, M.-H. Lee, et al. Submicrometer Particle Formation and Mercury Speciation Under O2-CO2 Coal Combustion. Energy & Fuels[J],2006,20(6):2357-2363.
    [136]A. P. Simpson, A. J. Simon. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Conversion and Management[J],2007,48(11):3034-3045.
    [137]E. Kakaras, A. Koumanakos, A. Doukelis, et al. Simulation of a Greenfield oxyfuel lignite-fired power plant. Energy Conversion and Management [J],2007,48 (11):2879-2887.
    [138]B. Bordenet. Influence of novel cycle concepts on the high-temperature corrosion of power plants. Materials and Corrosion[J],2008,59(5):361-366.
    [139]B. Bordenet, F. Kluger. Thermodynamic Modelling of the Corrosive Deposits in Oxy-Fuel Fired Boilers. Materials Science Forum[J],2008,595-598261-269.
    [140]S. Kung, J. Tanzosh, D. McDonald. Fireside corrosion study using B &W clean environment development facility for oxy-coal combustion systems. Advances in materials technology for fossil power plants[C]. In:Proceedings from the 5th International conference,2008.
    [141]Abell, J. P. n, T. Olszewski, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments. Materials at High Temperatures[J],2009,26(1):63-72.
    [142]R. Payne, S. L Chen, A. M. Wolsky, et al. CO2 Recovery via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas. Combustion Science and Techno logy [J],1989,67(1-3):1-16.
    [143]T. Wall, Y. Liu, C. Spero, et al. An overview on oxyfuel coal combustion-State of the art research and technology development. Chemical Engineering Research and Design[J],2009,87(8):1003-1016.
    [144]K. Andersson, R. Johansson, F. Johnsson, et al. Radiation Intensity of Propane-Fired Oxy-Fuel Flames:Implications for Soot Formation. Energy & Fuels[J], 2008,22(3):1535-1541.
    [145]K. Andersson, F. Johnsson. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel[J],2007,86(5-6):656-668.
    [146]K. Andersson, R. Johansson, S. Hjartstam, et al. Radiation intensity of lignite-fired oxy-fuel flames. Experimental Thermal and Fluid Science[J],2008,33 (1):67-76.
    [147]C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute[J],2009,32(2):2091-2098.
    [148]A. Aspelund, K. Jordal. A Study of the interface between CO2 capture and transport. [C]. In:The 8th International Conference on Greenhouse Gas Control Technologies.,19-22, June. Trondheim, Norway; 2006.
    [149]B. M. Sass, H. Farzan, R. Prabhakar, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration. Energy Procedia[J], 2009,1 (1):535-542.
    [150]M. Bentham, M. Kirby. Stockage du CO2 dans les aquif e res salins. Oil & Gas Science and Technology-Rev. IFP[J],2005,60(3):559-567.
    [151]S. N. Uddin, L. Barreto. Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy[J],2007,32(6):1006-1019.
    [152]H. Li, J. Yan, M. Anheden. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Applied Energy[J],2009, 86(2):202-213.
    [153]Y. Hu, S. Naito, N. Kobayashi, et al. CO2, NOX and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel[J],2000,79(15): 1925-1932.
    [154]K. Andersson, F. Normann, F. Johnsson, et al. NO Emission during Oxy-Fuel Combustion of Lignite. Industrial & Engineering Chemistry Research[J],2008,47 (6): 1835-1845.
    [155]M. Simmons, I. Miracca, K. Gerdes. Oxyfuel technologies for CO2 capture:a techno-economic overview. [C]. In:7th international conference on greenhouse gas control technologies., September. Vancouver, Canada; 2004.
    [156]V. White, L. Torrente-Murciano, D. Sturgeon, et al. Purification of oxyfuel-derived CO2.Energy Procedia[J],2009,1(1):399-406.
    [157]H. ALTMANN, T. PORSCHE, U. BURCHHARDT. Erfahrungen aus der Inbetriebnahme und dem Versuchsbetrieb der Oxyfuel-Forschungsanlage von Vattenfall. VGB PowerTech[J],2009,89(9):96-100.
    [158]L. Zheng, E. Furimsky. Assessment of coal combustion in O2+CO2 by equilibrium calculations. Fuel Processing Technology[J],2003,81(1):23-34.
    [159]E. H. Chui, M. A. Douglas, Y. Tan. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel[J],2003,82(10):1201-1210.
    [160]E. H. Chui, A. J. Majeski, M. A. Douglas, et al. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. Energy[J], 2004,29(9-10):1285-1296.
    [161]T. Kiga, S. Takano, N. Kimura, et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy Conversion and Management[J],1997,38 S129-S134.
    [162]F. Normann, K. Andersson, B. Leckner, et al. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel[J],2008,87(17-18):3579-3585.
    [163]K. Rauscher. Clean coal in the energy mix from tomorrow. VGB PowerTech[J],2005,85(9):70-72.
    [164]Y. Q. Hu, N. Kobayashi, M. Hasatani. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel[J],2001,80 (13):1851-1855.
    [165]Y. Q. Hu, N. Kobayashi, M. Hasatani. Effects of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas. Energy Conversion and Management[J],2003,44(14):2331-2340.
    [166]T. Mendiara, P. Glarborg. Reburn Chemistry in Oxy-fuel Combustion of Methane. Energy & Fuels[J],2009,23(7):3565-3572.
    [167]P. Glarborg, L. L. B. Bentzen. Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels [J],2007,22(1):291-296.
    [168]T. Mendiara, P. Glarborg. Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame[J],2009,156(10):1937-1949.
    [169]J. J. Murphy, C. R. Shaddix. Combustion kinetics of coal chars in oxygen-enriched environments. Combustion and Flame[J],2006,144(4):710-729.
    [170]H. Stadler, D. Ristic, M. Forster, et al. NOx-emissions from flameless coal combustion in air, Ar/O2 and CO2/O2. Proceedings of the Combustion Institute[J], 2009,32(2):3131-3138.
    [171]K. J. McCauley, H. Farzan, K. C. Alexander, et al. Commercialization of oxy-coal combustion:Applying results of a large 30MWth pilot project. Energy Procedia[J],2009,1 (1):439-446.
    [172]H. Liu, K. Okazaki. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel[J],2003,82 (11):1427-1436.
    [173]K. Okazaki, T. Ando. NOx reduction mechanism in coal combustion with recycled CO2. Energy[J],1997,22(2-3):207-215.
    [174]H. Liu, R. Zailani, B. M. Gibbs. Pulverized coal combustion in air and in O2/CO2 mixtures with NOX recycle. Fuel[J],2005,84(16):2109-2115.
    [175]X. Huang, X. Jiang, X. Han, et al. Combustion Characteristics of Fine-and Micro-pulverized Coal in the Mixture of O2/CO2. Energy & Fuels[J],2008,22(6): 3756-3762.
    [176]T. Suda, K. Masuko, J. i. Sato, et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion. Fuel[J],2007,86 (12-13):2008-2015.
    [177]P. A. Bejarano, Y. A. Levendis. Single-coal-particle combustion in O2/N2 and O2/CO2environments. Combustion and Flame[J],2008,153(1-2):270-287.
    [178]P. Naredi, S. Pisupati. Comparison of char burnout and CO emissions from oxy-coal combustion with combustion in air:an experimental and numerical study.[C]. In:The 33rd international technical conference on coal utilization and fuel systems, coal for the future,1-5 June. Clearwater, Florida; 2008.
    [179]B. Arias, C. Pevida, F. Rubiera, et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel[J],2008,87 (12):2753-2759.
    [180]G. V a rhegyi, P. Szab o, E. Jakab, et al. Mathematical Modeling of Char Reactivity in Ar-O2 and CO2-O2 Mixtures. Energy & Fuels[J],1996,10 (6): 1208-1214.
    [181]A. G. Borrego, D. Alvarez. Comparison of Chars Obtained under Oxy-Fuel and Conventional Pulverized Coal Combustion Atmospheres. Energy & Fuels[J], 2007,21 (6):3171-3179.
    [182]F. Liu, H. Guo, G. Smallwood. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames.2003,133 (4):495-497.
    [183]G. Scheffknecht, J. Maier. Firing issues related to the oxyfuel process.. VGB PowerTech[J],2008,88(11):91-97.
    [184]Y. Xu, C. Zhang, J. Xia, et al. Experimental study on the comprehensive behavior of combustion for blended coals. Asia-Pacific Journal of Chemical Engineering[J],2010,5(3):435-440.
    [185]J. H. Wang, L. P. Chang, F. Li, et al. A Study on the Combustion Properties of Western Chinese Coals. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects[J],2010,32(11):1040-1051.
    [186]S. Biswas, N. Choudhury, P. Sarkar, et al. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace. Fuel Processing Technology[J],2006,87(3):191-199.
    [187]Q. Li, C. Zhao, X. Chen, et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. Journal of Analytical and Applied Pyrolysis[J],2009,85(1-2):521-528.
    [188]R. L 6 pez-Fonseca, I. Landa, M. A. Guti e rrez-Ortiz, et al. Non-isothermal analysis of the kinetics of the combustion of carbonaceous materials. Journal of Thermal Analysis and Calorimetry[J],2005,80(1):65-69.
    [189]S. Niu, C. Lu, K. Han, et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. Journal of Thermal Analysis and Calorimetry[J],2009,98 (1):267-274.
    [190]M. Otero, X. Gomez, A. Garc i a, et al. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials. Journal of Thermal Analysis and Calorimetry[J],2008,93(2):619-626.
    [191]高正阳,方立军,周健,等.混煤燃烧特性的热重试验研究.动力工程[J],2002,22(03):1764-1767+1749.
    [192]刘建忠,冯展管,张保生,等.煤燃烧反应活化能的两种研究方法的比较.动力工程[J],2006,26(01):121-124.
    [193]陈建原,孙学信.挥发分组成及其析出过程对煤的着火特性的影响.工程热物理学报[J],1986,(02):172-175.
    [194]刘京燕,王长安,张晓明,等.混煤煤质及燃烧特性研究.锅炉技术[J],2012,43(02):37-42+46.
    [195]赵世永.神木煤与半焦混合燃烧特性的热重分析.煤炭科学技术[J],2007,35(07):80-82.
    [196]曹晓哲,赵卫东,刘建忠,等.煤泥水煤浆燃烧特性的热重研究.煤炭学报[J],2009,34(10):1394-1399.
    [197]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究.西安交通大学学报[J],2006,40(01):18-21.
    [198]解凤霞,张欣欣,张丹.用热分析技术研究煤的热解特性.应用化工[J],2012,41(03):430-434+437.
    [199]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社2001.
    [200]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究.燃烧科学与技术[J],2001,7(01):72-76.
    [201]徐建国,魏兆龙.用热分析法研究煤的热解特性.燃烧科学与技术[J],1999,5(02):66-70.
    [202]徐建国,魏兆龙.用热分析法研究煤的热分解特性.中国电力[J],1999,32(04):60-62.
    [203]魏兆龙,郭朝令,杨义波.煤种燃烧稳定性试验研究.锅炉技术[J],1999,30(10):6-9.
    [204]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究.动力工程[J],2008,28(03):447-452.
    [205]S. Vyazovkin, A. K. Burnham, J. M. Criado, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta[J],2011,520(1-2):1-19.
    [206]李庆钊,赵长遂,武卫芳,等.高浓度CO2气氛下煤粉的燃烧及其孔隙特性.中国电机工程学报[J],2008,28(32):35-41.
    [207]许慎启,周志杰,杨帆,等.神府煤焦与CO2的气化反应动力学分析.中国电机工程学报[J],2009,29(02):41-46.
    [208]S. Vyazovkin, C. A. Wight. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica Acta[J],1999, 340-341 53-68.
    [209]闫金定,崔洪,杨建丽,等.热重质谱联用研究充州煤的热解行为.中国矿业大学学报[J],2003,32(03):102-106.
    [210]刘辉,吴少华,孙锐,等.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报[J],2005,(12):86-90.
    [211]M. J. G. Alonso, A. G. Borrego, D. Alvarez, et al. Influence of pyrolysis temperature on char optical texture and reactivity. Journal of Analytical and Applied Pyrolysis[J],2001,58-59 887-909.
    [212]王鹏,文芳,步学朋,等.煤热解特性研究.煤炭转化[J],2005,28(01):8-13.
    [213]崔银萍,秦玲丽,杜娟,等.煤热解产物的组成及其影响因素分析.煤化工[J],2007,35(02):10-15.
    [214]杜娟,王俊宏,崔银萍,等.西部煤热解过程中气相产物的生成与释放规律.中国矿业大学学报[J],2008,37(05):694-698.
    [215]杨海平,陈汉平,鞠付栋,等.热解温度对神府煤热解与气化特性的影响.中国电机工程学报[J],2008,28(08):40-45.
    [216]于宇,刘先建,许建军.淮南煤热解反应的热重质谱联用研究.煤质技术[J],2008,(05):9-12+15.
    [217]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电[J],2004,33(06):14-18+87.
    [218]牛胜利,路春美,赵建立,等.O2/CO2气氛下煤粉的燃烧规律与动力学特性.动力工程[J],2008,28(05):769-773.
    [219]陈瑶姬,周志军,周宁,等.贵州无烟煤的燃烧动力学特性和NO_x生成机制试验研究.中国电机工程学报[J],2011,31(20):52-59.
    [220]徐朝芬.烟煤与无烟煤混燃特性的热分析试验研究.华北电力大学学报[J],2005,32(06):29-32.
    [221]陈建原,孙学信.煤的挥发分释放特性指数及燃烧特性指数的确定.动力工程[J],1987,7(5):13-18+61.
    [222]熊友辉,孙学信.动力用煤及燃烧特性的研究手段和方法.煤质技术[J],1998,(05):27-31.
    [223]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究.中国电机工程学报[J],2007,27(35):39-43.
    [224]陆振荣.热分析动力学的新进展.无机化学学报[J],1998,14(02):5-12.
    [225]任宁,张建军.热分析动力学数据处理方法的研究进展.化学进展[J],2006,18(04):410-416.
    [226]M. Otero, L. F. Calvo, M. V. Gil, et al. Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology[J],2008,99(14):6311-6319.
    [227]胡荣祖.热分析动力学第二版[M].北京:科学出版社,2008.
    [228]M. V. Kok, G. Pokol, C. Keskin, et al. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. Journal of Thermal Analysis and Calorimetry[J],2004,76(1):247-254.
    [229]M. J. Starink. The determination of activation energy from linear heating rate experiments:a comparison of the accuracy of isoconversion methods. Thermochimica Acta[J],2003,404(1-2):163-176.
    [230]M. E. Sanchez, M. Otero, X. G 6 mez, et al. Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy[J],2009,34 (6): 1622-1627.
    [231]李余增.热分析[M].北京:清华大学出版社,1987.
    [232]沈伯雄,刘德昌,陈汉平.石油焦热解动力学参数及其补偿效应.华中理工大学学报[J],1999,27(09):36-37+44.
    [233]余润国,陈彦,林诚,等.高变质无烟煤催化气化动力学及补偿效应.燃烧科学与技术[J],2012,18(01):85-89.
    [234]王文钊,刘朝,唐经文.动力学参数的补偿效应及改进的求解方法.生物质化学工程[J],2008,42(04):13-16.
    [235]Y. Tonbul. Pyrolysis of pistachio shell as a biomass. Journal of Thermal Analysis and Calorimetry[J],2008,91(2):641-647.
    [236]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [237]R. J. Tyler. Flash pyrolysis of coals.1. Devolatilization of a Victorian brown coal in a small fluidized-bed reactor. Fuel[J],1979,58(9):680-686.
    [238]M. Canel, Z. Misirliog lu, A. Sinag. Hydropyrolysis of a Turkish lignite (Tuncbilek) and effect of temperature and pressure on product distribution. Energy Conversion and Management[J],2005,46(13-14):2185-2197.
    [239]W. C. Xu, K. Matsuoka, H. Akiho, et al. High pressure hydropyrolysis of coals by using a continuous free-fall reactor☆. Fuel[J],2003,82(6):677-685.
    [240]廖洪强,孙成功,李保庆,等.富氢气氛下煤热解特性的研究.燃料化学学报[J],1998,26(02):19-23.
    [241]张晓方,金玲,熊燃,等.热分解气氛对流化床煤热解制油的影响.化工学报[J],2009,60(09):2299-2307.
    [242]高松平,赵建涛,王志青,等.CO2对褐煤热解行为的影响.燃料化学学报[J],2013,41(03):257-264.
    [243]P. R. Solomon, M. A. Serio, G. V. Despande, et al. Cross-linking reactions during coal conversion. Energy & Fuels [J],1990,4(1):42-54.
    [244]J. Yang, P. G. Stansberry, J. W. Zondlo, et al. Characteristics and carbonization behaviors of coal extracts. Fuel Processing Techno logy[J],2002,79(3):207-215.
    [245]王美君,王雅平,杨会民,等.煤热解活性及气相产物释放的关联性分析.现代化工[J],2009,(1):46-48.
    [246]田玉仙,王晓刚.电热还原法制备富含一氧化碳煤气研究.中国矿业大学学报[J],2007,36(05):684-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700