用户名: 密码: 验证码:
弯尾管Helmholtz型无阀自激脉动燃烧器热工特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉动燃烧具有燃烧效率高、传热系数大、污染物排放量低及可自吸排气等优点,但脉动燃烧机理复杂,燃烧器组件之间耦合性强,实现稳定脉动燃烧对运行条件及结构设计要求较高,故脉动燃烧器的设计大多是依靠反复实验得以实现。传统的机械阀式Helmholtz型脉动燃烧器运行可靠性差、受阀片自身性能影响使用寿命短、热负荷调节范围窄,使得脉动燃烧设备大型化受到限制;同时脉动燃烧技术的实验和理论研究主要限于直尾管脉动燃烧器。为完善脉动燃烧器的设计和有效利用空间,需采用弯尾管结构。本文建立了弯尾管Helmholtz型无阀自激脉动燃烧器实验系统,进行了频率特性、运行特性及传热和燃烧等热工特性的理论和实验研究,得如下研究结果:
     建立了弯尾管Helmholtz型无阀自激脉动燃烧器实验系统,取消了传统的机械阀,采用连续供气方式,设计了不同的弯尾管结构形式,利用燃烧器声学结构与燃料燃烧放热耦合实现脉动燃烧,可以自主调节热负荷。实验结果表明所设计的弯尾管Helmholtz型无阀自激连续供气式脉动燃烧器可实现稳定的脉动燃烧,脉动振幅较大、频率较低。
     实验研究了弯尾管Helmholtz型无阀自激脉动燃烧器的压力特性。稳定运行时,燃烧室内的压力振荡波形接近正弦曲线,压力均值和压力振幅沿尾管下降;燃烧室内的压力振幅随尾管弯曲角度的增加而减小,弯曲位置在尾管出口处时的压力振幅较弯曲位置在尾管入口处的大;在不改变燃烧器结构参数的条件下,压力振幅随热负荷和过量空气系数的增大而增大。实验研究得到了脉动燃烧器的NO_x排放特性,当燃烧器结构不变时,尾管出口烟气中NO_x排放量在开始阶段随热负荷的增加而增大,当热负荷增加到某一值时NO_x的排放量最大,而后NO_x排放量随热负荷的增加而减少;NO_x排放量随过量空气系数的增加而减少。本文实验条件下脉动燃烧器NO_x的生成类型主要是热力型NO_x,燃烧温度及烟气在高温区的停留时间对Helmhotlz型脉动燃烧器NO_x排放量有较大的影响,一般存在一个较合理的热负荷区间,在此区间内虽然热负荷较高,燃烧温度较高,但由于烟气在高温区停留时间变短,NO_x的排放量反而较低,这一特点对Helmhotlz型脉动燃烧器运行时如何降低NO_x的排放量有很大的指导意义。
     运用流体网络理论,采用拟电路方法建立了弯尾管Helmhotlz型无阀自激脉动燃烧器集总参数理论模型,该模型考虑了燃烧器的结构参数、尾管传热、尾管阻力及运行参数对燃烧器运行特性的影响,推导出脉动频率的理论计算式。稳定运行时,脉动燃烧器脉动频率随尾管弯曲角度的增大而降低,弯曲位置在尾管出口处时的脉动频率较弯曲位置在尾管入口处低;在不改变燃烧器结构参数的条件下,脉动频率随过量空气系数的增加而降低,随热负荷的增加而增大;理论计算结果与实验结果吻合较好。不同尾管结构的脉动燃烧器在改变热负荷和过量空气系数时均出现了频率跳变现象,燃烧器在较高的热负荷和适当增加过量空气系数下运行能有效阻止脉动频率的跳变。尾管结构参数对弯尾管脉动燃烧器频率跳变有很大的影响,随弯管弯曲角度的增加,频率跳变现象明显且过渡期变长,弯曲位置在尾管入口处时较弯曲位置在尾管出口处时频率跳变现象明显且过渡期变长。
     实验研究了弯尾管Helmholtz型无阀自激脉动燃烧器尾管的传热特性,结果表明尾管传热系数随脉动压力振幅和频率的增加而增大,是相同雷诺数下稳定流传热系数的2~5倍;弯尾管传热系数较直尾管大。采用Fluent软件对90弯尾管脉动燃烧器尾管内脉动流动和传热特性进行了数值模拟,得到尾管内烟气流动特性,分析了脉动燃烧器弯尾管换热增强的原因。
     采用Fluent软件对Helmhotlz型无阀自激脉动燃烧器的燃烧特性进行数值模拟,得到了脉动燃烧器燃烧特性,推测了脉动燃烧器可能的点火源;分析了运行参数对脉动燃烧特性的影响规律,得到燃烧室内的压力振幅随过量空气系数和入口质量流率的增大而增大,燃烧室内的温度随过量空气系数的增大而降低,随热负荷的增大而升高,数值计算结果与实验结果趋势一致。
Pulse combustion has many advantages, such as high combustion efficiency,high heat transfer coefficient, low pollutant emissions and self-aspiration so on.However, pulse combustion mechanism is very complex and the combustorcomponents are significantly coupling with each other and it has high requirementson operating conditions and structure design for realizing stable pulse combustion,so pulse combustors are usually designed through trial and error. Conventional pulsecombustors of Helmholtz type with mechanical valves have poor operationalreliability, short durability and low heat load adjustment scope due to valves’performance, which limits the development of large-scale pulse combustion devices.Meanwhile, experimental and theoretical researches on pulse combustion mainlylimit to pulse combustors with straight tailpipes. It’s necessary to adapt bendtailpipes for improving pulse combustors’ design and utilizing space efficiently. Anexperimental system of a valveless self-excited pulse combustor of Helmholtz typewith bend tailpipes was established. The thermal characteristics of the pulsecombustor, including the frequency characteristics, operating characteristics, heattransfer characteristics and combustion characteristics, were experimentally andtheoretically investigated. The content and results are as follows:
     An experimental system of a valveless self-excited pulse combustor ofHelmholtz type with bend tailpipes was established. Mechanical valves werecanceled for continuous air and fuel supply. Different bend tailpipe structures weredesigned. Pulse combustion was produced by the coupling between the acousticstructure of the combustor and combustion heat release and self-adjusted for the heatload of the combustor can be achieved. The experimental results show that theHelmholtz type pulse combustor with a bend tailpipe can produce stable, largeamplitude and low frequency pulse combustion.
     Pressure characteristics of the combustor were experimentally investigated. Forstable operation, pressure oscillation waves in combustion chamber approximatesine curves and average and amplitude of pressure decrease along tailpipe. Thepressure amplitude in combustion chamber decreases as the angle of tailpipe and islarger if the elbow located at exit of tailpipe than at entrance of tailpipe. If thestructure of combustor is constant, pressure amplitude increases as heat load andexcess air ratio. The NO_xemission characteristics of the combustor wereexperimentally investigated. NO_xemission at the exit of tailpipe increases as theheat load initially and reaches maximum when heat load reaches a certain value, after that decreases as heat load. NO_xemission decreases as excess air ratio. TheNO_xformation mechanism in this experiment is mainly thermal-nitrogen oxides.Combustion temperature and residence time of the flue gas in high temperature zoneinfluence NO_xemission significantly. Generally, there is a reasonable range of heatload and among which NO_xemission becomes low due to short residence time of theflue gas in high temperature zone although heat load and combustion temperatureare very high. It’s instructively significant to reduce NO_xemission for Helmholtztype pulse combustors.
     Based on fluid network theory, a theoretical model of the valveless self-excitedpulse combustor of Helmholtz type with bend Tailpipe was established usinganalogy circuit method. The model took those factors which might affect thecombustion stability into account. The factors include the structure parameters ofthe combustor, the heat transfer and resistance in the tailpipe. The theoreticalexpression of operation frequency for the pulse combustor was derived. For stableoperation, frequency decreases as the angle of tailpipe and is lower if the elbowlocated at exit of tailpipe than at entrance of tailpipe. If the structure of combustor isconstant, frequency decreases as heat load and excess air ratio. Theoretical andexperimental results agree well with each other. The phenomena of frequencyhopping in pulse combustor with different tailpipe structures occurred when heatload or excess air ratio changed. Increasing excess air ratio can reduce frequencyhopping effectively when combustor operates at high heat load. The structure oftailpipe also influences frequency hopping in pulse combustor significantly. Thetransaction of frequency hopping becomes longer as tailpipe’s angle. Frequencyhopping is more obvious and its transaction is longer if the elbow located at entranceof tailpipe than at exit of tailpipe.
     The heat transfer characteristics of the pulse combustor were investigated.Results show that heat transfer coefficient of tailpipe is about2-5times as high asstable flow at the same Re and increases as pressure amplitude and frequency. Heattransfer coefficients of bend tailpipes are higher than that of straight tailpipes. Thepulsating flow and heat transfer characteristics of90bend tailpipe pulse combustorwere numerical simulated and obtained by Fluent. The reasons of the enhancementin heat transfer of bend tailpipe were explained.
     The combustion characteristics of the pulse combustor were numericalsimulated and obtained by Fluent. The possible ignition sources of pulse combustionwere predicted, and the effects of the operating parameters on the pulse combustionwere analyzed. The pressure amplitude in combustion chamber increases as excessair ratio and mass flow rate at the entrance. The temperature in combustion chamber decrease as excess air ratio and increases as heat load. The simulation results andexperimental results have consistent trends.
引文
[1] Moeck J. P, Oevermann M, Klein R, Paschereit C. O, Schmidt H. A Two-WayCoupling for Modeling Thermoacoustic Instabilities in a Flat Flame RijkeTube[J]. Proceedings of the Combustion Institute,2009,32(1):1199-1207.
    [2]杨德勇,谢翔燕,刘相东.料液脉动燃烧尾气雾化试验[J].农业机械学报,2009,40(3):90-92.
    [3]沙风生,孟军政,李佳新.燃气型脉动燃烧器[J].油气田地面工程,2009,28(8):92-93.
    [4] Cutler A D. High-Frequency Pulsed Combustion Actuator Experiments[J].American Institute of Aeronautics and Astronautics,2011,49(9):1943-1950.
    [5] Brzozowski D P, Woo G T K, Culp J R, Glezer A. Transient Separation ControlUsing Pulse-Combustion Actuation[J]. American Institute of Aeronautics andAstronautics,2010,48(11):2482.
    [6] Strahle, W C. Combustion Noise[J]. Progress in Energy and Combustion Science,1978,4(3):157-176.
    [7] Reynst, F H. Pulsating Combustion[M]. New York:Pergamon Press,1953:75-112.
    [8] Reader, G T. The Pulse Jet1906~1966[J]. Journal of Naval Science,1977,3:226-232.
    [9] Xiao Z F, Xie X Y, Yuan Y J, Liu X D. Influence of Atomizing Parameters onDroplet Properties in a Pulse Combustion Spray Dryer[J]. Drying Technology,2008,26(4):427-432.
    [10] Huber A S, Sorensen E N, Snyder T A, Griffith B P, Feller E D. PreformedAntibodies in Pulsatile and Continuous Flow Ventricular-assist DeviceRecipients[J]. Journal of Heart and Lung Transplantation,2008,27(2):S158-S159.
    [11] Zheng M, Kumar R. Implementation of Multiple-pulse Injection Strategies toEnhance the Homogeneity for Simultaneous Low-NOxand-soot DieselCombustion[J]. International Journal of Thermal Sciences,2009,48(9):1829-1841.
    [12] Xu L, Li S M, Wang Y, Wei M, Yao H M, Sunada H. Improvement ofDissolution Rate of Ibuprofen by Solid Dispersion Systems with Kollicoat IRUsing a Pulse Combustion Dryer System[J]. Journal of Drug Delivery Scienceand Technology,2009(2):113-118.
    [13]张燕连.脉冲燃烧控制技术的应用实践[J].现代冶金,2009,37(3):4-7.
    [14]贾定,卫恩泽,李志坚.脉冲燃烧技术在热轧不锈钢加热炉上的应用[J].钢铁技术,2009(1):23-28.
    [15]孙先金.加热炉脉冲燃烧与比例燃烧的测试分析[J].工业炉,2009,15(2):27-28.
    [16] Kushari A, Rosen L J, Jagoda J I, Zinn B T. The Effect of Heat Content andComposition of Fuel on Pulse Combustor Performance[J]. Twenty-SixthSymposium (International) on Combustion,1996,1-2:3363-3368.
    [17] Neumeier Y, Zinn B T, Jagoda J I. Frequency-Domain Analysis of thePerformance of a Valved Helmholtz Pulse Combustor[J]. Combustion Scienceand Technology,1993,94(1-6):295-316.
    [18]谢丽芳.脉动流化干燥过程研究[D].浙江工业大学硕士学位论文,2007:5-10.
    [19] Pritz B, Magagnato F, Gabi M. Investigation of the Effect of SurfaceRoughness on the Pulsating Flow in Combustion Chambers with LES[J].Ekc2008: Proceedings of the Eu-Korea Conference on Science and Technology,2008,124:69-76.
    [20]邵东伟,王俊发,刘远军,姜东华.脉动燃烧技术的研究及应用现状[J].现代化农业,2009(7):38-40.
    [21] Roszelle B N, Deutsch S, Manning K B. A Comprehensive Flow Study of the12Cc Penn State Pulsatile Pediatric Ventricular Assist Device[J]. Proceedingsof the Asme Summer Bioengineering Conference2008,Pts a and B.2009:1037-1038.
    [22] Plavnik G. Pulse combustion technology[C]. Tampa, FL: Amer Soc MechanicalEngineers,2006.
    [23]杜治平.脉动燃烧器噪声控制技术研究现状[J].广西轻工业,2009(12):61-62.
    [24]李保国,曹崇文,刘相东.脉动燃烧技术及其应用[J].中国农业大学学报,1998(2):38-40.
    [25]周伟国,秦朝葵.燃气脉冲燃烧器低NOx生成的机理[J].煤气与热力,1997,17(04):27-28.
    [26] Williams T C, Hargrave G K, Garner C P, Hanby V I. Inlet Mixing and NOxFormation in a Helmholtz Pulse Combustor[J]. Proceedings of the CombustionInstitute,2000,28:1289-1295.
    [27] Poppe C, Sivasegaram S, Whitelaw J H. Control of NOxEmissions in ConfinedFlames by Oscillations[J]. Combustion and Flame,1998,113(1-2):13-26.
    [28]程显辰.脉动燃烧.北京:中国铁道出版社,1994:20-24.
    [29]李保国.脉动燃烧及脉动燃烧干燥的理论分析与试验研究[D].中国农业大学博士学位论文,1999:47-77.
    [30]秦朝葵,姜正侯.脉冲燃烧的稳定机理[J].同济大学学报(自然科学版),1995,23(6):615-620.
    [31]藏述升.空气—旋转阀脉冲燃烧器运行特性研究[D].哈尔滨工程大学博士学位论文,1999.
    [32] Rayleigh J W S. Theory of Sound[M].1945:153-179.
    [33] Velazquez A, Arias J R, Montanes J L. Pulsating Flow and Convective HeatTransfer in a Cavity with Inlet and Outlet Sections[J]. International Journal ofHeat and Mass Transfer,2009,52(3-4):647-654.
    [34] Timite B, Jarrahi M, Castelain C, Peerhossaini H. Pulsating Flow for MixingIntensification in a Twisted Curved Pipe[J]. Journal of FluidsEngineering-Transactions of the Asme,2009,131(12):345-356.
    [35] Shawky H M. Pulsatile Flow with Heat Transfer of Dusty Magnetohydrodynamic Ree-Eyring Fluid Through a Channel[J]. Heat and MassTransfer,2009,45(10):1261-1269.
    [36]翟明. Helmholtz型无阀自激脉动燃烧器运行特性研究.哈尔滨工业大学博士学位论文,2010.
    [37]秦朝葵,张同,吴念劬,姜正侯.脉冲燃烧控制和稳定性的研究[J].煤气与热力,1995,15(6):28-32.
    [38]秦朝葵,隋元春,张同等.脉冲燃烧的数学模型[J].煤气与热力,1993,13(4):27-28.
    [39] Keller J O, Bramlette T T, Barr P K, Alvarez J R. NOxand Co Emissions froma Pulse Combustor Operating in a Lean Premixed Mode[J]. Combustion andFlame,1994,99(3-4):460-466.
    [40]于国峰,张敏华,姜正侯.常压热水锅炉脉冲燃烧空气瓣阀的设计[J].煤气与热力,1994,14(5):27-28.
    [41]程显辰.脉动燃烧器的设计与研究[J].北京航空航天大学学报,1998,24(2):241-244.
    [42]刘军.脉冲燃烧理论模型分析[J].煤气与热力,1999,(2):63-67.
    [43]刘军.脉冲燃烧驱动机理的探讨[J].煤气与热力,1998,(6):88-89.
    [44] Richards G A, Morris G J, Shaw D W, Keeley S A, Welter M J. Thermal PulseCombustion[J]. Combustion Science and Technology,1993,94(1-6):57-85.
    [45]臧述升.空气-旋转阀脉冲燃烧器的性能试验研究[J].热能动力工程,2000,15(6):652-654.
    [46]臧述升,张志华,孙聿峰,郑洪涛.空气-旋转阀脉冲燃烧器的性能模拟[J].哈尔滨工程大学学报,1999,20(2):15-20.
    [47] Edwards K D, Finney C E A, Nguyen K. Application of Nonlinear FeedbackControl to Enhance the Performance of a Pulsed Combustor [C]. Indiana,USA:2000.
    [48]严红,陈福连,吴心平.脉动燃烧器内流场的数值模拟[J].燃烧科学与技术,2001,7(2):603-605.
    [49] Mukhopadhyay A, Datta S, Sanyal D. Effects of Tailpipe Friction on theNonlinear Dynamics of a Thermal Pulse Combustor[J]. Journal of Engineeringfor Gas Turbines and Power,2008,130(1):11507-11509.
    [50] Bloom F, Patterson T. The Effect of Tailpipe Friction on Pressure and VelocityOscillations in a Nonlinear, Lumped Parameter, Pulse Combustor Model[J].Nonlinear Analysis-Real World Applications,2009,10(5):3002-3017.
    [51] Bloom F, Ahrens F, Patterson T. The Nonlinear Dynamical System Generatedby the AKT Pulse Combustor Model[J]. Nonlinear Analysis-Theory Methods&Applications,2005,63(5-7):891-901.
    [52] Datta S, Mondal S, Mukhopadhyay A, Sanyal D, Sen S. An Investigation ofNonlinear Dynamics of a Thermal Pulse Combustor[J]. Combustion Theoryand Modelling,2009,13(1):17-38.
    [53]朱福祥,秦江,王惜慧,于达仁.脉动燃烧加热炉运行稳定性分析[J].节能技术,2004,22(4):8-10.
    [54] Wu Z H, Mujumdar A S. R&D Needs and Opportunities in Pulse Combustionand Pulse Combustion Drying[J]. Drying Technology,2006,24(11):1521-1523.
    [55]李国能,周昊,尤鸿燕,岑可法.黎开管自激热声不稳定的数值模拟[J].中国电机工程学报,2007,27(23):50-54.
    [56] Geng T, Zheng F, Kiker A P, Kuznetsov A V, Roberts W L. Experimental andNumerical Investigation of an8-cm Valveless Pulsejet[J]. Thermal and FluidScience,2007,31(7):641-647.
    [57] Geng T, Schoen M A, Kuznetsov A V, Roberts W L. Combined Numerical andExperimal Investigation of a15-cm Valveless Pulsejet.[J]. Flow Turbulenceand Combustion,2007,78(1):17-33.
    [58] Jiang X, Zhao H, Cao L. Numerical Simulations of the Flow and Sound Fieldsof a Heated Axisymmetric Pulsating Jet[J]. Computers&Mathematics withApplications,2006,51(3-4):643-660.
    [59] Thyageswaran S. Numerical Modeling of Pulse Combustor Tail Pipe HeatTransfer[J]. International Journal of Heat and Mass Transfer,2004,47(12-13):2637-2651.
    [60] Wu Z H. Thesis Summary: Mathematical Modeling of Pulse Combustion andits Applications to Innovative Thermal Drying Techniques[J]. DryingTechnology,2007,25(4-6):941-942.
    [61] Wu Z H, Mujumdar A S. A Parametric Study of Spray Drying of a Solution in aPulsating High-temperature Turbulent Flow[J]. Drying Technology,2006,24(6):751-761.
    [62] Wu Z H, Mujumdar A S. Pulse Combustion Characteristics of Various GaseousFuels[J]. Energy&Fuels,2008,22(2):915-924.
    [63]周伟国,姜正侯.脉冲燃烧器尾管传热系数研究[J].煤气与热力,1992,12(1):603-605.
    [64]张同,潘利民,丁晓敏.人工煤气脉冲燃烧器结构特性的实验研究[J].煤气与热力,1997,17(1):34-36.
    [65] Au-Yeung H W, Garner C P, Hanby V I. An Experimental Study of the Effectsof Combustion Frequency and Pressure Amplitude on the NO Emissions fromPulse Combustors[J]. Journal of the Institute of Energy,1998,71(489):204-208.
    [66]钟英杰,陈福连,吴心平.里克-ZT型脉动燃烧器频率特性研究[J].燃烧科学与技术,1998,4(4):1114-1117.
    [67]钟英杰,邓龙强,涂建华,严红.里克型脉动燃烧技术工程化应用实验研究[J].热能动力工程,1998,13(6):603-605.
    [68]钟英杰,陈福连,吴心平.热声转换和脉动燃烧技术研究现状及其应用[J].浙江工业大学学报,1998,26(1):34-39.
    [69]钟英杰,陈福连,史祖龄,严红,王勤勇.方形里克和里克-ZT型脉动燃烧器研究[J].热能动力工程,1998,13(5):334-335.
    [70]钟英杰,陈福连.改进型里克脉动燃烧器频率的矩阵估算法[J].浙江工业大学学报,1997,25(4):293-297.
    [71] Olczyk A. Identification of Dynamic Phenomena in Pipes Supplied with aPulsating Flow of Gas[J]. Proceedings of the Institution of MechanicalEngineers Part C-Journal of Mechanical Engineering Science,2009,223(8):1851-1867.
    [72] Kilicarslan A, Arisoy A. Acoustic Analysis of a Liquefied Petroleum Gas-FiredPulse Combustor[J]. Applied Acoustics,2008,69(9):770-777.
    [73]陈福连,陈翔,鲍卫兵. Rijke-ZT型脉动燃烧器的频率特性研究[J].声学学报(中文版),2004(6):34-37.
    [74]陈福连,陈翔.无阀自激脉动燃烧器频率特性的参量分析[J].科学技术与工程,2003(2):27-28.
    [75]李保国,洪新华. Helmholtz型脉动燃烧器的研制[J].郑州工程学院学报,2001,22(2):47-54.
    [76]李保国.脉动燃烧器及其尾管传热分析[J].上海理工大学学报,2001(3):14-16.
    [77]翟明,董芃,彭三珑.自激脉动燃烧器脉动频率跳变的实验研究[J].中国电机工程学报,2008,28(23):31-36.
    [78] Chato J, Defina J, Benali M, Jackson W D. Gas Eemission Characteristics of aNovel Pulse Combustor[J].35th Intersociety Energy Conversion EngineeringConference,2000,1:1378-1382.
    [79] Terhaar S, Velazquez A, Arias J R, Sanchez-Sanz M. Experimental Study onthe Unsteady Laminar Heat Transfer Downstream of a Backwards FacingStep[J]. Inernational Communications in Heat and Mass Transfer,2010,37(5):457-462.
    [80] Elshafei E A M, Mohamed M S, Mansour H, Sakr M. Experimental Study ofHeat Transfer in Pulsating Turbulent Flow in a Pipe[J]. International Journal ofHeat and Fluid Flow,2008,29(4):1029-1038.
    [81] Martins C A, Carvalho J A, Veras C A G, Ferreiradet M A, Lacavaa P T.Experimental Measurements of the NOxand CO Concentrations Operating inOscillatory and Non-oscillatory Burning Conditions[J]. Fuel,2006,85(1):84-93.
    [82]路倩倩,杨德勇,郎芝花,刘相东.脉动燃烧干燥换热特性分析与实验[J].农业机械学报,2010,41(3):123-127.
    [83]邓凯,钟英杰,李华,方德明等.甲烷自激励脉动燃烧NOx排放特性的试验研究[J].动力工程学报,2010,30(7):528-535.
    [84]曹卫宁.脉冲燃烧技术在大方坯加热炉上的应用[J].工业炉,2009,31(01):27-28.
    [85]王鲁.数字化脉冲燃烧技术在冷轧带钢退火炉的应用[J].工业炉,2009,31(4):20-23.
    [86]王鲁.数字化脉冲燃烧控制技术在冷轧带钢连续退火炉上的应用[J].宝钢技术,2010(1):76-80.
    [87]王鲁.数字化脉冲燃烧控制技术在冷轧带钢连续退火炉上的应用[J].钢铁技术,2009(5):28-32.
    [88]赵福臣,杨开远,郝明.脉动燃烧加热炉在油田集输系统中的应用[J].石油化工设备,2009,38(5):88-89.
    [89]宁銮凤,万道春,刘文松等.脉冲燃烧控制技术在热处理炉上的应用[J].山东冶金,2008,30(4):14-16.
    [90]宁銮凤,万道春.脉冲燃烧控制技术在热处理炉上的应用[J].中国科技信息,2008(12):30-31.
    [91]杨立军,王永涛,廖圣洁.热声耦合脉动燃烧油田加热炉的研究设计[J].石油机械,2006,34(8):43-45.
    [92]周宗宝,景深,李国放,杨立军,程显辰,卢保春.脉动燃烧技术在油田加热炉上的应用研究[J].油气田地面工程,2003,22(1):61-62.
    [93]李华,张雪梅,邓凯,钟英杰.自激励脉动燃烧式锅炉设计方法[J].热能动力工程,2007,22(5):525-528.
    [94]崔峰,杨德勇,宫英振,刘相东.80kW脉动燃烧器及其测试系统的设计[J].农机化研究,2010(3):127-131.
    [95] Francis et al. A Study of Gas-fired P-C for Industrial Applications[J].Institution of Gas Engineer Journal,1963,3:301-323.
    [96] Griffiths J C, Weber E J. The Design of Pulse Combution Burners. AGALResearch Bulletin,1969.
    [97] Katsnel’son B D, Marone I Ya. An Experimental Study of PulsatingCombustion, Teploenergetika,1969,1:3-6.
    [98] Hanby V. I. Simulated Combustion and Heat-Transfer in Gas-Fired andOil-Fired Commercial Boilers[J]. Journal of the Institute of Energy,1998,71(487):64~70.
    [99]秦朝葵.脉动燃烧的机理和稳定性研究[D].同济大学博士学位论文,1994:2-19.
    [100] Ahrens F. W, Kim C, Tam S. An Analysis of the Pulse Combustion Burner[J].Ashrae Transactions,1978,84(4):488~507.
    [101] Xu Y Y,Zhai M,Dong P,Wang F,Peng S L,Zhu Q Y. Frequency andPressure Characteristics of a Helmholtz-type Valveless Self-excited PulseCombustor. FMRIA2011,455-456:161-167.
    [102] Keller J O, Hongo I. Pusle Combustion:The Mechamism of NOxProduction[J]. Combustion and Flame,1990(80):219-237.
    [103] Wahid M A, Ujir M H, Afifi H, Mohd S M, Wahid M A, Samion S, Sidik N AC, Sheriff J M. Suitability of Using the Accelerometer for ImpulseMeasurement of a Pulse Combustion Tube[C]. AIP Conference Proceedings-American Institute of Physics,2010,1225(1):522-530.
    [104] Bloom F, Terlyga O, Patterson T. Perturbation analysis of self-sustainedoscillations in a pulse combustion model[J]. Nonlinear Analysis,2010,11(4):2314-2334.
    [105] Kilicarslan A. Frequency Evaluation of a Gas-Fired Pulse Combustor[J].International Journal of Energy Research,2005,29:439-454.
    [106] Van Heerbeek P A. Mathematical Modelling of a Pulse Combustor of theHelmholtz-type[D]. Dissertation for the Master Degree of Delft University ofTechnology,2008:1-113.
    [107]隋元春.脉冲燃烧相似性的理论研究[D].同济大学博士学位论文,1994:15-45.
    [108]高虹,刘娟芳. Helmholtz共振腔的设计及其脉动流体强化换热效果的试验分析[J].能源技术,2009,30(3):141-144.
    [109]罗志昌,流体网络理论[M].北京:机械工业出版社,1988:10-80.
    [110] Bai T, Cheng X C, Daniel B R, Jagada J I, Zinn B T. Vortex Shedding andPeriodic Combustion Processes in a Rijke Type Pulse Combustor[J].Combustion Science and Technology,1993,94(1-6):245-258.
    [111] Bai T, Cheng X C, Daniel B R, Jagada J I, Zinn B T. Performance of a GasBurning Rijke Pulse Combustor with Tangential Reactants Injection[J].Combustion Science and Technology,1993,94(1-6):1-10.
    [112] Dawson J R, Rodriguez-Martinez V M, Beale A J, O'Doherty. Pressure-HeatRelease Measurements During Start-Up Conditions in a Pulse Combustor[J].Proceedings of the Combustion Institute,2005(30):1815-1822.
    [113] Tang Y M, Waldherr G, Jagoda J I, Zinn B T. Heat Release Timing in aNonpremixed Helmholtz Pulse Combustor[J]. Combustion and Flame,1995,100(1-2):251-261.
    [114] Barr P K, Keller J O, Bramlette T T, Westbrook C K, Dec J E. PulseCombustor Modeling Demonstration of The Importance of CharacteristicTimes[J]. Combustion and Flame,1990,82(3-4):252-269.
    [115] Keller J O, Bramlette T T, Westbrook C K, Dec J E. Pulse Combustion. TheQuantification of Characteristic Times[J]. Combustion and Flame,1990,79(2):151-161.
    [116] Keller J O, Bramlette T T, Dec J E, Westbrook C K. Pulse Combustion: TheImportance of Characteristic Times[J]. Combustion and Flame,1989,75(1):33-44.
    [117] Jin D X, Lee Y P, Lee D Y. Effects of the Pulsating Fow Agitation on the HeatTransfer in a Triangular Grooved Channel[J]. Heat and Mass Transfer,2007(50):3062-3071.
    [118] Zohir A E, Habib M A, Attya A M, Eid A I. An Experimental Investigation ofHeat Transfer to Pulsating Pipe Air Fow with Different Amplitudes[J]. HeatMass Transfer,2006(42):625–635.
    [119] Arpaci V S, Dec J E, Keller J O. Heat-Transfer in Pulse CombustorTailpipes[J]. Combustion Science and Technology,1993,94(1-6):131-146.
    [120] Guo L J, Chen X J, Feng Z P, Bai B F. Transient Convective Heat Transfer ina Helical Coiled Tube with Pulsatile Fully Developed Turbulent Flow[J].International Journal of Heat and Mass Transfer,1998,41(19):2867-2875.
    [121]赵明泉.锅炉结构与设计[M].哈尔滨:哈尔滨工业大学出版社,1987:88-145.
    [122]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:243-477.
    [123] Benelli G, Michele De G, Cossalter V, Lio Da M, Rossi G. Simulation ofLarge Non-Linear Thermo-Acoustic Vibrations in a Pulsating Combustor[J].Symposium (International) on Combustion,1992,24(1):1307-1313.
    [124] Galletti C, Parente A, Tognotti L. Numerical and Experimental Investigationof a Mild Combustion Burner[J]. Combust and Flame,2007,151(4):649-664.
    [125] Tarjiri K, Menon S. LES of Combustion Dynamics in a Pulse Combustor.Presented at the39th Aerospace Sciences Meeting,2001.
    [126]赵志红,袁隆基,丁艳,李聪.低浓度瓦斯脉动燃烧过程的数值模拟[J].节能,2011(4):41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700