用户名: 密码: 验证码:
我国发电侧CO_2减排途径分析及其优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力是一种优质的清洁能源,但电力的产生伴随着大量的能源消耗和各种污染物的排放,尤其是CO2的排放,因而也成为我国CO2减排的重点关注对象。在电力产业链中,发电侧是CO2排放的直接环节,因此发电侧CO2的减排成为了电力行业节能减排的重中之重。目前,推进我国电力行业节能减排主要依靠的是行政手段,包括能源规划政策的制定、关停小火电机组、CO2减排监管等方面。但这些措施的实施在力度及干预的范围方面都存在明显的不足,主要体现在CO2减排途径不通畅、电源优化配置不合理等方面。为更好的兑现我国CO2减排承诺,发电侧CO2减排研究需要引入更新的机制途径,提高各利益主体的收益,提高发电侧各主体参与减排的积极性,实现电源结构和电力资源的优化配置。以此为背景,本文主要研究火电机组CO2排放联合调度、区域间CO2联合减排机制、风火电之间联合CO2减排机制、分布式清洁能源群组合调度、风火打捆消纳的经济和效益机制,提出了相应的模型和方法。
     火电机组发电是CO2排放的重要贡献源。论文以成本、能耗、排放为目标分别构建了火电机组调度优化模型以及兼顾三个目标的多目标优化模型,并与传统的计划电量分配模型进行了对比分析,发现多目标优化模型可以更好的兼顾火电机组的发电成本、燃料能耗和CO2排放量,为发电侧火电机组CO2减排政策的制定提供更准确的定量分析依据。
     C02排放的控制需要区域间的协调配合,区域间联合CO2减排是一条有效的途径。论文综合考虑跨区域能源优化配置过程中涉及的发电成本、备用成本、输电费用以及排放成本等要素,构建了区域发电成本优化模型、环境效益优化模型、综合优化模型,研究了清洁能源参与区域能源优化所带来的效益。同时研究了碳排放价格对区域能源优化的引导效果。
     风火互补机制是发电侧不同电源类型联合CO2减排的重要手段。论文根据风电场弃风原因和管理措施分析,基于风火互补机制构建了计及发电权交易的发电主体利益分析模型,并在不同风功率预测情形下,研究了风电场和各火电机组的收益情况。以减少风电场弃风量为目标,构建了风火打捆外送组合调度优化模型,优化了风火电机组的出力。
     分布式清洁能源群发电组合是发电侧CO2减排的新型机制。论文基于不同类型电源的成本分析,构建了不同目标下的发电组合调度模型,通过实例分析,弃风量和弃光量最小目标下的各发电机组的发电成本最低,CO2排放量最小。引入峰谷分时电价,基于变化后的电力负荷需求,构建了发电成本与用户补偿成本最小化调度模型,实例验证表明峰谷分时电价的引入后,发电机组的环境效益和经济效益均有明显增加。
     风火电打捆外送时,各参与主体风电消纳的经济和减排效益是发电侧CO2减排的重要推动力。考虑电力外送收入和大用户直购电收入,论文构建了电网企业购售电利润最大化优化模型和合理弃风下发电成本最小化优化模型,通过实例计算了各参与主体合作博弈的超额利润;建立了风火电打捆外送增加贡献率评价模型,从理论上计算了发电侧各利益分配主体对各类贡献率指标的分值;最后基于DEA Game理论,构建了风火电打捆消纳收益分配模型,实例计算得到了风火电机组、电网企业、大用户等的综合贡献率和利润分配额,二者呈正向关系,很好的鼓励了风电的消纳,有效的降低了CO2的排放量。
Electricity is a high-quality clean energy, but the resources are consumpted and the various polluants are emitted in the process of power generation, especially the CO2emission, so the emission of power industy is focused in China. In the powe industry chain, the generation side is the direct link of CO2emission, and the generation side CO2emission reduction has become a priority in the power industry. At present, the administrative means are used to promote the energy-saving and emission reduction in China's power industry, including the energy planning policy, shutting down small power units, CO2emission regulation. But there are obvious deficiencies in range of implementation of these measures in force and intervention, it mainly contains that the CO2emission reduction approach is not smooth and the allocation of power optimization is irrational. In order to better delier our country's CO2emission reduction, the new CO2emission reduction mechanism need to be introduced in the power generation side, finally the enthusiasm and interests of the subjects are improved, the power structure and resources are configurated. Taking the mentioned as the background, this thesis mainly studies the joint scheduling of thermal power units, regional CO2emission reduction mechanism, wind-fire power generation combination CO2emission reduction mechanism, distributed clean energy group scheduling, the economy and benefit mechanism of bundling of wind-fire,the corresponding models and methods are put forward.
     Thermal power unit is an important contribution source of CO2emission. According to the cost, energy consumption and emission quantity, the thermal power unit scheduling optimization models and multi-objective model are established respectively, and these models are compared with the traditional electricity distribution model, the conclusion is that the muliti-objective model can better take into account the cost of power generation, the unit fuel and CO2emission, it will provide more accurate analysis basis for the formulation of CO2emission reduction policies.
     The control of CO2emission need the coordination of regional power units, the regional combined CO2emission reduction is an effective way. Considering the cost of power generation, reserve cost, transmission cost and emission cost, this thesis develops the regional power generation cost optimization model, environmental benefit optimization model, comprehensive optimization model, studies the change of benefit of regional energy optimizaiton where clean energy participates, also the effect of carbon price to guide the energy optimization is studied.
     The complementary mechanism is an important means of CO2emission reduction of different types of power in the generation side. According to the analysis of causes of disposable wind and measures, the generating interest analysis model considering the generation right trading is constructed. In different conditions of wind power forecasting, the earning of the wind farm and the thermal power unit are studied. The reducing of disposable wind is put as an objective, the optimization model of wind-fire bundling scheduling is constructed, and the output of every unit is optimized.
     The generation combination of distributed clean energy group is a new CO2emission reduction mechanism. Based on the cost analysis of different types of power units, the power generation scheduling models under different goals are constructed, through the analysis of examples, the power generation cost and CO2emission quantity is minimum under the goals of mimimum disposable wind and light. The price of Time of Use (TOU) is introduced, based on the load change, the minimization scheduling model of power generation cost and compensation cost is constructed, the examples illustrate that the environmental and economic benefits increased obviously after the TOU price is introduced.
     In the wind-fire bundling delivery, the economy and emission reduction benifets of all participants is the important impetus of generation side CO2emission reduction. Considerting the income of transmission power and large users to buy electricity, the maximize profit of grid enterprise model and the minimize generation cost under reasonable disposable wind are constructed. Through the example, the excess profit of cooperative game subjects is calculated. The contribution rate evaluation model of wind-fire bundling delivery increasing, the scores of all kinds of contribution rate of benefit subjects are all calculated from theory. Finally, the income allocation model of wind-fire bundling delivery is constructed, through the example the comprehensive contribution rate and profit quota of wind-fire units, grid enterprise and large electricity users are given, these two indicators show the positive relationship, this conclusion can encourage the wind power consumption, effectively reduce the emission of CO2.
引文
[1]林峰.中国电源结构优化的规制经济学分析[D].山东:山东大学,2007
    [2]朱成章.中国电源结构的进一步探讨[J].中外能源,2008,13(01):2-10
    [3]汪拥军,孙东川.市场环境下我国电源结构调整研究[J].特区经济,2007:178-179
    [4]袁薏子,崔旻.华东电网电源结构的研究[J].华东电力.2007,35(01):51-53
    [5]曹钢,丁明.安徽省中长期电源结构优化研究[J].中国电力2000,33(09):38-41
    [6]王敏芳.我国东部沿海地区电源结构优化目标[J].中国能源.2005,27(08):35-38
    [7]李小平,许卉.湖北电网电源结构优化研究[J].湖北电力.2000,24(04):7-9
    [8]刘殿海.电源优化规划理论研究及应用[D].北京:华北电力大学,2006
    [9]卢艳超,张彩庆.基于核函数的PCA-LNMAP模型的电源结构优化评论[J].华东电力,2006,34(08):88-90
    [10]年晨宁.中国2020年电动汽车电源机构的线性规划[J].城市公用事业,2011,25:30-35
    [11]施应玲,刘媛嫒.基于环境约束的电源结构优化研究[J].中国电力,2009,42(09):12-19
    [12]C.Chen,Y.P.Li,G.H.Huang,Y.F.Li. A robust optimization method for planning regional-scale electric powersystems and managing carbon dioxide[J]. Electrical Power and Energy Systems,2012,40:70-84
    [13]张明文.中国煤电产业链协调发展的优化模型研究[D].北京:华北电力大学,2009
    [14姜海洋.促进发电环节节能减排的煤电产业链合作优化模型[D].北京:华北电力大学,2010
    [15]徐隽,谭忠富,王抒祥,胡庆辉.多级电力市场协调机制下省间与省内电力市场发电资源协调置换优化模型[J].华东电力,2012,40(08):1288-1291
    [16]谭忠富,董力通,刘文彦,于超,宋艺航.发电机组污染排放约束下电量互换合作博弈优化模型[J].电工技术学报,2012,27(05):245-251
    [17]高洁,林一.上海电网节能减排的策略与实践[J].华东电力,2009,37(7):1103-1106
    [18]薛荣贵,高洁,翟海青.以市场机制实现节能减排[J].华东电力,2008,36(09):81-84
    [19]王彦凌,张粒子,杨以涵.基于水火电置换的发电权调节市场[J].中国电机工程学报,2006,26(05):131-136
    [20]李开海,郭耀煌,蒋燕.建立水火电置换市场,为构建和谐社会作贡献[J].现代经济,2007,06(09):22-26
    [21]DING Yi-fan,TANG De-shan,WANG Ting. Benefit Evaluation on Energy Saving and Emission Reduction of National Small Hydropower Ecological Protection Project [J]. Energy Procedia,2011(05):540-544
    [22]Eeonomic Lessons from the Market Evolution of Present US Power Markets、 Emergence of Financial Markets for Electricity:A European Perspective [J].
    [23]黎灿兵,康重庆,夏清,黄永浩,尚金成,孟远景,丁军威,沈瑜.发电权交易及其机理分析[J].电力系统自动化,2003,27(06):13-18
    [24]姚丽.发电权交易特征分析及政策建议[J].合作经济与科技,2008(350):54-55
    [25]许荣,赵岩,李磊,李传文,黄加一.基于节能降耗的发电权交易效益分析[J].水电能源科学,2007,25(06):150-153
    [26]李江,彭文兵.基于期权的发电权交易分析与应用[J].华东电力,2007,35(01):37-40
    [27]莫莉,周建中,李清清,吴玮,张勇传.基于委托代理模型的发电权交易模式[J].电力系统自动化,2008,32(02):30-34
    [28]J. Bialek. Tracing the flow of electricity[J]. IEEE Proceedings on Generation. Transmission and Distribution.1996,143(4):313-320
    [29]黄大为,刘志向,杨春雨,孙文胜,蔡国伟,王建元.计及网损成本的发电权交易模式[J].电力系统自动化,2010,34(05):38-42
    [30]莫莉,周建中,向秀桥,李清清,罗志猛,张勇传.基于多任务委托代理的发电权交易协调激励机制[J].电力系统自动化,2008,32(23):51-55
    [31]Hogan W W. Electricity market restructuring:reforms of reforms[J]. Journal of Regulatory Economics,2002,20 (1):103-132.
    [32]Joskow P L, Tirole J. Transmission rights and market power on electric power networks[J]. Rand Journal of Economics,2000,31 (3):450-487.
    [33]Sarkar V, Khaparde S A. A comprehensive assessment of the evolution of financial transmission rights[J]. Transactions on Power Systems,2008,23 (4): 1783-1795.
    [34]Pritchard G, Philpott A. On financial transmission rights and market power[J]. Decision Support Systems,2005, (40):507-515.
    [35]肖健,文福拴.混合发电权交易市场环境下的阻塞协调调度[J].电力系统自动化,2010,34(8):44-48.
    [36]GALIANA F D, PHELAN M. Allocation of transmission losses to bilateral contracts in a competitive environment[J]. IEEE Trans on Power Systems, 2000,15 (1):143-150.
    [37]王楠,张粒子等.发电权交易增量网损计算及分摊方法[J].电力系统自动化,2010,34(19):25-30.
    [38]杨建华,吴冰莹,高一丹,张步涵.华中区域平台跨省发电权交易研究[J].水电能源科学,2011,29(1):158-161
    [39]谭丽君,郑华,李笑霏.基于综合煤耗最小的跨省发电权交易模型[J].现代电力,2011,28(5):77-79
    [40]陈赞,严正.考虑节能减排与网络约束的发电权交易模型[J].电力系统保护与控制,2009,37(12):52-57
    [41]李莉,丁亚伟,谭忠富,张明文.发电权交易机制下基于合作博弈的利润分配模型[J].华东电力,2009,37(11)1803-1806
    [42]张薛鸿,王睿淳,董达鹏,薛松,陈英杰,曾鸣.低碳背景下我国电力系统发展模式及实施路径[J].水电能源科学,2012,30(2):200-202
    [43]夏德建.基于情景分析的发电侧碳排放生命周期剂量研究[D].重庆:重庆大学,2010
    [44]黄水平,王枫,邱国玉.生命周期法研究低碳能源发电碳减排潜力[J].生态经济,2012,(10):121-124
    [45]刘兰菊.我国清洁能源碳减排效益分析及发展顺序[J].水电能源科学.2012,30(8):211-213
    [46]徐钢,田龙虎,刘彤,黄其励.中国电力工业CO2减排战略分析[J].中国电机工程学报,2011,31(17):1-8
    [47]燕丽,杨金田.中国火电行业CO2排放特征探讨[J].环境污染与防治,2010,32(9):92-94
    [48]顾英伟,李彩虹.电力行业节能减排评价指标体系研究[J].沈阳工业大学学报(社会科学版).2013,6(1):73-76
    [49]毛建雄,毛健全.当前我国燃煤火电机组降低C02排放的途径[J].电力建设, 2011,32(11):5-9
    [50]秦少俊,张文奎,尹海涛.上海市火电企业二氧化碳减排成本估算—基于产出距离函数方法[J].工程管理学报,2001,25(6):704-708
    [51]陈俊武,陈香生.中国中长期碳减排战略自标初探(Ⅳ)[J].中外能源,2011,16(8):1-13
    [52]Makoto Suto. Importance of nuclear generation in the struggles to reduce CO2 emission [J].Process in Nuclear Energy,1998,32(3/4):315-322
    [53]杨光.低碳发展模式下中国核电产业及核电经济性研究[D].北京:华北电力大学,2010
    [54]任震,吴国玥,黄雯莹.电力市场中计算输电电价的一种新方法[J].中国电机工程学报,2003,23(1):37-40
    [55]Khanh Q. Nguyen. Impacts of wind power generation and CO2 emission constraints on the future choice of fuels and technologies in the power sector of Vietnam [J].Energy Policy,2007(35):2305-2312
    [56]Yuxuan Wang,Tianye Sun. Life cycle assessment of CO2 emissions from wind power plants:methodology and case studies [J]. Renewable Energy,2012 (43):30-36
    [57]Erik D. Delarue,Patrick J. Luickx,William D. D'haeseleer. The actual effect of wind power onoverall electricity generation costs and CO2 emissions [J]. Energy Conversation and Management,2009,(50):1450-1456
    [58]于大洋,黄海丽,雷鸣,李新,张波,韩学山.电动汽车充电与风电协同调度的碳减排效益分析[J].电力系统自动化,2012,36(10):14-18
    [59]万振东,程浩忠,张建平,赵晓莉,姚良忠,Masoud Bazargan.考虑风电消纳能力单目标及多目标模糊机组组合模型及应用[J].水电能源科学2012,30(7):214-217
    [60]L.D. Danny Harvey, solar-hydrogen electricity generation and global CO2 emission reduction [J]. Hygrogen Energy,1996,21(7):583-595
    [61]陈文颖,代光辉.广西重点行业二氧化碳减排潜力分析[J].环境科学与技术,2007,30(6):45-48
    [62]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-76
    [63]Michael Gillenwater, Clare Breidenich. Internalizing carbon costs in electricity markets:Using certificates in a load-based emissions trading scheme[J]. Energy Policy,2009,37(1):290-299
    [64]Luis M. Abadie,Jose M. Chamorro. European CO2 prices and carbon capture investments[J]. Energy Economics,2008,30(6):2992-3015
    [65]Ruiz,Pablo,Aleksanclr Rudkevich. Marginal Nodal Carbon Intensity in Power Networks[J]. IEEE Transactions on Power Systems,2009,(5):1-8
    [66]Dallas Burtraw, Karen Palmer, Ranjit Bharvirkar, et al. The Effect on Asset Values of the Allocation of Carbon Dioxide Emission Allowances[J]. The Electricity Journal,2002,15(6):51-62
    [67]Steven Michel,John Nielsen. Popping the C02RC:An Alternative Load-Based CO2 Cap-and-Trade Instrument for the Electricity Sector[J]. The Electricity Journal,2008,21(5):31-42
    [68]Tobey Winters. Electric Supply Options in a World Driven by CO2 Emission Policies[J]. The Electricity Journal,2007,19(2):73-81
    [69]Damien Crilly,Toshko Zhelev. Emissions targeting and planning:an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector[J]. Energy Policy,2008,33(10):1498-1507
    [70]Chi-Keung Woo, Debra Lloyd, Asher Tishler. Electricity market reform failures: UK,Norway,Alberta and Californiaf[J]. Energy Policy,2003,31 (11):1103-1115
    [71]Richard B. Howarth. Emissions Trading:Principles and Practice [J]. Ecological Economics,2007,61 (2-3):576-577
    [72]K. Neuhoff,M. Grubb,K. Keats. Impact of allowance allocation on prices and efficiency[R]. Cambridge Working Paper in Economics,2005,11(10):1-25
    [73]M. Battels,F. Musgens. Do technology specific C02-allocations distort investments [J]. Energy Economics,2006,28(8):1-14
    [74]Y. Smeers,A. Ehrenmann. Free allowances and investments in a CO2 constrained restructured market[C]. INFORMS National Meeting,2006,11(11): 1-18
    [75]Laura N. Haar, Lawrence Haar. Policy-making under uncertainty:Commentary upon the European Union Emissions Trading Scheme[J]. Energy Policy,2006, 34(17):2615-2629
    [76]Thi Bich Thao Pham,Kasemsan Manomaiphiboon,Chatchawan Vongmahadlek. Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand[J]. Science of The Total Environment,2008,397(1-3):103-118
    [77]Scott Jiusto. The differences that methods make:Cross-border power flows and accounting for carbon emissions from electricity use[J]. Energy Policy, 2006,34(17):2915-2928
    [78]Andrew Ford. Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system [J]. Energy Policy,2008,36(l): 443-455
    [79]赵捧莲,杨来科,闫云凤.中国碳排放的影响因素及测算:模型比较及文献述评[J].经济问题探索,2012,(2):131-136
    [80]于超,谭忠富.基于排放绩效的燃煤电厂碳税优化模型[J].华东电力,2011,39(6):845-849
    [81]许士春,习蓉,何正霞.中国能源消耗碳排放的影响因素分析及政策启示[J].资源科学,2012,34(1):2-2
    [82]D.Y.C. Leung,Daniel Yung,Amanda Ng,M.K.H. Leung.Alan Chan. An overviewof emissions trading and its prospects in Hong Kong[J]. Environmental Science & Policy,2008,12(1):92-101
    [83]Edgard Gnansounou, Jun Dong, Denis Bedniaguine. The strategic technology options for mitigating C02 emissions in power sector:assessment of Shanghai electricity-generating system[J]. Ecological Economics,2004,50(1-2):117-133
    [84]Karen Palmer,Dallas Burtraw,Jhih-Shyang Shih. The benefits and costs of reducing emissions from the electricity sector[J]. Journal of Environmental Management,2007,83(1):115-130
    [85]刘梓洪,程浩忠,刘晓冬,周坚,杨立兵,赵筠筠,励刚.二氧化碳排放的影响因素分析与碳税减排政策设计[J].财政研究,2009,(10):41-44
    [86]羊志洪,鞠美庭,周怡圃,王琦.清洁发展机制与中国碳排放交易市场的构建[J].中国人口,资源与环境,2011,21(8):118-123
    [87]郭正权,刘海滨,牛东晓.基于CGE模型的我国碳税政策对能源与二氧化碳排放影响的模拟分析[J].工程管理,2012(1):138-140
    [88]祖国海,马向春,杨玲玲.计及碳排放交易的Carbon-IRP模型模拟分析[J].水电能源科学,2010,28(10):154-157
    [89]詹奕,左中秋.碳排放交易机制下的火电节能发电调度模型[J].武汉大学学报(工学版),2012,45(5):662-666
    [90]迟远英,王彦亮,牛东晓,李向阳.碳排放交易下的发电权置换优化模型[J]. 电网技术,2010,34(6):78-81
    [91]张树伟.碳税对我国电力结构演变的影响—基于CSGM模型的模拟[J].能源技术经济,2011,23(3):11-16
    [92]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13
    [93]Swarup K S,Yamashiro S. Unit commitment solution methodology using genetic algorithm[J].IEEE Trans, on Power Systems,2002,17(1):87-91.
    [94]马瑞.电力市场中兼顾环境保护和经济效益的双目标模糊优化短期交易计划新模型[J].中国电机工程学报,2002,22(4):104-108.
    [95]康重庆,陈启鑫,夏清.电碳电力技术的研究展望[J].电网技术,2009,33(2):1-7.
    [96]何建坤,刘滨.我国减缓碳排放的近期形势与远期趋势分析[J].中国人口·资源与环境,2006,16(6):153-157.
    [97]万文军,周克毅,胥建群等.动态系统实现火电厂机组负荷优化分配[J].中国电机工程学报,2005,25(2):126-129.
    [98]Senjyu T,Yamashiro H,Uezato K,et al. A unit commitment problem by using genetic algorithm based on characteristic classification[C]. IEEE Power Engineering Society Winter Meet,New York,2002.
    [99]国务院办公厅.国办发[2007]53号文件:国务院办公厅关于转发发展改革委等部门节能发电调度办法(试行)的通知[EB/OL].2007-12-31.http://www.gov.cn/zwgk/2007-08/07/content_708486
    [100]赵维兴,林成,孙斌,等.安全约束条件下综合煤耗最优的节能调度算法研究[J].电力系统保护与控制,2010,38(9):18-22
    [101]苏鹏,刘天琪,赵国波,等.基于改进粒子群算法的节能调度下多目标负荷最优分配[J].电网技术,2009,33(5):48-53
    [102]谭忠富,陈广娟,赵建保,等.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,29(1):55-62
    [103]尚金成.节能发电调度的经济补偿机制研究(一):基于行政手段的经济补偿机制设计与分析[J].电力系统自动化,2009,33(2):46-48
    [104]尚金成.节能发电调度的经济补偿机制研究(二):基于市场机制的经济补偿机制设计与分析[J].电力系统自动化,2009,33(3):46-50
    [105]Andreas G. Vlachos,Pandelis N. Biskas. Balancing Supply and Demand under Mixed Pricing Rules in Multi-Area Electricity Markets[J]. IEEE Transactions on Power Systems,2011,26(3):1444-1453
    [106]K.H. Chung,B.H. Kim,D. Hur. Multi-area Generation Scheduling Algorithm with Regionally Distributed Optimal Power Fow Using Alternating Direction Method[J]. Electrical Power and Energy Systems,2011,33(9):1527-1535
    [107]姜海洋,李莉,谭忠富,等.减排与输电约束下区域间发电功率互换优化模型[J].电网技术,2010,34(6):64-72
    [108]朱柯丁,宋艺航,谭忠富,等.中国风电并网现状及风电节能减排效益分析[J].中国电力,2011,44(6):67-70
    [109]Gan D,Litvinov E. Energy and Reserve Market Designs with Explicit Consideration to Opportunity Costs[J]. IEEE Transactions on Power Systems, 2003,18(1):53-59
    [110]柴爱军,吴江.市场环境下备用容量的定价与确定[J].电网与清洁能源,2011,27(12):72-75
    [111]祁悦,谢高地.碳排放空间分配及其对中国区域功能的影响[J].资源科学,2009,31(4):590-597
    [112]燕丽,杨金田.中国火电行业C02减排特征探讨[J].环境污染与防治,2010,32(9):92-94.
    [113]王乾坤.国内外风电弃风现状及经验分析[J].华东电力,2012,40(3):379-381.
    [114]Hiroyuki Tamura, Takashi Kimura. Evaluating the Effectiveness of Carbon Tax and Emissions Trading for Resolving Social Dilemma on Global Environment[C]. Systems,Man and Cybernetics,2007. ISIC. IEEE International Conference,1746-1751
    [115]Yao Dong, Jianzhou Wang, He Jiang, Jie Wu. Short-term electricity price forecast based on the improved hybrid model[J]. Energy Conversion and Management,2011,52 (8):2987-2995.
    [116]C. Unsihuay-Vila, A. C. Zambroni de Souza, J. W. Marangon-Lima, P. P. Balestrassi. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(2):108-116.
    [117]Cook W D, Kress M. Characterizing an equitable allocation of shared costs:A DEA approach[J]. European Journal of Operational Research,1999, (119):652-661
    [118]Jahanshahloo G R, Hosseinzadeh Lotfi F, Shoja N, et al. An alternative approach for equitable allocation of shared costs by using DEA[J]. Applied Mathematics and Computation,2004, (153):267-274
    [119]Y.X. He, L.F. Yang, H.Y. He, T. Luo, Y.J. Wang. Electricity demand price elasticity in China based on computable general equilibrium model analysis[J]. Energy,2011,36 (2):1115-1123.
    [120]Frane J W, Hill M. Factor Analysis as a Tool for Data Analysis[J]. Communications in Statistics-theory and Methods,1976,A5(6):487-506
    [121]Graeme Guthrie, Steen Videbeck. Electricity spot price dynamics: Beyond financial models[J]. Energy Policy,2007,35 (11):5614-5621.
    [122]KLOBASA M. Analysis of demand response and wind integration in Germany's electricity market [J]. IET Renewable Power Generation,2010, 4(1):55-63.
    [123]SIOSHANSI R. Evaluating the impacts of real-time pricing on the cost and value of wind generation[J]. IEEE Transactions on Power Systems,2010,25 (2):741-748.
    [124]FINN P, FITZPATRIC C, LEAHY M. Increased penetration of wind generated electricity using real time pricing & demand side management[C]. IEEE International Symposium on Sustainable Systems and Technology. Tempe, AZ, USA:ISSST'09,2009:1-6.
    [125]MALIDIN A S, KAYSER-BRIL C, MAIZI N, et al. Assessing the impact of smart building techniques:a prospective study for France[C].2008 IEEE Energy 2030 Conference. Atlanta, GA, USA:IEEE,2008:1-7.
    [126]Ongsaku W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Trans. on Power Systems,2004,19 (1): 620-628.
    [127]Dang C Y, Li M Q. Floating-point genetic algorithm for solving the unit commitment problem[J]. European Journal of Operational Research,2007,181 (3):1370-1395.
    [128]P. K. Hota, R. Chakrabarti, P. K. Chattopadhyay. Economic emission load dispatch through an interactive fuzzy satisfying method[J]. Electric Power Systems Research,2000 (54):151-157.
    [129]C. J. Day, B. F. Hobbs, J. S. Pang. Oligopolistic competition in power networks:a conjectured supply function approach[J]. IEEE Transactions on Power Systems,2002,17 (3):597-607.
    [130]B. F. Hobbs. Linear Complementarity Models of Nash-Cournot competition in bilateral and poolco power[J]. IEEE Transactions on Power Systems,2001, 6 (2):194-202.
    [131]V. Vahidinasab, S. Jadid. Multiobjective environmental/techno-economic approach for strategic bidding in energy markets[J]. Applied energy,2009,86 (4):496-504.
    [132]Tan X, Lie T T. Application of the Shapley Value on transmission cost allocation in the competitive power market environment[J]. IEE Proceeedings-Generation, Transmission and Distribution,2002,149(1):15-20.
    [133]YACHIN C., CHANNAN L.. An Electricity Tracing Method with Application to Power Loss Allcation[J]. Electrical Power and System Researeh,2001, 23(1):13 -17
    [134]CONEJO A. J., GALINA F. D., KOCKAR I.. Z-bus Loss Allocation[J]. IEEE Trans on Power Systems,2001,16(1):105 - 110
    [135]王卿然,张粒子,谢国辉.跨地区电力交易输电服务价格机制[J].电力系统自动化,2010,34(13):11-15
    [136]肖健,文福拴.发电权交易的阻塞调度[J].电力系统自动化,2008,32(18):24-29.
    [137]王惠杰,张春发,宋之平.火电机组运行参数能耗敏感性分析[J].中国电机工程学报,2008,28(29):6-10
    [139]肖健,彭政.考虑机组停机的发电权交易阻塞调度[J].华东电力,2010,38(5):0655-0658.
    [140]艾东平,鲍海,杨以涵.基于电路理论的发电权交易网损增量补偿解析[J].电力系统保护与控制,2010,38(22):135-140.
    [141]孙高洋.中国针对CDM机制的策略选择研究[J].节能减排,2008,39(2):4-8
    [142]王金南,高树婷,杨金田.排放绩效:电力减排新机制[M].北京:中国环境科学出版社,2006
    [143]朱向东.目前中国风电弃风现状及对策[J].能源与节能,2012,10(1):30,67
    [144]陈振寰,陈永华,行舟,崔刚,伏岁林,张柏林.大型集群风电有功智能控制系统控制策略[J].电力系统自动化,2011,35(21):12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700