用户名: 密码: 验证码:
燕麦蛋白结构、自组装性质及其纳米纤维形成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白纳米纤维聚集的研究可以为人体中蛋白质纤维化自组装导致的帕金森、老年痴呆症等20多种疾病的治疗提供重要借鉴和启示;作为生物材料替生物工程和制药工程提供自组装载体,携带活性成分或药物;为饮料和火腿食品等高糖分和高脂肪的产品中取代多糖类成分和脂肪成分起到增稠作用和降低热量的同时,起到补充氨基酸配比合理、营养均衡蛋白质的作用;作为清水凝胶的促凝剂,起到降低凝胶成本的作用;课题的实施能对医学上蛋白自组装类疾病的治疗、制药工程、生物材料和保健食品的发展有积极的推动作用。
     本论文以燕麦分离蛋白和燕麦球蛋白为原料,通过氨基酸分析仪、SDS-PAGE、红外光谱仪、园二色谱、敲击式原子力扫描电镜、透射电镜和动态流变仪、动态光散射等研究燕麦分离蛋白和燕麦球蛋白的氨基酸组成、二级结构和聚集等性质;采用原子力扫描电镜和透射电镜在纳米尺度下对影响其纳米纤维形成的理化因素进行比较,并运用多种手段对其纳米纤维的形貌和特性进行表征;通过进一步对燕麦分离蛋白进行分子修饰,达到提高其功能特性的目的,同时深入研究修饰对燕麦分离蛋白纳米纤维形成产生的影响,主要研究结果如下:
     燕麦分离蛋白OPI的多肽分子量在14.0 kDa到66.0 kDa之间,谷氨酸和亮氨酸含量分别高达24.7%,8.1%;燕麦分离蛋白含有大约7%β-转曲, 19%α-螺旋,和74%β-折叠;敲击式原子力扫描电镜结果显示燕麦分离蛋白主要以两种形状存在,椭球形和碟盘形;在浓度低于0.5 mg/mL时,OPI分子以单个分子形式存在,当浓度高于1.0 mg/mL时,许多OPI分子相互聚集会形成颗粒大小分布不均匀的聚集体;燕麦球蛋白的多肽分子量在10.0 KDa to 70.0 Kda之间,谷氨酸和精氨酸含量分别高达24.2%和9.0%,红外光谱结果表面,燕麦球蛋白含有大约8.5%β-转曲, 10.2%α-螺旋, 81.3%β-折叠。原子力扫描显微镜结果表明燕麦球蛋白分子主要以椭球形式存在,在球蛋白分子浓度低于0.1 mg/mL时,球蛋白分子以单个分子形式存在,当浓度高于0.5 mg/mL时,球蛋白分子即自组装形成颗粒大小分布不均的聚集体;动态光散射结果表明球蛋白的平均水合半径大约为39.8nm,颗粒大小主要在6nm-200nm之间,其中,水合半径在6nm左右的颗粒数量占总数的90%以上,具有较大水合半径的是球蛋白自组装形成的聚集体,研究结果与原子力扫描电镜和透射电镜结果一致。
     燕麦球蛋白分子能在85°C,蛋白浓度1~10 mg/ml, pH 2条件下,加热24小时的过程中形成直径12nm左右,长度0~10μm的纳米纤维,纳米纤维的平均长度与加热时间成正相关,而纤维直径基本保持一致,具有螺旋周期结构;纳米纤维形成过程中燕麦球蛋白分子二级结构和三级结构显著发生变化,同时伴随着多肽链的降解,在12小时后,体系中多肽的分子量降低到<20 kDa以下,β-折叠含量显著增加。
     燕麦分离蛋白能在pH2,85°C,搅拌速度400rad/s条件下随着加热时间的延长形成长度0~7μm的纳米纤维,纳米纤维长度分布不均但直径基本相同,具有螺旋周期结构;体系中蛋白分子的水合半径Rh随着加热时间延期逐渐增加;燕麦球蛋白与燕麦分离蛋白的不同之处在于燕麦球蛋白在搅拌速度为0rad/s的情况下也能形成纳米纤维,燕麦球蛋白在同样条件下,纤维的平均长度更长,颗粒形成纤维的转化率更高,纤维的螺旋结构、二级结构和三级结构的变化程度、多肽分子量降解的速度有所差异;盐离子强度(0~150 mM)会影响燕麦蛋白纳米纤维的形成,随着盐离子浓度的增强,纳米纤维的平均长度会减小,而直径基本保持一致,但是纤维变得弯曲;当离子强度增加到50 mM或以上时,纳米纤维发生团聚。
     通过PEG基团对燕麦分离蛋白进行分子修饰,改变其水溶性等理化性质,并用FTIR和HNMR对修饰产物进行鉴定,结果表明,通过反应能成功将PEG嫁接到燕麦分离蛋白分子上,显著改善了燕麦分离蛋白的水溶性。PEG通过醚的方式结合到了燕麦分离蛋白质OPI上,改性后,红外光谱中OPI-PEG在1105 cm~(-1)处出现较强吸收,为结合醚键吸收,~843, 963, and 2886 cm~(-1)处也出现吸收,为PEG特征吸收。OPI-MPEG蛋白的特征吸收未变,在1658 cm~(-1),1536 cm~(-1)处仍有较强吸收。OPI-MPEG核磁结果显示在3.329 ,3.651,3.598 PPM处出现较强波峰,其他波形相对于OPI未变;修饰后的蛋白分子β-类结构含量降低,对其纳米纤维的形成有抑制作用。
The protein nanofibrils generally thought to be associated with more than 20 diseases ,including several neurodegenerative diseases, such as Parkinson’s and Alzheimer’s and the food protein fibrils could be used as thickening ingredients in low-calorie products, for example, as replacements for polysaccharide-based ingredients or meat replacement products and high protein content foods,also they can be used to accelerate the gel formation and then low the cost of the gel; This study will play a positive role in promoting development of the diseases treatment and health foods.
     The amino acid compositions, secondary structure, and self-assembly of the oat protein isolate and oat globulin were studied in this dissertation, and the nanofibrils formation of them were further investigated in the nanoscale; The effect of modification of the protein on nanofibrils formation was also researched after the the water soluble compound PEG-OPI being synthesized using hydrophilic polyethylene glycol monomethyl ether (PEG) substitutions.
     The amino acid compositions, secondary structure, and self-assembly of oat protein isolate (OPI), which was purified from the high-protein Chinese oat, have been investigated by using a combination of amino acid analysis, Fourier transform infrared spectroscopy (FTIR), and tapping mode atomic force microscopy (TP-AFM). OPI, with molecular weights ranging from 14.0 kDa to 66.0 kDa, was rich in essential amino acids and contained 24.7% glutamic acid and 8.1% leucine. The amino acid contents of OPI are 4.5?8.7 times higher than those of oat flour. The secondary structures of OPI have been quantified by the deconvolution of the amide I band of the FTIR spectrum of OPI, which were found to contain approximately 7%β-turn, 19%α-helix, and 74%β-sheet. Tapping mode AFM results further suggest that the oat protein isolate has two major types of shapes, ellipsoidal and disk-like. At protein concentrations below 0.5 mg/mL, most of the OPI molecules are in the isolated form. However, when the concentration of OPI reaches 1.0 mg/mL, some of the OPI molecules self-assembled into large and heterogeneous protein aggregates.
     The physicochemical and conformational properties, including amino acid composition, subunits, secondary structures, the size and shapes of the individual oat globulin molecule or protein aggregates were evaluated in this study by FTIR, tapping mode AFM, TEM and Dynamic laser light-scattering. Oat globulin, whose molecular weights range from 10.0 KDa to 70.0 KDa, were rich in essential amino acids, and consist of Glutamic acid 24.20% andArginine 8.96%. The amino acid content of oat globulin is 3.78~9.60 times higher than that of oat flour. The secondary structures have been quantified by the deconvolution of the amide I band of the FTIR spectrum of oat globulin, which were found to contain approximately 8.5%β-turn, 10.2%α-helix, and 81.3%β-sheet, which was a bit different from the result of CD spectrum 12.9 %α-helix, 32.8 %β-strand, 25.7%β-turn , and 28.2% random coil, the main difference was theβ-turn and random coil.Tapping mode AFM results and TEM further suggest that the oat globulin has major type of global shape. At protein concentrations below 0.1 mg/mL, most of oat globulin molecules are in the isolated form. However, when the concentration of the protein reaches 0.5 mg/mL, some of the molecules self-assembled into large and heterogeneous protein aggregates. Dynamic laser light-scattering showed that the average radius of the oat globulin was about 39.8nm by simple fit with a range from 6nm-200nm, however,the number or mass weighted showed that the radius of about 6nm took up over 90% of the total, the big radius ones belonged to the aggregations,the result is consist with the AFM and TEM.
     We demonstrate that oat globulin is capable of forming regular elongated fibrils with flat ribbon structure about 4~16nm in height and 0~10μm in length at condition of 24 h ,85°C, protein concentration 1-10 mg/ml,pH 2 as judged from transmission electron microscopy (TEM), atomic force microscopy (AFM), binding of thioflavin T (Th T) and Congo Red dyes, and circular dichroism spectroscopy, it shows that The fibril formation could be greatly influenced by the protein concentration, heating time. Significant protein fibril aggregation occurs when the oat protein concentration increases to 5mg/ml from 2 mg/ml.The morphology of the formed fibrils was closely dependent upon heating time from 0 to 24h. The diameters of the fibrils formed at various times were similar, but the mean contour length progressively increased with heating time. The ThT maximum fluorescence also progressively increased with heating time.The heating process caused remarkable changes in secondary, tertiary, and quaternary conformations of the oat globulin. Gel electrophoresis analysis indicated that heating disrupted the polypeptides of oat globulin, leading to the formation of fragments with lower molecular mass (e.g., <20 kDa after 12h). This appears to be the first direct observation of nanofibrils from oat globulin. The viscosity resulted in a significantly increase in compared to the unheated sample after heating.
     The morphology fabrication and conformational characteristics of multistranded amyloid-like fibrils as a function of heating time of oat protein isolates (OPI ) were demonstrated by combining of AFM, TEM analysis and DLS techniques, as well as circular dichroism spectroscopy (CD) and SDS-PAGE, as well as binding of thioflavin T (Th T). Results shows that Polydisperse semiflexible nanofibrils with almost the same width can be induced by heating at pH 2.0 from oat protein isolates, and it is suggested that short protofilaments and isolated molecules can touched and aligned with others to developed into a longer contour length ones; Ionic strengths (0–150 mM) had a significant effect on the fibrils formation, the contour length of the stranded aggregates markedly decreased with ionic strength increasing, while the thickness of the strands was nearly unchanged. At ionic strength of 50 mM or above, the stranded aggregates gradually became clustered.
     A new protein-based water soluble compound PEG-OPI, has been synthesized using hydrophilic polyethylene glycol monomethyl ether (PEG) substitutions. The success of synthesis was confirmed by FT-IR and 1H NMR spectroscopy. In comparison with OPI, the FT-IR spectrum of MPEG-OPI presented new absorption peaks at ~1105 cm-1, which was assigned to ether groups, as well as ~843, 950, and 2886 cm-1 peaks, which arose from MPEG segmen, peaks corresponding to -COCH2CH2CO- group of MPEG-OPI molecule appeared at 3.598,3.651 ppm on its 1H NMR spectrum, the sharp single-peak signal at 3.329 ppm was assigned to -OCH3 of MPEG segments,the modification inhibited the formation of the fibrils as theβ-turn structure decreased.
引文
[1]沈同,王镜岩主编.生物化学[M].北京:高等教育出版社,1990:74-195
    [2]尹寿伟.芸豆蛋白的物化修饰及相关构效机理研究[D].华南理工大学. 2009
    [3]杜汝法.中国小杂粮[M].北京:中国农业科学技术出版社,2002
    [4]曲祥春,何中国.我国燕麦生产现状及发展对策[J].杂粮作物,2006,26(3):233-235
    [5]李进.燕麦的营养价值与保健功效[J].新疆农业科技,1993,(5):38-39
    [6]胡新中,魏益民,任长忠.燕麦品质与加工[M].北京:科学出版社,2009
    [7]路长喜,周素梅,王岸娜.燕麦的营养与加工[J].粮油加工,2008,(01):89
    [8]任长忠,胡新中,郭春来等.国内外燕麦产业技术发展情况报告[J].世界农业,2009,(09):63
    [9]王洪新.食品新资源[M].北京:中国轻工业出版社,2002
    [10]李芳,刘刚,刘英等.燕麦的综合开发与利用[J].武汉工业学院学报.2007,26(01):23-26
    [11] Seligson, F. H.,Mackey, L. N.Variable Predictions of protein quality by chemical score due to amino acid analysis and reference pattern [J] Nutr. 1984, 114: 682– 691
    [12] Webster, F. H., Ed., St. Paul MN.American Association of Cereal Chemists[J].Oats: Chemistry & Technology; AACC Monograph Series; 1986.
    [13]路长喜,周素梅,王岸娜.燕麦的营养与加工[J].粮油加工,2008,(01):89
    [14]任长忠,胡新中,郭春来等.国内外燕麦产业技术发展情况报告[J].世界农业,2009,(09):63
    [15]胡新中,魏益民,任长忠.燕麦品质与加工[M].北京:科学出版社,2009
    [16]王洪新.食品新资源[M].北京:中国轻工业出版社,2002
    [17]王溯.燕麦蛋白的改性研究[D].武汉工业学院,2009
    [18]曹辉,李蕾,马海乐.燕麦分离蛋白提取工艺研究[J].安徽农业科学,2009,37(22):10681
    [19] Peterson D.M.,Smith D..Changes in nitrogen and carbohydrate fractions in developing [J].oat groats Corp Sci,1976,16:67-71
    [20] Gang Liu,Ji Li,Ke Shi,et al.Composition,Secondary Structure,and Self-Assembly of Oat Protein Isolate[J].Journal of Agricultural and Food Chemistry,2009,57 (11):4552-4558
    [21]魏决,罗雯.燕麦中蛋白质的提取、纯化及氨基酸成分分析[J].成都大学学报(自然科学版),2007,26(04):283-285
    [22]李桂娟,樊守瑞,尤伟等.燕麦蛋白的制备工艺研究[J].食品与机械,2009,25(1):120-123
    [23] Ma, C. Y. Preparation, composition and functional properties of oat protein isolates [J]. Can. Inst. Food Sci. Technol.. 1983,16: 201?205.
    [24] Hischke, H. , Jr.; Potter, G. ; Graham, W.,Jr. Nutritive value of oat proteins. I. Varietal differences as measured by amino acid analysis and rat growth responses[J]. Cereal Chem. 1968, 45: 374?378.
    [25] Millerd, A,Annu. Rev.. Biochemistry of legume seed proteins[J]. Plant Physiol. 1975, 26: 53?72.
    [26] Derbyshire, E.,Wright, D. J.,Boulter, D. Legumin and vicilin. Storage proteins of legume seeds[J]. Phytochemistry 1976, 15: 3?24.
    [27] Neilsen, N. C. The structure and complexity of 11S polypeptides in soybeans[J]. Am. Oil Chem. Soc. 1985, 62: 1680?1686.
    [28] Brinegar, A. C.,Peterson, D. M. Separation and characterization of oat globulin polypeptides. Arch[J]. Biochem. Biophys. 1982, 219: 71?79.
    [29] Matlashewski, G. J., Adeli, K.,Altosaar, I.,et al. In vitro synthesis of oat globulin[J]. FEBS Lett. 1982, 145: 208?212.
    [30] German, B., Damodaran, S.,Kinsella, J. E. Thermal dissociation and association behaviour of soy proteins[J]. Agric. Food Chem. 1982, 30: 807?812.
    [31] Hermansson, A. M. Aggregation and denaturation involved in gel formation. In Functionality and Protein Structure; ACS Symp. Ser. 92; Pour-EI, A., Ed.; American Chemical Society:Washington, DC, 1979; 82?165.
    [32] Zhao, Y.; Mine, Y.,Ma, C.-Y. Study of thermal aggregation of oat globulin by laser light scattering[J],Journal of Agricultural and Food Chemistry,2004,52: 3089-3096.
    [33] Harwalkar, V. R., Ma, C.-Y. Study of thermal properties of oat globulin by differential scanning calorimetry[J]. Food Sci. 1987, 52: 394?398.
    [34] Ma, C.-Y.,Harwalkar, V. R. Study of thermal denaturation of oat globulin by ultraviolet and fluorescence spectrophotometry[J]. Agric. Food Chem. 1988, 36: 155?160.
    [35] Ma, C.-Y., Rout, M. K., Chan, W.-M. et al. Raman spectroscopic study of oat globulin conformation[J]. Agric. Food Chem. 2000, 48: 1542?1547.
    [36] Ma, C.-Y.,Rout, M. K.,Mock,W.-Y. Study of Oat Globulin Conformation by Fourier Transform Infrared Spectroscopy[J].Journal of Agricultural and Food Chemistry 2001,49: 3328-3334.
    [37] Xiao Guan,Huiyuan Yao,Zhengxing Chen,et al.Some functional properties of oat bran protein concentrate modified by trypsin[J].Food Chemistry,2007,101(1):163-170
    [38]蔺瑞,张美莉,刘全旺.裸燕麦球蛋白提取条件及其功能特性研究[J].食品与发酵工业, 2010
    [39] Hartgerink, J. D.,Beniash, E.,Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J].Science 2001, 294: 1684.
    [40] Whitesides, G. M.,Mathias, J. P.,Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J].Science 1991, 254: 1312.
    [41] Grzybowski, B. A.,Stone, H. A.,Whitesides, G. M. Dynamics of self assembly of magnetized disks rotating at the liquid¨Cair interface[J].Proceedings of the National Academy of Sciences of the United States of America 2002, 99: 4147.
    [42]张先恩.生物结构自组装[J].科学通报, 2009,(18)
    [43] Roth C M,Neal B L,Lenhoff A M.Van der Waals interactions involving proteins[J].Biophys.1996,70:977-987
    [44] Stilliner F H.Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory.[J].Solution Chem,1973,2:141-158
    [45] David C.Interfaces and the driving force of hydrophobic assembly[J]. Nature,2005,437:640-647
    [46] Kyte J,Doolittle R F.A simple method for displaying the hydropathic character of a protein[J]. Mol Biol,1982,157:105-132
    [47] Rose G,Fleming P,Banavar J,et al.A backbone-based theory of protein folding[J].Proc Natl Acad Sci USA,2006,103:16623-33
    [48]王克夷,阎隆飞,孙之荣主编.蛋白质分子结构[M].北京:清华大学出版社,1999.11-20
    [49] Branden C,Tooze J.Introduction to Protein Structure.2nd ed[J].New York:Garland Publishing Inc,1991.13-119
    [50]董贻诚.蛋白质晶体结构分析.见:阎隆飞,孙之荣,主编.蛋白质分子结构.北京:清华大学出版社,1999.111-112
    [51] Brack, A.,Orgel, L. E.. ? structures of alternating polypeptides and their possible prebiotic significance[J],1975.
    [52] Brack, A.; Spach, G. Multiconformational synthetic polypeptides[J].Journal of the American Chemical Society 1981, 103: 6319-6323.
    [53] MacPhee, C. E.; Dobson, C. M. Formation of mixed fibrils demonstrates the genericnature and potential utility of amyloid nanostructures[J],Journal of the American Chemical Society 2000, 122: 12707-12713.
    [54] Tycko, R.,Ishii, Y. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling[J],Journal of the American Chemical Society 2003, 125: 6606-6607.
    [55] Cheng, R. P., DeGrado, W. F. De novo design of a monomeric helical ?-peptide stabilized by electrostatic interactions[J],Journal of the American Chemical Society 2001, 123: 5162-5163.
    [56] Stone, M. J.,Gupta, S.; Snyder, N.,Regan, L. Comparison of Protein Backbone Entropy and ?-Sheet Stability: NMR-Derived Dynamics of Protein G B1 Domain Mutants[J],Journal of the American Chemical Society 2001, 123: 185-186.
    [57] Kavanagh, G. M.,Clark, A. H.,Ross-Murphy, S. B. Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH [beta]-lactoglobulin gels[J],International Journal of Biological Macromolecules 2000, 28: 41-50.
    [58] Durand, D.,Christophe Gimel, J.,Nicolai, T. Aggregation, gelation and phase separation of heat denatured globular proteins[J].Physica A: Statistical Mechanics and its Applications 2002, 304: 253-265.
    [59] Arnaudov, L. N.,de Vries, R.,Ippel, H., et al.Multiple steps during the formation of |?-lactoglobulin fibrils[J],Biomacromolecules 2003, 4: 1614-1622.
    [60] Hamada, D.; Dobson, C. M. A kinetic study ofβ-lactoglobulin amyloid fibril formation promoted by urea[J],Protein Science 2002, 11: 2417-2426.
    [61] Gosal, W. S.; Clark, A. H.; Ross-Murphy, S. B. Fibrillarβ-lactoglobulin gels: Part 1. Fibril formation and structure,Biomacromolecules[J]. 2004, 5: 2408-2419.
    [62] Gosal, W.,Clark, A.,Pudney, P. .,et al.Novel amyloid fibrillar networks derived from a globular protein:β-lactoglobulin,Langmuir[J]. 2002, 18: 7174-7181.
    [63] Veerman, C., Ruis, H., Leonard, M.,et al.Effect of electrostatic interactions on the percolation concentration of fibrillarβ-lactoglobulin gels[J],Biomacromolecules 2002, 3: 869-873.
    [64] Akkermans, C.,Venema, P.,van der Goot, A., et al.. Peptides are building blocks of heat-induced fibrillar protein aggregates ofβ--lactoglobulin formed at pH 2[J],Biomacromolecules 2008, 9: 1474-1479.
    [65] Veerman, C., de Schiffart, G., Sagis, L.,et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J],International Journal of Biological Macromolecules 2003, 33: 121-127.
    [66] Pearce, F. G., Mackintosh, S. H., Gerrard, J. A. Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing[J],Journal of Agricultural and Food Chemistry 2007, 55: 318-322.
    [67] Azakami, H.,Mukai, A.,Kato, A. Role of amyloid type crossβ--structure in the formation of soluble aggregate and gel in heat-induced ovalbumin[J],Journal of Agricultural and Food Chemistry 2005, 53: 1254-1257
    [68] Veerman, C.,Sagis, L.Heck, J.,van der Linden, E.Mesostructure of fibrillar bovine serum albumin gels[J],International Journal of Biological Macromolecules 2003, 31: 139-146
    [69] Vernaglia, B. A.,Huang, J.,Clark, E. D. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme[J],Biomacromolecules 2004, 5, 1362-1370
    [70] Akkermans, C.; Van Der Goot, A.; Venema, P.,et al.Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate[J].Journal of Agricultural and Food Chemistry 2007, 55: 9877-9882
    [71] Zhang, Y. H.,Tang, C. H.,Wen, Q. B.,et al.Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L. ) protein isolate at pH 2.0: Influence of ionic strength[J],Food Hydrocolloids 2010, 24: 266-274
    [72] Qi, X. L.,Holt, C.,McNulty, D.,et al.Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis[J],Biochemical Journal 1997, 324, 341
    [73] Aymard,P.Nicolai,T.Durand.,et al.Static and dynamic scattering of ?-lactoglobulin aggregates formed after heat-induced denaturation at pH2[J]. Macromolecules 1999, 32:2542-2552
    [74] Bolder S. G, Vasbinder A.J, Sagis, L., et al. Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation[J].International Dairy Journal 2007, 17:846-853
    [75] Bolder S. G., Hendrickx H., Leonard M., et al. Fibril assemblies in aqueous whey protein mixtures[J]. Journal of Agricultural and Food Chemistry 2006, 54: 4229-4234
    [76] Rogers S.S., Venema P., Leonard M., et al. Measuring the length distribution of a fibril system: a flow birefringence technique applied to amyloid fibrils[J]. Macromolecules 2005, 38: 2948-2958
    [77] Ikeda S., Morris V. J. Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy[J].Biomacromolecules 2002, 3:382-389
    [78] Veerman C., Sagis L. M. C.,Venema P.et al.The effect of shear flow on the percolation concentration of fibrillar protein assemblies[J]. Journal of Rheology 2005, 49:355.
    [79] Bolder S. G., Leonard M., Venema P., et al. Effect of stirring and seeding on whey protein fibril formation[J].Journal of Agricultural and Food Chemistry 2007, 55, 5661-5669
    [80] SAGIS L., VEERMAN C.,VAN DER LINDEN E.Mesoscopic properties of semiflexible amyloid fibrils[J]. Langmuir 2004, 20: 924-927
    [81] Mounsey J., O'Kennedy B.,Fenelon,M.et al. The effect of heating on [beta]-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength[J]. Food Hydrocolloids 2008, 22: 65-73
    [82] Weiss J.,Takhistov P.,McClements D.Functional materials in food nanotechnology[J]. Journal of food science 2006, 71: R107-R116
    [83] Oboroceanu D., Wang L., Brodkorb A.,et al. Characterization ofβ--Lactoglobulin Fibrillar Assembly Using Atomic Force Microscopy, Polyacrylamide Gel Electrophoresis, and in Situ Fourier Transform Infrared Spectroscopy[J]. Journal of Agricultural and Food Chemistry 2010, 58:3667-3673
    [84] Kaylor J.,Bodner N.,Edridge S.,et al.Characterization of oligomeric intermediates in [alpha]-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F [alpha]-synuclein[J]. Journal of Molecular Biology 2005, 353:357-372
    [85] Caughey B.,Lansbury Jr, P. T. PROTOFIBRILS, PORES, FIBRILS, AND NEURODEGENERATION: Separating the Responsible Protein Aggregates from The Innocent Bystanders[J]. Annual review of neuroscience 2003, 26:267-298
    [86] Zhu M., Han S., Zhou F., et al. Annular oligomeric amyloid intermediates observed by in situ atomic force microscopy[J]. Journal of Biological Chemistry 2004, 279:24452
    [87] Khurana R., Ionescu-Zanetti C.,Pope M., et al. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy[J]. Biophysical journal 2003, 85:1135-1144
    [88] Ma S., Cao X., Mak M., et al. Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution[J]. Journal of the American Chemical Society 2007, 129:12364-12365
    [89] Tang C. H., Zhang Y. H., Wen Q. B.,et al.Formation of Amyloid Fibrils from Kidney Bean 7S Globulin (Phaseolin) at pH 2.0[J]. Journal of Agricultural and Food Chemistry 2010, 58: 8061-8068
    [90] Tang C. H., Wang C. S. Formation and Characterization of Amyloid-like Fibrils fromSoyβ--Conglycinin and Glycinin[J].Journal of Agricultural and Food Chemistry 2010: 158-165.
    [91] Garcia R., Perez R. Dynamic atomic force microscopy methods[J]. Surface science reports 2002, 47: 197-301
    [92] Jain S., Udgaonkar J.Defining the Pathway of Worm-like Amyloid Fibril Formation by the Mouse Prion Protein by Delineation of the Productive and Unproductive Oligomerization Reactions[J]. Biochemistry 2011
    [93]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[J].华南理工大学,博士学位论文,2006
    [94] Kang I.Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system[J].Journal of Agricultural and Food Chemistry.1994,42(1):159-165
    [95]莫文敏.蛋白质改性研究进展[J].食品科学.2000,6:6-9
    [96] Foegeding E. A., Davis J. P., Doucet D., et al. Advances in modifying and understanding whey protein functionality [J]. Trends in Food Science and Technology, 2002, 13: 151?159
    [97] Wang X. S., Tang C. H., Li B. S., et al. Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolates[J]. Food Hydrocolloids, 2008, 22: 560?567
    [98] Galazka V. B., Dickinson E., Ledward D. A. Effect of high pressure on the emulsifying behaviour ofα-lactoglobulin [J]. Food Hydrocolloids, 1996, 10: 213?219
    [99] Dickinson, E., Murray, B. S., Pawlowsky, K. On the effect of high-pressure treatment on the surface activity ofβ-casein [J]. Food Hydrocolloids, 1997, 11: 507?509
    [100] Ibanoglu E., Karatas S. High pressure effect on foaming behaviour of whey protein isolate [J]. Journal of Food Engineering, 2001, 47: 31?36
    [101] Iametti S., Transidico P., Bonomi F., et al. Molecular modifications ofα-lactoglobulin upon exposure to highpressure [J]. Journal of Agriculture and Food Chemistry, 1997, 45: 23?29
    [102] Pittia P., Wilde P. J., Husband F. A., et al. Functional and structural properties ofβ-lactoglobulin as affected by high pressure treatment [J]. Journal of Food Science, 1996, 61, 1123?1128
    [103] Vélez-Ruiz J. F., Swanson B. G., Barbosa-Canovas G. V. Flow and viscoelastic properties of concentrated milk treated by high hydrostatic pressure [J]. Lebensmittel Wissenschaft und Technologie, 1998, 31: 182?195
    [104] Balny C., Masson P. Effects of high pressure on proteins [J]. Food Review International, 1993, 9: 611?628
    [105] Silva J. L., Weber G. Pressure stability of proteins [J]. Annual Review in Physics and Chemistry, 1993, 44: 89?113
    [106]刘燕燕,曾新安.脉冲电场对大豆分离蛋白溶解性及亚基的影响[J].食品工业科技, 2009,(07) .
    [107]刘燕燕,曾新安,刘克放.脉冲电场对大豆分离蛋白分散体系颗粒粒径影响[J].食品科学, 2009,(09)
    [108]曾新安,刘燕燕.脉冲电场对大豆分离蛋白溶液表面性质的影响[J].华南理工大学学报(自然科学版), 2009,(04)
    [109]李迎秋,章万忠,陈正行.高压脉冲电场对大豆分离蛋白结构特征的影响[J].食品科学, 2007,(03)
    [110]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白疏水性和巯基含量的影响[J].食品科学, 2006,(05)
    [111] Galazka V.B.,Dickinson E.,Ledward D.A.Influence of high pressure processing on protein solutions and emulsions[J].Current Opinion in Colloid & Interface Science, 2000, 5: 182?187
    [112] Molina E., Papdopoulou A., Ledward D.A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J].Food Hydrocolloids, 2001, 15:263?269
    [113]李汴生,曾庆孝.高压处理大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报.1999,1:22?29
    [114]李汴生.超高压处理对豆浆感官状态和流变特性的影响[J].食品与发酵工业.1998,24(6):12?18
    [115]龙小涛,赵谋明,罗东辉,赵强忠.高压均质对大豆分离蛋白功能特性的影响[J].食品与发酵工业, 2009,(03)
    [116] Perrier-Cornet J.M., Marie P., Gervais P. Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization[J]. Journal of Food Engineering, 2005, 66: 211?217
    [117] Paquin P., Lebeuf Y., Richard J. P., et al. Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute [A]. Abstracts of Papers, IDF Special Issue 9303 [C]. International Dairy Federation: Brussels, Belgium, 1993,389-396
    [118] Iordache M., Jelen P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality [J]. Innovative Food Science and Emerging Technologies , 2003, 4: 367?376
    [119] Britten M., Giroux H. Acid-induced gelation of whey protein polymers: effect of pH and calcium concentration during polymerization[J]. Food Hydrocolloids, 2001, 15: 609 ?617
    [120] Hu W.; Zhang Y.; Wang Y. et al. Aggregation and Homogenization, Surface Charge and Structural Change, and Inactivation of Mushroom Tyrosinase in an Aqueous System by Subcritical/Supercritical Carbon Dioxide[J]. Langmuir 2010, 2318-2331
    [121] Skanderby M. Protein hydrolysates: their functionality and applications[J].Food Technol European.1994,10:141-148
    [122] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J].Trends in Food Science and Technology, 1996, 7:120-125
    [123] Lee K. A., Kim S. H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry, 2005, 90:389?393
    [124] Molina Ortiz S. E., Wagner J.R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties[J]. Food Research International, 2002, 35:511?518
    [125]刘骞,孔保华,张立娟.猪血浆蛋白水解物功能特性的研究[J].食品工业科技, 2009,(04)
    [126]赵玉红,孔保华,张立钢,王玮,历夏.鱼蛋白水解物功能特性的研究[J].东北农业大学学报, 2001,(02)
    [127]鲁晓翔,陈新华,唐津忠.酶法改性玉米蛋白功能特性的研究[J].食品科学, 2000,(12)
    [128] Franzen K. L., Kinsella J. E. Functional properties of acetylated and succinylated soy protein [J]. Journal of Agricultural and Food Chemistry, 1976, 24:788?795
    [129] Mirmoghtadaie L., Kadivar M., Shahedi M. Effects of succinylation and deamidation on functional properties of oat protein isolate [J]. Food Chemistry, 2009, 114: 127?131
    [130] Mohamed A., Biresaw G., Xu J. Y., et al. Oats protein isolate: Thermal, rheological, surface and functional properties [J]. Food Research International, 2009, 42: 107?114
    [131] Dua S., Mahajan A., Mahajan A. Improvement of functional properties of rapeseed (Brassica campestris Var. Toria) preparations by chemical modification [J]. Journalof Agricultural and Food Chemistry, 1996, 44: 706?710
    [132] Wanasundara P., Shahidi F.,Functional properties of acylated flax protein isolates [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 2431?2441
    [133] Krause J., Mothes R., Schwenke K.Some physicochemical and interfacial properties of native and acetylated legumin from faba beans (Vicia faba L.) [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 429?437
    [134] Schwenke K. , Knopfe C., Mikheeva L., et al. Structural changes of legumin from faba beans (Vicia faba l.) by succinylation [J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2080?2086
    [135] El-Adawy T. A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate [J]. Food Chemistry, 2000, 70:83?91
    [136] Kim S., Kinsella J.Effects of progressive succinylation on some molecular properties of soy glycinin [J]. Cereal Chemistry,1986, 63: 342?345
    [137] Lawal O.Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate [J]. Food Hydrocolloids2005,19:63?72
    [138] Gruener L., Ismond M.Effects of acetylation and succinylation on the functional properties of the canola 12S globulin [J]. Food Chemistry, 1997, 60: 513?520
    [139] Lawal O., Adebowale K. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics [J]. LWT- Food Science and Technology, 2006, 39: 918?929
    [140] Kabirullah, M.;Wills, R.Functional properties of acetylated and succinylated sunflower protein isolate[J]. International Journal of Food Science & Technology 1982, 17: 235-249
    [141] El-Adawy T. A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate[J].Food Chemistry 2000, 70: 83-91
    [142] Mu J., Tsay Y., Juan L., et al. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis[J].Virology 2004, 319: 60-70
    [143] Narayana K., Narasinga Rao M. Effect of Acetylation and Succinylation on the Physicochemical Properties of Winged Bean (Psophocarpus tetragonolobus) Proteins [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 259?26
    [144] Ma C. Y., Oomah B. D., Holme J. Effect of deamidation and succinylation on some physicochemical and baking properties of gluten [J]. Journal of Food Science, 1986, 51:99-103
    [145] Siu M., Thompson L. U. In vitro and in vivo digestibilities of succinylated cheese whey protein concentrates [J]. Journal of Agricultural and Food Chemistry, 1982, 30: 743?747
    [146] Tayyab S., Haq S. K., Sabeeha., et al. Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin [J]. International Journal of Biological Macromolecules, 1999, 26: 173?180
    [147] Matsudomi N. Conformation changes and functional properties of acid-modified soy protein[J]. Agricutural and Biological Chemistry,1985, 49:1251-1256
    [148] Chan W.M., Ma C.Y. Acid modification of proteins from soymilk residue(okara)[J]. Food Research International, 1999, 32: 119-127
    [149] Ma C.Y., Khanzada G. Functional properties of deamidated oat protein isolates[J]. Journal of Food Science, 1987, 52:1583-1587
    [150]卢寅泉.磷酸化大豆蛋白功能特性的研究[J].食品与发酵工业.1993,1:17-24
    [151] Mitchell J. R., Hill S. E. The use and control of chemical reactions to enhance the functionality of macromolecules in heat-produced foods[J].Trends in Food Science and Technology, 1995, 6:219-224
    [152] Babiker E.E., Hiroyuki A. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 866-871
    [153] Aoki T., Hiidome Y. Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucoronic acid though the maillard reaction[J]. Food Research Intrenational, 1999, 32:129-133
    [154] Fayle S E., Gerrard J. A. Crosslinkage of proteins by dehydroascorbic acid and its degradation products[J]. Food Chemistry, 2000,70:193-198
    [155] Nucci M. L., Shorr R., and Abuchowski A.. The therapeutic value of poly(ethylene glycol) modified proteins[J]. Adv. Drug Delivery Rev.1991,6:133?151.
    [156] Kawahara N. Y., and Ohno, H. (1997) Induced thermostability of poly(ethylene oxide)-modified hemoglobin in glycols[J]. Bioconjugate Chem. 8:643?648.
    [157] Huang Y., Komatsu T., Wang R, et al. Poly (ethylene glycol)-conjugated human serum albumin including iron porphyrins: surface modification improves the O2-transporting ability[J]. Bioconjugate chemistry 2006, 17: 393-398
    [158] Veronese F., Harris J.Introduction and overview of peptide and protein pegylation[J].Advanced drug delivery reviews 2002, 54: 453
    [159] Roberts M.,Bentley M.,Harris J.Chemistry for peptide and protein PEGylation[J]. Advanced drug delivery reviews 2002, 54: 459-476
    [160] Veronese F. Peptide and protein PEGylation: a review of problems and solutions[J]. Biomaterials 2001, 22: 405-417
    [1] El Nasri, N.; El Tinay, A.Functional properties of fenugreek (Trigonella foenum graecum) protein concentrate [J]. Food Chem,2007, 103:582– 589
    [2] Lamsal, B.; Koegel, R.; Gunasekaran, S.Some physicochemical and functional properties of alfalfa soluble leaf proteins [J]. LWT-Food Sci. Technol ,2007, 40:1520– 1526
    [3] L?kra, S.,Helland, M.,Claussen, I.,et al.Chemical characterization and functional properties of a potato protein concentrate prepared by large-scale expanded bed adsorption chromatography [J]. LWT-Food Sci. Technol,2008, 41:1089– 1099
    [4] (a) Hischke, H.; Potter, G.; Graham, W.Nutritive value of oat proteins. I. Varietal differences as measured by amino acid analysis and rat growth responses [J].Cereal Chem,1968, 45:374– 380 (b) Ma, C. Y.Chemical characterization and functionality assessment of oat protein fractions [J]. Ag.. Food Chem,1984, 32:144– 149
    [5] Seligson, F.; Mackey, L.Variable Predictions of protein quality by chemical score due to amino acid analysis and reference pattern [J]. Nutr,1984, 114:682– 691
    [6] Oats: Chemistry & Technology; AACC Monograph Series; Webster, F. H., Ed.; American Association of Cereal Chemists: St. Paul, MN, 1986.
    [7] Cluskey, J.; Wu, Y.; Wall, J.; Inglett, G.Oat protein concentrates from a wet-milling process: Preparation [J]. Cereal Chem,1973, 50:475– 481
    [8] Ma, C.Chemical characterization and functionality assessment of protein concentrates from oats [J].Cereal Chem,1983, 60:36– 42
    [9] (a) Ma, C. Preparation, composition and functional properties of oat protein isolates Can. [J].Inst. Food Sci. Technol,1983, 16:201– 205 (b) Ma, C.Functional properties of oat concentrate treated with linoleate or trypsin [J].Can. Inst. Food Sci. Technol ,1985, 18:79– 84
    [10] Wu, Y.; Sexson, K.; Cluskey, J.; Inglett, E.Protein isolate from high-protein oats: preparation, composition and properties J. Food Sci,1977, 42:1383– 1386
    [11] Ma, C.; Khanzada, G.Functional properties of deamidated oat protein isolate [J]. Food Sci,1987, 52:1583– 1587
    [12] Mirmoghtadaie, L.; Kadivar, M.; Shahedi, M.Effects of succinylation and deamidation on functional properties of oat protein isolate [J].Food Chem,2009, 114:127– 131
    [13] Farrell, H.; Wickham, E.; Unruh, J.,et al.Secondary structural studies of bovine caseins: temperature dependence ofβ-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization [J].Food Hydrocolloids ,2001, 15:341– 354
    [14] Kumosinski, T.; Unruh, J.Quantitation of the global secondary structure of globular proteins by FTIR spectroscopy: comparison with X-ray crystallographic structure [J].Talanta,1996, 43:199– 219
    [15] Binnig, G.; Gerber, C.; Stoll, E.,et al.Quate, C. F.Atomic resolution with atomic force microscope [J].Europhys. Lett,1987, 3:1281– 1286
    [16] Morris, V. J.; Kirby, A. R.; Gunning, A. P. Atomic Force Microscopy; Imperial College Press: London, U.K., 2001.
    [17] Association of Official Analytical Chemist. Methods of Analysis, 15th ed.; AOAC Press: Washington, D.C., 1990.
    [18] (a) Nagata, Y.; Shoji, R.; Yonezawa, S.; Oda, S.Brain D-serine and tyrosine levels in ataxic mutant mice [J].Amino Acids 1997, 12:95– 100 (b) Mu, T.; Tan, S.; Xue, Y.The amino acid composition, solubility and emulsifying properties of sweet potato protein [J].Food Chem,2009, 112:1002– 1005
    [19] Laemmli, U.Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature ,1970, 227:680– 685
    [20] Guan, X.; Yao, H.; Chen, Z.,et al.Some functional properties of oat bran protein concentrate modified by trypsin [J].Food Chem,2007, 101:163– 170
    [21] World Health Organization. WHO/FAO Report: Energy and Protein Requirements; WHO Technical Report Series No. 724; WHO: Geneva, Switzerland, 1985.
    [22] Peterson, D. M.Subunit structure and composition of oat seed globulin [J].Plant Physio,1978, 62:506– 509
    [23] Brinegar, A.; Peterson, D.Separation and characterization of oat globulin polypeptides [J].Arch. Biochem. Biophys,1982, 219:71– 79
    [24] Renugopalakrishnan, V.; Chandrakasan, G.; Moore, S.,et al.Bound water in collagen:evidence from Fourier transform infrared and Fourier transform infrared photoacoustic spectroscopic study [J].Macromolecules ,1989, 22:4121– 4124
    [25] Loll, B.; Gerold, G.; Slowik, D.,et al.Thermostability and Ca2+ binding properties of wild type and heterologously expressed PsbO protein from Cyanobacterial photosystem II [J].Biochemistry, 2005, 44:4691– 4698
    [26] Li, Y.; Lee, J.; Lal, J.,et al.Effects of pH on the interactions and conformation of bovine serum albumin: comparison between chemical force microscopy and small-angle neutron scattering [J]. Phys. Chem. B, 2008, 112:3797– 3806
    [27] Zhao, Y.; Mine, Y.; Ma, C. Study of thermal aggregation of oat globulin by laser light scattering[J].Journal of Agricultural and Food Chemistry,2004, 52: 3089-3096.
    [1] Kavanagh, G.; Clark, A.; Ross-Murphy,S.Heat-induced gelation of globular proteins: part 3.Molecular studies on low pH [beta]-lactoglobulin gels[J].International Journal of Biological Macromolecules, 2000, 28:41-50.
    [2] Durand, D.; Christophe Gimel, J.; Nicolai, T. Aggregation, gelation and phase separation of heat denatured globular proteins[J].Physica A: Statistical Mechanics and its Applications, 2002, 304:253-265.
    [3] Arnaudov, L.; de Vries, R.; Ippel, H.,et al.Multiple steps during the formation ofβ--lactoglobulin fibrils[J].Biomacromolecules,2003,4: 1614-1622.
    [4] Hamada, D.; Dobson, C.A kinetic study ofβ-lactoglobulin amyloid fibril formation promoted by urea[J].Protein Science, 2002, 11:2417-2426.
    [5] Gosal, W.; Clark, A.; Ross-Murphy, S.Fibrillarβ--lactoglobulin gels: Part 1. Fibril formation and structure[J].Biomacromolecules, 2004, 5:2408-2419.
    [6] Gosal, W.; Clark, A.; Pudney, P.,et al.Novel amyloid fibrillar networks derived from a globular protein:β--lactoglobulin[J].Langmuir ,2002, 18:7174-7181.
    [7] Veerman, C.; Ruis, H.; Leonard, M.,et al.Effect of electrostatic interactions on the percolation concentration of fibrillarβ--lactoglobulin gels[J].Biomacromolecules, 2002, 3:869-873.
    [8] Akkermans, C.; Venema, P.; van der Goot, A.,et al.Peptides are building blocks of heat-induced fibrillar protein aggregates ofβ--lactoglobulin formed at pH 2[J].Biomacromolecules ,2008, 9: 1474-1479.
    [9] Veerman, C.; de Schiffart, G.; Sagis, L.,et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J].International Journal of Biological Macromolecules ,2003, 33:121-127.
    [10] Pearce, F.; Mackintosh, S.; Gerrard, J. Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing[J].Journal of Agricultural and Food Chemistry, 2007, 55:318-322.
    [11] Azakami, H.; Mukai, A.; Kato, A. Role of amyloid type crossβ--structure in the formation of soluble aggregate and gel in heat-induced ovalbumin[J].Journal of Agricultural and Food Chemistry, 2005, 53:1254-1257.
    [12] Veerman, C.; Sagis, L.; Heck, J.,et al.Mesostructure of fibrillar bovine serum albumin gels[J].International Journal of Biological Macromolecules 2003, 31:139-146.
    [13] Vernaglia, B.; Huang, J.; Clark, E.Guanidine hydrochloride can induce amyloid fibrilformation from hen egg-white lysozyme[J].Biomacromolecules,2004,5: 1362-1370.
    [14] Akkermans, C.; Van Der Goot, A.; Venema, P.,et al.Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate[J].Journal of Agricultural and Food Chemistry ,2007, 55:9877-9882.
    [15] Zhang, Y.; Tang, C.; Wen, Q.,et al.Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength[J].Food Hydrocolloids ,2010, 24:266-274.
    [16] Qi, X. L.; Holt, C.; McNulty, D.,et al.Brownlow, S.; Jones, G. R. Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis[J].Biochemical Journal 1997, 324-341.
    [17] Aymard, P.; Nicolai, T.; Durand, D.,et al.Static and dynamic scattering ofβ--lactoglobulin aggregates formed after heat-induced denaturation at pH 2[J].Macromolecules ,1999, 32:2542-2552.
    [18] Bolder, S. G.; Vasbinder, A. J.; Sagis, L.,et al.Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation[J].International Dairy Journal ,2007, 17:846-853.
    [19] Bolder, S. G.; Hendrickx, H.; Leonard, M.,et al.Fibril assemblies in aqueous whey protein mixtures[J].Journal of Agricultural and Food Chemistry,2006, 54:4229-4234.
    [20] Rogers, S. S.; Venema, P.; Leonard, M.,et al. Measuring the length distribution of a fibril system: a flow birefringence technique applied to amyloid fibrils[J].Macromolecules ,2005, 38:2948-2958.
    [21] Ikeda, S.; Morris, V. J. Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy[J].Biomacromolecules, 2002, 3: 382-389.
    [22] Veerman, C.; Sagis, L. M. C.; Venema, P.,et al.The effect of shear flow on the percolation concentration of fibrillar protein assemblies[J].Journal of Rheology ,2005, 49:355.
    [23] Bolder, S. G.; Leonard, M.; Venema, P.,et al.Effect of stirring and seeding on whey protein fibril formation[J].Journal of Agricultural and Food Chemistry,2007, 55:5661-5669.
    [24] Sagis,L.;Veerman,C.;Van,E.Mesoscopic properties of semiflexible amyloid fibrils[J].Langmuir,2004, 20:924-927.
    [25] Patrizia P.D.L., Niccolo T., Erica F., et al. Protein Aggregation and Amyloid FibrilFormation by an SH3 Domain Probed by Limited Proteolysis [J].J Mol. Biol. ,2003, 334: 129–141
    [26] Cecile V.,Geertje D.S.t,Leonard M.C.,et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J]. International Journal of Biological Macromolecules, 2003, 33: 121–127
    [1] Derbyshire, E.; Wright, D. J.; Boulter, D. Legumin and vicilin. Storage proteins of legume seeds[J]. Phytochemistry 1976, 15:3?24.
    [2] Millerd, A. Biochemistry of legume seed proteins[J].Annu. Rev. Plant Physiol. 1975, 26:53?72.
    [3] Neilsen, N. C. The structure and complexity of 11S polypeptides in soybeans[J]. J. Am. Oil Chem. Soc. 1985, 62:1680?1686.
    [4] Matlashewski, G. J.; Adeli, K.; Altosaar, I.,et al.J. In vitro synthesis of oat globulin[J]. FEBS Lett. 1982, 145: 208?212.
    [5] Brinegar, A. C.; Peterson, D. M. Separation and characterization of oat globulin polypeptides[J].Arch. Biochem. Biophys. 1982, 219: 71?79.
    [6] Zhao, Y.; Mine, Y.; Ma, C. Y. Study of thermal aggregation of oat globulin by laser light scattering[J].Journal of Agricultural and Food Chemistry 2004, 52:3089-3096.
    [7] Harwalkar, V. R.; Ma, C.-Y. Study of thermal properties of oat globulin by differential scanning calorimetry[J].J. Food Sci. 1987, 52:394?398.
    [8] Ma, C.-Y.; Harwalkar, V. R. Study of thermal denaturation of oat globulin by ultraviolet and fluorescence spectrophotometry[J].J.Agric.Food Chem.1988, 36:155?160.
    [9] Ma, C.-Y.; Rout, M. K.; Chan, W.-M.,et al.Raman spectroscopic study of oat globulin conformation[J].J. Agric. Food Chem. 2000, 48: 1542?1547.
    [10] Ma, C.-Y.; Rout, M. K.; Mock, W.-Y. Study of Oat Globulin Conformation by Fourier Transform Infrared Spectroscopy[J].Journal of Agricultural and Food Chemistry 2001, 49: 3328-3334.
    [11] Akkermans C., Van der Goot A.J., Venema P., et al. Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation[J]. International Dairy Journal, 2008, 18: 1034–1042
    [12] Cecile V., Hilde R., Leonard M.C.S., et al. Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillar a-Lactoglobulin Gels[J]. Biomacromolecules, 2002, 3: 869-873
    [13] Laemmli, U. K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature 1970, 227:680–685
    [14] Guan, X.; Yao, H. Y.; Chen, Z. X.,et al.Some functional properties of oat bran protein concentrate modified by trypsin[J]. Food Chem. 2007, 101:163– 170
    [15] Suzanne G.B., Astrid J.V., Leonard M.C.S., et al. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation[J]. International Dairy Journal, 2007, 17: 846–853
    [16] Yumiko O., Kazuhiro H., Hironobu N., et al. Optimum Amyloid Fibril Formation of a Peptide Fragment Suggests the Amyloidogenic Preference ofβ-Microglobulin under Physiological Conditions[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279(11): 10814–10821
    [17] Cecile V., Hilde R., Leonard M.C.S., et al. Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillarβ-Lactoglobulin Gels[J]. Biomacromolecules, 2002, 3: 869-873
    [18] Cynthia A., Atze J.V.D.G.t, Paul V., et al. Formation of fibrillar whey protein aggregates: Influence of heat and shear treatment, and resulting rheology[J]. Food Hydrocolloids, 2008, 22: 1315–1325
    [19] Yumiko O., Kazuhiro H., Hironobu N., et al. Optimum Amyloid Fibril Formation of a Peptide Fragment Suggests the Amyloidogenic Preference ofβ-Microglobulin under Physiological Conditions[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279(11):10814–10821
    [20] Arnaudov, L. N.; de Vries, R.; Ippel, H.,et al.Multiple steps during the formation of |?-lactoglobulin fibrils[J].Biomacromolecules 2003, 4:1614-1622.
    [21] Gosal, W. S.; Clark, A. H.; Pudney, P. D. A.,et al.Novel amyloid fibrillar networks derived from a globular protein: |?-lactoglobulin[J].Langmuir 2002, 18:7174-7181.
    [22] Veerman, C.; Ruis, H.; Leonard, M.,et al.Effect of electrostatic interactions on the percolation concentration of fibrillar |?-lactoglobulin gels[J].Biomacromolecules 2002, 3: 869-873.
    [23] Michael R.N., Melissa A.M., Dana K.R., et al.Growth ofβ-Amyloid(1-40) Protofibrils by Monomer Elongation and Lateral Association. Characterization of Distinct Products by Light Scattering and Atomic Force Microscopy[J]. Biochemistry, 2002, 41: 6115-6127
    [24] Cecile V., Hilde R., Leonard M.C.S., et al. Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillarβ-Lactoglobulin Gels[J]. Biomacromolecules, 2002, 3: 869-873
    [25] Bolder, S. G.; Vasbinder, A. J.; Sagis, L.,et al.Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation[J].International Dairy Journal 2007, 17:846-853.
    [26] Bolder, S. G.; Leonard, M.; Venema, P.,et al.Effect of stirring and seeding on whey protein fibril formation[J].Journal of Agricultural and Food Chemistry 2007, 55:5661-5669.
    [27] SAGIS,L.; VEERMAN, C.; VAN DER LINDEN, E. Mesoscopic properties of semiflexible amyloid fibrils[J].Langmuir 2004, 20:924-927.
    [28] Zhang, Y. H.; Tang, C. H.; Wen, Q. B.,et al.Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L. ) protein isolate at pH 2.0: Influence of ionic strength[J].Food Hydrocolloids 2010, 24:266-274.
    [29] Akkermans, C.; Van Der Goot, A.; Venema, P.,et al.Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate[J].Journal of Agricultural and Food Chemistry 2007, 55:9877-9882.
    [30] Oboroceanu, D.; Wang, L.;Brodkorb,A.,et al.Characterization ofβ-Lactoglobulin Fibrillar Assembly Using Atomic Force Microscopy, Polyacrylamide Gel Electrophoresis, and in Situ Fourier Transform Infrared Spectroscopy[J].Journal of Agricultural and Food Chemistry 2010, 58: 3667-3673.
    [31] Tang, C. H.; Wang, C. S. Formation and Characterization of Amyloid-like Fibrils from Soy |?-Conglycinin and Glycinin[J].Journal of Agricultural and Food Chemistry 2010: 158-165.
    [32] Alvar G.J., Malika R., Marianela C.M., et al. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments[J]. Food Hydrocolloids, 2008, 22: 1014–1032
    [33] Arnaudov L.N., Vries R., Ippel H., et al. Multiple steps during the formation of beta-lactoglobulin fibrils[J]. Biomacromolecules, 2003, 4: 1614-1622
    [34] Patrizia P.D.L., Niccolo T., Erica F., et al. Protein Aggregation and Amyloid Fibril Formation by an SH3 Domain Probed by Limited Proteolysis [J].J Mol. Biol. ,2003, 334: 129–141
    [35] Cecile V.,Geertje D.S.t,Leonard M.C.,et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J]. International Journal of Biological Macromolecules, 2003, 33: 121–127
    [36] Snapshots of fibrillation and aggregation kinetics in multistranded amyloidβ-lactoglobulin fibrils [J]. Soft Matter, 2011, 7: 493-499
    [37] Akkermans, C.; van der Goot, A. J.; Venema, P.; Gruppen, H.; Vereijken, J. M.; van der Linden, E.; Boom, R. M.Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate [J].J. Agric. Food Chem. 2007, 55:9877– 9882
    [38] Mounsey, J. S.; O'Kennedy, B. T.; Fenelon, M. A.,et al.The effect of heating on [beta]-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength[J].Food Hydrocolloids 2008, 22: 65-73.
    [39] Weiss, J.; Takhistov, P.; McClements, D. J.Functional materials in food nanotechnology[J].Journal of food science 2006, 71:107-116.
    [1] Oboroceanu, D.; Wang, L.; Brodkorb, A.,et al.Characterization ofβ-Lactoglobulin Fibrillar Assembly Using Atomic Force Microscopy, Polyacrylamide Gel Electrophoresis, and in Situ Fourier Transform Infrared Spectroscopy[J].Journal of Agricultural and Food Chemistry 2010, 58:3667-3673.
    [2] Tang, C. H.; Zhang, Y. H.; Wen, Q. B.,et al.Formation of Amyloid Fibrils from Kidney Bean 7S Globulin (Phaseolin) at pH 2.0[J].Journal of Agricultural and Food Chemistry 2010, 58: 8061-8068.
    [3] Ma, S.; Cao, X.; Mak, M.; Sadik, A.,et al.Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution[J].Journal of the American Chemical Society 2007, 129:12364-12365.
    [4] Laemmli, U. K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature 1970, 227:680– 685
    [5] Guan, X.; Yao, H. Y.; Chen, Z. X.,et al.Some functional properties of oat bran protein concentrate modified by trypsin[J]. Food Chem. 2007, 101:163– 170
    [6] Bolder, S. G.; Vasbinder, A. J.; Sagis, L. M. C.,et al.Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation [J].Int. Dairy J. 2007, 17: 846– 853
    [7] Misha, R.; S rgjerd, K.; Nystr m, S.,et al.Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion[J]. J. Mol. Biol. 2007, 366:1029– 1044
    [8] Zhang, Y. H.,Tang, C. H.,Wen, Q. B.,et al.Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L. ) protein isolate at pH 2.0: Influence of ionic strength[J],Food Hydrocolloids 2010, 24: 266-274.
    [9] Akkermans, C.; Venema, P.; van der Goot, A. J.,et al.Peptides are building blocks of heat-induced fibrillar protein aggregates ofβ-lactoglobulin formed at pH2[J]. Biomacromolecules 2008, 9:1474– 1479
    [10]王晓燕.多酚对荞麦蛋白物化、营养及结构性质的影响.华南理工大学,硕士学位论文,2010
    [11] Kelly S.M., Price N.C.. The application of circular dichroism to studies of protein folding and unfolding[J]. Biochimca et Biophysica Acta, 1997, 1338: 161-185
    [12] Yang J.T., Wu C.S., Martinez H.M.. Calculation of protein conformation from circulardichroism[J]. Methods in Enzymology, 1986, 130: 208-269
    [13] Clark, A.H., Saunderson, D.H., Suggett A.Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels[J]. Int.J. Pept. Protein Res, 1981, 17: 353–364
    [14] Meersman, F., Smeller, L., Heremans, K. Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin[J]. Biophys. J, 2002, 82: 2635–2644
    [15] Marcone M.F., Yada R.Y.. Isolation, purification and characterization of the seed storage globulin and its polymerized form from Triticum aestivum[J]. Journal of Food Biochemistry, 1994, 18: 123-163
    [16] Michael G., Deborah K.W., Maureen C.P., et al. Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB[J]. Protein Science, 1999, 8: 1350–1357
    [17] Anshul R., Teemish P.G., Saurabh B., et al.. Formation of amyloid fibrils by bovine carbonic anhydrase[J]. Biochimica et Biophysica Acta, 2008,1784: 930–935
    [18]张业辉.芸豆蛋白纤维状聚集及凝胶机理.华南理工大学,博士学位论文,2010
    [19] Saeed, S.M., Fine, G.,. Thioflavin-T for amyloid detection[J]. Am. J. Clin. Pathol. 1967, 47 (5) :588-593
    [20] Raimon S., Sven J.S.. Thioflavin T fluorescence anisotropy: An alternative technique for the study of amyloid aggregation[J].Biochemical and Biophysical Research Communications, 2007, 360: 135–138
    [21] Ardy K.N., Yvette S.L., Paul V., et al. Thioflavin T fluorescence assay forβ-lactoglobulin fibrils hindered by DAPH[J]. Journal of Structural Biology, 2009, 165: 140–145
    [22] Khurana R., Coleman C., Ioanescu-Zanetti C., et al. Roy, S. Singh, Mechanism of thioflavin T binding to amyloid fibrils[J]. Struct. Biol, 2005, 151: 229–238
    [1]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究.华南理工大学,博士学位论文,2006
    [2] Kang I.J.Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system[J].Journal of Agricultural and Food Chemistry.1994,42(1):159-165.
    [3] Nucci, M. L., Shorr, R., and Abuchowski, A.The therapeutic value of poly(ethylene glycol) modified proteins[J].Adv. Drug Delivery Rev. 1991, 6:133?151.
    [4] Kawahara, N. Y., and Ohno, H. Induced thermostability of poly(ethylene oxide)-modified hemoglobin in glycols[J].Bioconjugate Chem.1997, 8:643?648.
    [5] Huang, Y.; Komatsu, T.; Wang, R. M.,et al.Poly (ethylene glycol)-conjugated human serum albumin including iron porphyrins: surface modification improves the O2-transporting ability[J].Bioconjugate chemistry 2006, 17: 393-398.
    [6] Veronese, F.; Harris, J. Introduction and overview of peptide and protein pegylation[J].Advanced drug delivery reviews 2002, 54:453.
    [7] Roberts,M.;Bentley,M.;Harris,J.Chemistry for peptide and protein PEGylation[J].Advanced drug delivery reviews 2002, 54:459-476.
    [8] Veronese, F. M. Peptide and protein PEGylation: a review of problems and solutions[J].Biomaterials 2001, 22:405-417.
    [9] Renugopalakrishnan, V.; Chandrakasan, G.; Moore, S.,et al.Bound water in collagen:evidence from Fourier transform infrared and Fourier transform infrared photoacoustic spectroscopic study [J].Macromolecules 1989, 22:4121– 4124
    [10] Yuping Huang, Hailong Yu, Liang Guo.,et al.Structure and Self-Assembly Properties of a New Chitosan-Based Amphiphile[J].J. Phys. Chem. B, 2010, 114 (23) :7719–7726
    [11] Gang Liu,Ji Li,Ke Shi,et al.Composition, Secondary Structure,and Self-Assembly of Oat Protein Isolate[J].Journal of Agricultural and Food Chemistry,2009,57 (11):4552-4558
    [12] Suzanne G.B., Astrid J.V., Leonard M.C.S., et al. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation[J]. International Dairy Journal, 2007, 17: 846–853
    [13] Yumiko O., Kazuhiro H., Hironobu N., et al. Optimum Amyloid Fibril Formation of aPeptide Fragment Suggests the Amyloidogenic Preference ofβ-Microglobulin under Physiological Conditions[J].THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279(11): 10814–10821
    [14] Cecile V., Hilde R., Leonard M.C.S., et al. Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillarβ-Lactoglobulin Gels[J]. Biomacromolecules, 2002, 3: 869-873
    [15] Cynthia A., Atze J.V.D.G.t, Paul V., et al. Formation of fibrillar whey protein aggregates: Influence of heat and shear treatment, and resulting rheology[J]. Food Hydrocolloids, 2008, 22: 1315–1325
    [16] Snapshots of fibrillation and aggregation kinetics in multistranded amyloidβ-lactoglobulin fibrils?[J]. Soft Matter, 2011, 7: 493-499
    [17] Yang J.T., Wu C.S., Martinez H.M.. Calculation of protein conformation from circular dichroism[J]. Methods in Enzymology, 1986, 130: 208-269
    [18] Saeed, S.M., Fine, G.,. Thioflavin-T for amyloid detection[J]. Am. J. Clin. Pathol. 1967, 47 (5) :588-593
    [19] Raimon S., Sven J.S.. Thioflavin T fluorescence anisotropy: An alternative technique for the study of amyloid aggregation[J]. Biochemical and Biophysical Research Communications, 2007, 360: 135–138
    [20] Ardy K.N., Yvette S.L., Paul V.,et al. Thioflavin T fluorescence assay forβ-lactoglobulin fibrils hindered by DAPH[J]. Journal of Structural Biology, 2009, 165: 140–145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700