用户名: 密码: 验证码:
干旱条件下裸燕麦根源信号、渗透调节及与产量形成的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过盆栽试验研究了5个品种裸燕麦(Avena sativa L.)根源信号、渗透调节及其与籽粒产量的相互关系。供试材料为不同年代选育的裸燕麦品种,分别为早期育成的地方品种老莜麦(LY)、燕麦(YM)和现代育成的品种定莜5号(DY5)、定莜6号(DY6)、定莜7号(DY7)。试验研究了裸燕麦在干旱胁迫下的根源信号特征、渗透调节能力、籽粒产量和籽粒水分利用效率(WUEG)在品种之间的差异,并探究了这三者之间的相互关系。所得结论如下:
     1、逐渐干旱依次激发了裸燕麦的非水力根源信号(nHRS)和水力信号(HS)。5个裸燕麦LY、YM、DY5、DY6和DY7的非水力根源信号土壤水分阈值区间分别为59.0-34.7%FWC(FWC,田间持水量)(24.3%FWC)、56.4-31.6%FWC (24.8%FWC)、51.8-35.0%FWC (16.8%FWC)、60.4-34.1%FWC (26.3%FWC)、51.8-30.1%(21.7%FWC)。因此,相对于老品种(LY、YM),新品种的nHRS土壤水分阈值区间的并没有显著拓宽。
     2、通过测定干旱胁迫下裸燕麦叶片水势(WP)、叶片渗透势(OP)及叶片膨压势(TP),衡量其渗透调节阈值区间;LY:-1.295~-1.492MPa、YM:-1.273--1.493MPa、DY5:-1.237~-1.727MPa、DY6:-1.274--1.768MPa、DY7:-1.342--1.781MPa)。可见,新品种的渗透调节能力强于老品种。
     3、5个裸燕麦品种的致死叶片水势大小排序为:YM(-3.2MPa)>LY (-3.8MPa)> DY5(-4.5MPa)> DY6(-5.6MPa)> DY7(-6.0MPa),即新品种的致死叶片水势低于老品种,表现出较强的耐脱水性。相关分析发现,5个燕麦品种的致死叶片水势与渗透调节阈值区间呈负相关(r2=-0.801,P>0.05)。
     4、产量形成实验发现,新品种在三个水分梯度(90%、55%、35%FWC)下的籽粒产量、收获指数及籽粒水分利用效率等方面都高于老品种。相关分析表明,中度水分胁迫下(55%FWC),裸燕麦籽粒产量与nHRS土壤水分阈值区间呈显著负相关(r2=-0.881,P<0.05),与渗透调节阈值区间呈显著正相关(r2=0.886,P<0.05);而严重水分胁迫下(35%FWC),裸燕麦籽粒产量与nHRS阈值区间和渗透调节阂值区间没有显著的相关性(P>0.05)。同时发现干旱胁迫下(55%和35%FWC)裸燕麦的籽粒水分利用效率(WUEG)与渗透调节阂值区间呈显著正相关(r2=0.952,P<0.05;r2=0.981,P<0.01)。综上,在早地裸燕麦的选育过程中,新品种渗透调节能力和耐脱水性的增强有益于其干旱胁迫下的籽粒产量和WUEG。
The pot experiments were carried out to investigate the relationships of root-sourced signals, osmotic adjustment and grain yield of five naked oat (Avena sativa L.) cultivars. Two early-released cultivars, Laoyoumai (LY,1950s) and Yanmai (YM,1950s), and three recently-released cultivars were, Dingyou5(DY5), Dingyou6(DY6) and Dingyou7(DY7) were used in this studies. The performance of root-sourced signals, osmotic adjustment, grain yield and water use efficiency for grain (WUEg) of five naked oat cultivars under drought stress were recorded, and their relationships were analyzed. The main results as follows;
     1. The non-hydraulic root-sourced signal (nHRS) and hydraulic signal (HS) of naked oat cultivars were triggered in turn during the gradually soil drying. The soil water content (SWC) threshold range of nHRS for LY, YM, DY5, DY6and DY7were59.0-34.7%FWC (field water content)(24.3%FWC),56.4-31.6%FWC (24.8%FWC),51.8-35.0%FWC (16.8%FWC),60.4-34.1%FWC (26.3%FWC) and51.8-30.1%(21.7%FWC) respectively. Therefore, the SWC threshold range of nHRS was not be broadened in recently-released cultivars, comparing to that of early-released cultivars.
     2. The leaf water potential (WP), leaf osmotic potential (OP) and leaf turgor potential (TP) were measured in naked oat cultivars to evaluate their threshold range of osmotic adjustment. The threshold range of osmotic adjustment for LY, YM, DY5, DY6and DY7were-1.295~-1.492MPa,-1.273~-1.493MPa,-1.237~-1.727MPa,-1.274~-1.768MPa and-1.342~-1.781MPa, respectively; Which shows the osmotic adjustment ability in recently-released cultivars were better than that of early-released cultivars.
     3. The lethal leaf water potentials of five naked oat cultivars were compared as follows:YM (-3.15MPa)> LY (-3.77MPa)> DY5(-4.50MPa)> DY6(-5.55MPa)> DY7(-6.02MPa); the lethal leaf water potential was lower in recently-released cultivars, which showed higher desiccation tolerance. Correlation analysis showed lethal leaf water potential was negatively correlated to the SWC threshold range of osmotic adjustment (r2=-0.801, P>0.05).
     4. Yield formation experiment showed that grain yield, harvest index (HI) and water use efficiency for grain (WUEg) in recently-released cultivars were higher than that in early-released cultivars, no matter which water-supply regions (90%,55%,35%FWC). At moderate water stress (55%FWC), the grain yield negatively correlated to the SWC threshold range of nHRS (r2=-0.881, P<0.05), and positively correlated to the threshold range of osmotic adjustment (r2=0.886, P<0.05); whereas at the severe water stress (35%FWC), there were no significant correlation between grain yield neither the SWC threshold range of nHRS (P>0.05) nor the threshold range of osmotic adjustment (P>0.05). In addition, the WUEG were significantly correlated with the threshold range of osmotic adjustment at both water stress regions (55%,35%; r2=0.952, P<0.05; r2=0.981. P<0.01). In conclusion, the improvement for osmotic adjustment and desiccation tolerance in recently-released cultivars during breeding process, were contributed to their grain yield under drought condition.
引文
[1]Abrams M. D., Kubiske M. E.1990. Photosynthesis and water relations during drought in Acer rubrum L genotypes from contrasting sites in central Pennsylvania. Functional Ecology 4,727-733.
    [2]Auge R. M., Duan X, Croker J. L., Witte W. T., Green C. D.1998. Foliar dehydration tolerance of twelve deciduous tree species. Journal of Experimental Botany 49,753-759.
    [3]Babu R. C., Pathan M. S., Blum A., Nguyen H. T.1999. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science 39,150-158.
    [4]Baltzer J. L., Davies S. J., Bunyavejchewin S., Noor N. S. M.2008. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct. Ecol 22,221-231.
    [5]Bano A., Dorffling K., Bettin D., Hahn H.1993. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Functional Plant Biology 20, 109-115.
    [6]Bartlett M. K., Scoffoni C., Sack L.2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes:a global meta-analysis. Ecology Letters 15,393-405.
    [7]Belhassen E., This D., Monneveux P.1995. L'adaptation genetique face aux contraintes de secheresse. Cahiers Agricultures 4,251-261.
    [8]Bernstein L.1961. Osmotic adjustment of plants to saline media. I. Steady state. American Journal of Botany 48,909-918.
    [9]Blackman P., Davies W.1985. Root to Shoot Communication in Maize Plants of the Effects of Soil Drying. Journal of Experimental Botany 36,39-48.
    [10]Blum A., Mayer J., Gozlan G 1983. Associations between plant production and some physiological components of drought resistance in wheat. Plant, Cell and Environment 6, 219-225.
    [11]Blum A., Mayer J., Gozlan G 1983. Associations between plant production and some physiological components of drought resistance in wheat. Plant, Cell and Environment 6, 219-225.
    [12]Blum A.1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science 29,230-233.
    [13]Blum A.1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation 20,135-148.
    [14]Davies W. J., Zhang J.1991. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol 42,55-76.
    [15]Du Y. L., Wang Z. Y, Fan J. W., Turner N. C., Wang T., Li F. M.2012. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. Journal of Experimental Botany 63,4849-4860.
    [16]Engelbrecht B. M. J., Kursar T. A.2003. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136,383-393.
    [17]Engelbrecht B. M. J., Velez V, Tyree M. T.2000. Hydraulic conductance of two co-occuring neotropical understory shrubs with different habitat preferences. Annals of Forest Science 57, 201-208.
    [18]Fan X. W., Li F. M., Xiong Y. C., An L. Z., Long R. J.2008. The cooperative relation between non-hydraulic root signals and osmotic adjustment under water stress improves grain formation for spring wheat varieties. Physiologia Plantarum 132,283-292.
    [19]Fan X. W., Li F. M., Song L., Xiong Y. C., An L. Z., Jia Y, Fang X. W.2009. Defense strategy of old and modern spring wheat varieties during soil drying. Physiol Plant 136, 310-323.
    [20]Gonzalez A., Martin I., Ayerbe L.2008. Yield and osmotic adjustment capacity of Barley under terminal water-stress conditions. Journal of Agronomy and Crop Science 194,81-91.
    [21]Gollan T., Passioura J. B., Munns R.1986. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13,459-464.
    [22]Holmstrom K. O., Mantyla E., Welin B., Mandal A., Palva E. T.1996. Drought tolerance in tobacco. Nature 376,683-684.
    [23]Hsiao T. C., O'Toole J. C., Yambo E. B., Turner N. C.1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice. Plant Physiology 75,338-341.
    [24]Jamaux I., Steinmetz A., Belhassen E.1997. Looking for molecular and physiological markers of osmotic adjustment in sunflower. New Phytologist 137,117-127.
    [25]Kenneth F.1998. Genetic responses of oat genotypes to environmental factors. Field Crops Research 56,183-185.
    [26]Kuppers B. I. L., Kuppers M., Schulze E. D.1988. Soil drying and its effect on leaf conductance and CO2 assimilation of Vigna unguiculata (L.) Walp. I. The response to climatic factors and to the rate of soil drying in young plants. Oecologia 75,99-104.
    [27]Lecoeur J., Sinclair T. R.1996. Field pea transpiration and leaf growth in response to soil water deficits. Crop Science 36,331-335.
    [28]Li F. M., Zhao S. L.1997. New approaches in researches of water use efficiency in semiarid area of Loess Plateau. Chin JAppl Ecol 8,104-109.
    [29]Lilley J. M., Ludlow M. M.1996. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Research 48,185-197.
    [30]Lilley J. M., Ludlow M. M., Mc Couch S. R., O'Toole J. C.1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. Journal of Experimental Botany 47,1427-1436.
    [31]Ludlow M. M., Santamaria J. M., Fukai S.1990 Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. Ⅱ. Water stress after anthesis. Australian Journal of Agricultural Research 41,67-78.
    [32]Ludlow M. M., Muchow R. C.1990. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy 43,107-153.
    [33]Mahouachi J., Arbona V., Gomez-Cadenas A.2007. Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regulation 53,43-51.
    [34]Martin J. H.1930. The comparative drought resistance of sorghums and corn. Agronomy Journal 22,993-1003.
    [35]Martin-Vertedor A. I., Dodd I. C.2011. Root-to-shoot signalling when soil moisture is heterogeneous:increasing the proportion of root bio mass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration. Plant, Cell and Environment,1164-1175.
    [36]Martinez M. F., Arelovich H. M., Wehrhahne L. N.2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Research 116, 92-100.
    [37]Meyer R. E., Gingrich J. R.1964. Osmotic stress:effects of its application to a portion of wheat root systems. Science 144,1463.
    [38]Morgan J. M.,1977. Differences in osmoregulation between wheat genotypes. Nature 270, 234-235.
    [39]Morgan J. M.1983. Osmoregulation as a selection criterion for drought tolerance in wheat. Australian Journal of Agricultural Research 34,607-614.
    [40]Morgan J. M.1984. Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology 35,299-319.
    [41]Morgan J. M., Condon A. G. 1986. Water use, grain yield, and osmoregulation in wheat. Australian Journal of Agricultural Research 13,523-532.
    [42]Morgan J. M.1991. A gene controlling differences in osmoregulation in wheat. Australian Journal of Plant Physiology 18,249-257.
    [43]Morgan J. M., Rodriguez-Maribona B., Knights E. J.1991. Adaptation to water-deficit in chickpea breeding lines by osmoregulation:relationship to grain-yields in the field. Field Crops Research 27,61-70.
    [44]Morgan J. M.1995. Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Research 40, 143-152.
    [45]Muchow R. C., Sinclair T. R.1991. Water deficit effects on maize yields modeled under current and "greenhouse" climates. Agronomy Journal 83,1052-1059.
    [46]Munns R.1988. Why measure osmotic adjustment? Australian Journal of Plant Physiology 15,717-726.
    [47]Munns R.1992. A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Aust J Plant Physiol 19,127-135.
    [48]Nguyen H. T., Babu R. C., Blum A.1997. Breeding for drought resistance in rice:physiology and molecular genetics considerations. Crop Science 37,1426-1434.
    [49]Nuccio M. L., Rhodes D., McNeil S. D., Hanson A. D.1999. Metabolic engineering of plants for osmotic stress resistance. Plant Biotechnology 2,128-134.
    [50]Ozturk Z. N., Talame V., Deyholos M., Michalowski C. B., Galbraith D. W., Gozukirmizi N., Tuberosa R., Bohnert H. J.2002. Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Moleculor Biology 48,551-573.
    [51]Porcel R., Ruiz-Lozano J. M.2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55,1743-1750.
    [52]Price A., Courtois B.1999. Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Regulation 29,123-133.
    [53]Ramanjulu S., Bartels D.2002. Drough-and desiccation-induced modulation of gene expression in plants. Plant, Cell and Environment 25,141-151.
    [54]Rathinasabapathi B.2000. Metabolic engineering for stress tolerance:installing osmoprotectant synthesis pathways. Annals of Botany 86,709-716.
    [55]Rhodes D., Samaras Y.1994. Genetic control of osmoregulation in plants. In Cellular and Molecular Physiology of Cell Volume Regulation (ed K. Strange), CRC Press, Boca Raton, FL,347-361.
    [56]Ritchie J. T., Burnett E., Henderson R. C.1972. Dryland evaporative flux in a subhumid climate. III. Soil water influence. Agronomy Journal 64,168-173.
    [57]Ritchie J. T.1973. Influence of soil water status and meteorological conditions on evaporation from a corn canopy. Agronomy Journal 65,893-897.
    [58]Rosenthal W. D., Arkin G. F., Shouse P. J., Jordan W. R.1987. Water deficit effects on transpiration and leaf growth. Agronomy Journal 79,1019-1026.
    [59]Schachtman D. P., Goodger J. Q. D.2008. Chemical root to shoot signaling under drought. Trends Plant Sci 13,281-287.
    [60]Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M., Waner D.2001. Guard cell signal transduction. Annu Rev Plant Biol 52,627-658.
    [61]Serraj R., Sinclair T. R.2002. Osmolyte accumulation:can it really help increase crop yield under drought conditions? Plant, Cell and Environment 25,333-341.
    [62]Sinclair T. R.1986. Water and nitrogen limitations in soybean grain production. I. Model development. Field Crops Research 15,125-141.
    [63]Sinclair T. R.2000. Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crops Research 68,211-217.
    [64]Sperdouli I., Moustakas M.2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology 169,577-585.
    [65]Tangpremsri T., Fukai S., Fischer K.S., Henzell R.G 1991. Genotypic variation in osmotic adjustment in grain sorghum.2. Relation with some growth attributes. Australian Journal of Agricultural Research 42,759-767.
    [66]Tardieu F., Zhang J., Davies W.1992. What information is conveyed by an ABA signal from maize roots in drying field soil? Plant, Cell and Environment 15,185-191.
    [67]Tardieu F.1996. Drought perception by plants:Do cells of droughted plants experience water stress? Plant Growth Regulation 20,93-104.
    [68]Teulat B., This D., Khairallah M., Borries C., Ragot C., Sourdille P., Leroy P., Monneveux P., Charrier A.1998. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theoretical Applied Genetics 96,688-698.
    [69]Thomas H.1997. Drought resistance in plants, In Mechanisms of environmental stress resistance in plants (eds Basra A. S., Basra R. K.), The Netherlands:Harwood Academic Publishers,1-42.
    [70]Turner N. C., Jones M. M.1980. Turgor maintenance by osmotic adjustment, a review and evaluation, In Adaptation of Plants to Water and High Temperature Stress (eds Turner N. C., Kramer P. J), Wiley-Interscience, New York,87-103.
    [71]Turner N. C., Abbo S., Berger J. D., Chaturvedi S. K., French R. J., Ludwig C., Mannur D. M., Singh S. J., Yadava H. S.2006. Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. Journal of Experimental Botany 58, 187-194.
    [72]Van Deynze A. E., Nelson J. C., Yglesias E. S., Harrington S. E., Braga D. P., McCouch S. R., Sorrells M. E.1995. Comparative mapping in grasses. Wheat relationships. Molecular and General Genetics 248,744-754.
    [73]Wang Z. Y., Li F. M., Xiong Y. C., Xu B. C.2008. Soil-water threshold range of chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during progressive soil drying. Journal of Plant Growth Regulation 27,309-319.
    [74]Xianshi G., Sinclair T. R., Ray J. D.1997. Effect of drought history on recovery of transpiration, photosynthesis, and leaf area development in maize. Soil and Crop Science Society of Florida Proceedings 57,83-87.
    [75]Xiong Y. C., Li F. M., Xu B. C., Hodgkinson K. C.2006a. Hydraulic and Non-hydraulic Root-sourced Signals in Old and Modern Spring Wheat Cultivars in a Semiarid Area. Journal of Plant Growth Regulation 25,120-136.
    [76]Xiong Y. C., Li F. M., Zhang T.2006b. Performance of wheat crops with different chromosome ploidy:root-sourced signals, drought tolerance, and yield performance. Planta 224,710-718.
    [77]Zhang J, Davies W. J.1989. Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plants. New Phytologist 113,167-174.
    [78]Zhang J., Davies W. J.1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant, Cell and Environment 13,277-285.
    [79]Zhang J., Davies W. J.1991. Antitranspirant activity in xylem sap of maize plants. Journal of Experimental Botany 42,317-321.
    [80]Zhang J., Klueva N., Nguyen H. T.1996. Plant adaptation and crop improvement for arid and semi-arid environments. Proceedings of the Fifth International Conference on Desert Development,12-17 August, Texas.
    [81]Zhang J., Nguyen H. T., Blum A.1999. Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany 50,291-302.
    [82]Zhu J. K., Hasegawa P. M., Bressan R. A., Bohnert H. J.1997. Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences 16,253-277.
    [83]鲍根生,周青平,韩志林,王军萍.2008.N、K配施对燕麦生长特性和鲜草产量影响的研究.新海畜牧兽医杂志38,4-7.
    [84]樊英鑫,容冬青,吴桂丽,牛瑞明.2009.莜麦(裸燕麦)抗旱研究进展.河北北方学院院报(自然科学版)25,43-57.
    [85]郭安红,李凤民,李召祥,庞斌双,山仑.1999.表土干旱和根信号对春小麦产量形成的影响.应用生态学报10,689-695.
    [86]黄相国,葛菊梅.2004.燕麦(Arena sativa)的营养成分与保健价值探讨.麦类作物学报24,147-149.
    [87]贾志锋,周青平,韩志林,颜红波.2007.N、P肥对裸燕麦生产性能的影响.草业科学24,19-22.
    [88]李希来,杨力军,张国胜,孙宝琛,王海波.2001.不同播量对燕麦生长发育的影响.中国草地23,26-28.
    [89]刘彦明,何小谦,任生兰等.燕麦技术手册.
    [90]齐华,许晶,孟显华,王晓波,刘明,白向历,管宏军.2009.水分胁迫对燕麦苗期光 合特性的影响.农业科技通讯5,31-34.
    [91]齐华,许晶,孟显华,王晓波,刘明,管宏军.2009.水分胁迫下燕麦萌芽期抗旱指标的研究.种子28,7-10.
    [92]乔有明.2002.不同播种密度对燕麦几个数量性状的影响.牧草与草地19,31-32.
    [93]魏玉琴,姜振宏.2009.甘肃省燕麦产业现状及发展途径.甘肃农业276,59-60.
    [94]徐惠云,李雄成,崔林.1997.不同莜麦品种抗旱性的研究.麦类作物17,27-29.
    [95]章海燕,张晖,王立,郭晓娜.2009.燕麦研究进展.粮食与油脂8,7-9.
    [96]赵世锋,田长叶,王志刚,李云霞.2007.我国燕麦生产和科研现状及未来发展方向.杂粮作物27,428-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700