用户名: 密码: 验证码:
唐家山高速短程滑坡堵江及溃坝机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪50年代之后,世界各地发生了许多大型高速岩质滑坡,这使得80、90年代高速滑坡研究空前繁荣,许多创造性的理论被相继提出,并成功应用于实践。然而地震滑坡碰撞刹车制动机制和堰塞坝溃坝模式等课题的系统性研究较少,取得的少数科研成果也具有很大的局限性。此外关于堰塞坝应急抢险的成功案例也屈指可数,更谈不上系统全面的防灾减灾预案和经验总结。而我国西南高山峡谷区,由于地震和降雨作用强烈,大型滑坡时有发生,堵江形成的堰塞湖规模巨大,如不及时降低湖水位排除险情,必将造成难以想象的灾难。
     2008年5月12日,四川省汶川县发生了里氏8级大地震,在受灾严重的山区触发大量崩塌、滑坡、泥石流。其中北川县上游通口河右岸唐家山发生高速滑坡堵江,并形成顺河向长803.4m,横河向最大宽度611.8m,高82-124m,面积约30万m2,推测体积为2037万m3的堰塞坝。随着堰塞湖水位逐渐抬升,堰塞坝上下游水头差不断增大,水流已通过坝体向下游渗透。堰塞坝体是否发生渗流管涌或坝体边坡失稳,进而导致整体溃坝成为众人关注的焦点问题。
     灾害给我们带来牺牲和悲痛的同时,也给我们提供了研究的机会并指明了前进的方向。由于唐家山滑坡堰塞坝集地震诱发滑坡、高速碰撞刹车制动、坝体渗流和成功抢险排洪等因素和特性于一体,成为众多滑坡堵江事件中一份极为珍贵的科研素材。若能对其深入系统的研究,必能更好地指导今后同类事件抢险工作。
     本文以唐家山高速滑坡动力学过程分析和堰塞坝稳定性研究为主线,以唐家山堰塞坝的溃坝模式为目的,系统而全面的开展了唐家山滑坡堵江过程中相关机理的研究,论文主要研究成果和创新点如下:
     (1)在准确获取唐家山地震前后地形特征,堰塞坝体地质结构及相关土体物理力学参数的基础上,对唐家山滑坡形成条件及失稳滑动机理进行分析。得出唐家山斜坡三面临空的地形特征、顺层岸坡结构以及巨大地震力是触发唐家山滑坡的最主要因素。提出了顺层岩质斜坡“后缘拉裂-中部岩块楔劈和顺层剪切滑移-底部锁固段脆性剪断-突发高速启动”的失稳机理,并着重阐述了拉裂面形成机制、“楔劈”岩块的杠杆作用和碎屑岩块的滚动摩擦效应,并推导出地震作用下岩质斜坡顺层滑移的破坏判据。
     (2)通过弹性力学、断裂力学的原理和方法,推导出顺层岩质斜坡临滑瞬间锁固段的剪切形变能计算公式,考虑锁固段岩体形变能释放的优势方向,运用能量转化原理,给出了更为合理和精确的顺层岩质滑坡突发启动速度公式。采用弹塑性力学和离散元数值模拟等一系列手段,系统开展了高速“短程”滑坡运动全过程动力学分析和堵江机制的研究。
     (3)通过研究滑坡行程阶段的水、气浪冲击效应,底摩擦效应,碰撞效应,温度效应等多种作用,重点探讨了顺层岩质滑坡“刹车”制动机制及制动类型对堰塞坝体地质结构的控制效应,合理地解释了唐家山堰塞坝内部地质结构的特征并阐明堰塞坝的形成机制。
     (4)通过三维Vmodelflow次件模拟了不同水位条件下堰塞坝体内部渗流场,分析水位抬升对堰塞坝土体渗流稳定性影响以及不同水位下堰塞坝体的渗流稳定性,推测堰塞坝在漫坝后的破坏模式。
     (5)采用Geostudio软件对740m水位条件下堰塞坝上下游边坡稳定性进行模拟,结果表明,除坝体表面碎石土在上游前缘表层及下游坡脚处发生小范围破坏外,坝体整体稳定,即使在Ⅷ度地震烈度下坝体整体依然稳定,不会发生整体性溃决或半溃。当水位超过坝顶最低高程时(752m),坝体将发生漫坝破坏,其溃决模式为渐进式溃决。
After the1950s, many large high-speed rocky landslides occur all over the world. The catastrophic events promote high-speed landslide studies unprecedented prosperity in the80s and90s. Many creative theory have been proposed successively and successfully applied in practice. However, the systematic studies of collision braking mechanism of the earthquake-induced landslide and dam-breaking mode of barrier dam, etc are less, a few achieved scientific research also has significant limitations. In addition, the successful cases on emergency rescue of barrier dams are rare, let alone that the comprehensive system of disaster prevention and mitigation plans and experience summary have not been proposed yet. By the impact of strong earthquakes and heavy rainfall, large-scale landslides often occur in mountain and canyon area of southwest China. If the blocking magnitude is huge and no effective measure or condition to lower the level of lake to exclude the danger, some unimaginable catastrophic would be caused.
     On May12,2008, Wenchuan earthquake with the magnitude of8.0happened in Wenchuan County in Sichuan Province. It caused a large number of further earthquake-induced geological disasters, such as rock fall, landslide and debris flow, especially in the worst affected mountain region. The earthquake had triggered Tangjiashan high-speed landslide which is on the right bank of Tongkou River and upstream of Beichuan County. The landslide blocked the river and formed Tangjiashan barrier dam, with length of803.4m, width of611.8m (maximum width), height of82m to124m, area of300,000m2and speculated volume of20,370,000m3. As the water level gradually rose and the hydraulic head pressure difference between upstream and downstream was continuously increasing, it had been appeared infiltrating on downstream slope of the dam. Whether the barrier dam will occur seepage, piping or slope failure, and then leading to dam-breaking has become the focus of common concern.
     The disaster has brought us the sacrifice and sorrow, at the same time, also offered us the opportunity to study and the way forward. Because Tangjiashan landslide have the characteristic such as earthquake-induced, high-speed starting, collision and braking to stop, infiltrating, successful flood relief, rescue, etc factors, it becomes an extremely valuable research material in many landslide-blocked river event. If in-deep and systematic study could be carried out, the achievement should play a connecting role and would be better able to guide the rescue work for similar incidents in the future.
     In the specific implementation process of study, the dynamic process analysis of Tangjiashan high-speed landslide and the stability study of barrier dam are adopted as the main line; the dam-breaking mode of the Tangjiashan barrier dam is determined for the purpose; the mechanism study of the process of Tangjiashan landslide blocking the river are carried out systematically and comprehensively. The innovation points and the main achievement are summarized as follows:
     (1) Based on the accurate access to the topography of Tangjiashan slope before and after earthquake, geological structure of the barrier dam and physical and mechanical parameters of soil, the formation conditions and failure mechanism of Tangjiashan landslide are analyzed firstly. It can be derived that the three free facing terrain features of Tangjiashan slope, consequent bedding structure and intense seismic forces is the most important factor triggering the Tangjiashan landslide. The new failure mechanism of rocky landslide with consequent bedding structure is put forward:"earthquake prompted tension rupture of landslide trailing edge-rock wedge splitting and interface shear sliding on central landslide plane-brittle shear breaking of the bottom rock masses-sudden high-speed set out". And the elaborated formation mechanism of tension rupture, the leverage of wedge splitting rock masses and the fast rolling friction effects of elastic rock debris are described in detail. Furthermore, a stability-loss criterion about cataclinal rock slope sliding along the structural plane under earthquake is deduced.
     (2) In accordance with the approaches and the theories of elasticity and fracture mechanics, failure criterion of locked-up segment of consequent bedding rock slope is deduced. And the calculating formula of deformation energy of locked-up rock masses, while the locked-up segment is sharply cut off under earthquake, is also deduced. Considering the advantage releasing direction of deformation energy of locked-up rock masses, the energy conversion principle is applied to propose a more reasonable and accurate burst starting velocity formula of the consequent bedding rock landslide. Moreover, applicating the elasticity-plastic theories and the discrete element numerical simulation method, the whole process dynamics analysis of high-speed short-run landslide and the study of blocking-river mechanism are conducted.
     (3) Trough the analysis of the impact effect of water and air wave, bottom friction effects, collision effect as well as temperature effect, the braking mechanism of consequent bedding rocky landslide and how the landslide brake type control the geologic structure of barrier dam are mainly discussed. A reasonable explanation for the characteristics of the internal geological structure of Tangjiashan barrier dam and the description of its formation mechanism are provided and delivered in this essay.
     (4) Through simulating the internal seepage field of barrier dam at different water level conditions by the employment of three dimensional software, Vmodelflow, the thesis has analyzed the following aspects:influence upon the seepage stability of barrier dam inflicted by the water level rise and the seepage stability of barrier dam at different water levels. Thus the dam-breaking model of barrier dam,after the water exceeds its capacity, is speculated.
     (5) By the employment of the Geostudio, the stability of upstream and downstream slope at740m water level is simulated. The outcome shows that the barrier dam, as a whole, still remains solid and stable, except the gravel soil could destroyed, at the shallow upstream slope and the downstream slope's toe, in a limited scope. Thus the dam can still remain stable and no overall or partial outburst collapse will take place, even if a Ⅷ seismic intensity afterquake occurs.It is also indicated that when the water level is over the lowest crest elevation.(752m), the dam will occur flood overtopping failure, and its dam-breaking mode could be progressive outburst to gully.
引文
[1]刘涌江.大型高速岩质滑坡流体化理论研究[D].西南交通大学博士论文,2002:1-20.
    [2]程谦恭,张倬元,黄润秋.高速远程崩滑动力学的研究现状及发展趋势[J].山地学报.2007,25(1):72-84.
    [3]王宏丹.高速远程滑坡超前冲击气浪机理研究[D].西南交通大学硕士论文,2008:1-50.
    [4]闫清卫.高速远程滑坡飞行空气动力学的风洞试验研究[D].西南交通大学硕士论文,2009:1-30.
    [5]黄河清.地震诱发滑坡(碎屑流)成因机理及运动学特性初步研究[D].成都理工大学硕士论文,2010:1-40.
    [6]杨铁.唐家山高速滑坡滑动及堵江机制研究[D].西南交通大学硕士论文,2009:1-50.
    [7]陈禄俊.易贡巨型高速远程滑坡空气动力学机理研究[D].上海交通大学硕士论文,2009:1-25.
    [8]王军桥.唐家山堰塞坝形成机制及溃坝模式分析[D].西南交通大学硕士论文,2010:2-100.
    [9]胡卸文,黄润秋,施裕兵等.唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J].岩石力学与工程学报.2009,28(1):181-189.
    [10]谢作涛,陈肃利.唐家山堰塞坝溃坝可能性及冲刷形式初步分析[J].人民长江.2008,39(22):71-78.
    [11]Evert Hoek, John Bray. Rock slope engineering[M].1983:1-150.
    [12]Kenneth Hewitt. Catastrophic landslide deposits in the Karakoram Himalaya [J]. Science.1988,242(4875):64-67.
    [13]Ching R.K.H., Sweeney D.G. Increase in factor of safety due to soil suction for two Hong Kong slopes[J]. Proc. Int. Symp Landslides.1988:617-623.
    [14]Krahn J., Fredlund D.G., Klassen M.J. Effects of soil suction on slope stability at North Hill[M].1989:1-130.
    [15]Nieto A.S., Brarany I. Catastrophic rain-induced landslides in Riode Janier, Brazil: Mechanisms andcontributing factors. Geol. Soc. Am. Abstracts with Programs.1988, 20(7):144-150.
    [16]Mshana N.S., Suzuki A., Kitazono Y. Effects of weathering on stability of natural slopes in north-central Kumamoto[J]. Soils and Foundations.1993,33(4):74-87.
    [17]Fleming R.W., Johnson A.M. Landslides in Colluvium U.S.[J]. Geological Survey Bulletin.1994:2059-2083.
    [18]Sitar N., Anderson S.A., Johnson K.A. Conditions for initiation of rainfall induced debris flows. In R.B.Seed & R.W.Boulanger eds. Stability and Performance of Slopes and Embankments II, Geotechnical Special Publication.1992,1(31):834-849.
    [19]Anderson S.A., Sitar N. Analysis of rainfall-induced debris flows[J] Journal of Geotechnical Engineering.ASCE.1995,121(7):544-553.
    [20]Lau Y.L., Engel P. Inception of sediment transport on steep slopes [J] Journal of Hydraulic Engineering.1999,125(5):544-547.
    [21]Erismann T.H., Abele G. Dynamics of rockslides and rockfalls[M].Springer, Berlin Heidelberg New York,2001:1-140.
    [22]张缙.岩块崩塌与运动初析[A].见:岩体工程地质力学问题(三)[C].北京:科学出版社,1980:133-143.
    [23]孙广忠.岩体力学基础[M].北京:科学出版社,1983:180-190.
    [24]王兰生,詹铮,苏道刚等.新滩滑坡发育特征和起动、滑动及制动机制的初步研究.见:中国典型滑坡[M].北京:科学出版社,1988:211-217.
    [25]胡广韬.基岩地区高速滑坡的多级冲程与超前溅泥气浪[J].西安地质学院学报.1986,10(1):79-87.
    [26]胡广韬.滑坡动力学[M].北京:地质出版社,1995:30-200.
    [27]赵平劳.层状结构岩体顺倾边坡的弯曲剪切机制研究[M].工程地质科学新进展.成都:成都科技大学出版社,1989:45-98.
    [28]贺可强.堆积层滑坡剪出口形成判据的研究[J].中国地质灾害与防治学报.1992,3(2):31-37.
    [29]高根树,张咸恭.大型滑坡高速滑动机理[J].中国地质灾害与防治学报.1992,3(4):29-32.
    [30]贺可强,安振远.崩滑碎屑流的形成条件及形成类型[J].河北地质学院学报,1996,19(3):344-351.
    [31]陈守义.试论土的应力应变模式与滑坡发育过程的关系[J].岩土力学.1996,17(3):21-26.
    [32]王来贵,章梦涛,王泳嘉等.基岩振动干扰下的动力滑坡机制研究[J].工程地质学报.1997,5(2):137-142.
    [33]毛彦龙,胡广韬,赵法锁等.地震动触发滑坡体滑动的机理[J].西安工程学院学报.1998,20(4):45-48.
    [34]李树德.滑坡型泥石流形成机理[J].北京大学学报(自然科学版).1998,34(4):519-522.
    [35]任光明,李树森,聂德新等.顺层坡滑坡形成机制的物理模拟及力学分析[J].山地 研究.1998,16(3):182-187.
    [36]程谦恭,胡厚田,胡广韬,等.高速岩质滑坡临床弹冲与峰残强降复合启程加速动力学机理[J].岩石力学与工程学报,2000,19(2):173-176.
    [37]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报,2001,09(01):74-80.
    [38]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生[J].长春科技大学学报.2001,31(1):64-69.
    [39]李先华,林浑,陈晓清等.GIS支持下降雨滑坡的启动机制研究与数字仿真[J].工程地质学报.2001,9(2):133-140.
    [40]黄润秋.中国西部地区典型岩质滑坡机理研究[J].第四纪研究.2003,23(6):640-647.
    [41]丁月双.东河口滑坡成因机理与运动特征研究[D].成都理工大学硕士论文,2009:4-32.
    [42]李迪,李亦明,张漫.堆积体滑坡滑带启动变形分析[J].岩石力学与工程学报.2006,25(增2):3879-3884.
    [43]李守定,李晓,吴疆等.大型基岩顺层滑坡滑带形成演化过程与模式[J].岩石力学与工程学报.2007,26(12):2473-2480.
    [44]郑明新,马国正,王恭先等.长晋高速公路顺层滑坡形成机理数值分析[J].华东交通大学学报.2007,24(5):1-4.
    [45]王运生,徐鸿彪,罗永红等.地震高位滑坡形成条件及抛射运动程式研究[J].岩石力学与工程学报.2009,28(11):2360-2368.
    [46]冯文凯,何川,石豫川等.复杂巨型滑坡形成机制三维离散元模拟分析[J].岩土力学.2009,30(4):1122-1226.
    [47]方华,崔鹏.汶川地震大型高速远程滑坡力学机理及控制因子分析[J].灾害学,2010,25(增刊):120-126.
    [48]许强,宣梅,李园等.板梁状滑坡形成条件、成因机制与防治措施[J].岩石力学与工程学报.2010,29(2):242-250.
    [49]Heim A., Bergsturz und Menschenleben[M]. Zutieh:Naturforschenden Gesellsehaft, 1932. (English translation by Skemer, N.A. in 1989. Landslides and human lives[M]. Vancouver, B.C.:Bitech Publishers Ltd.,1989.)
    [50]程谦恭.剧冲式高速岩质滑坡运动全过程动力学机制研究[D].西安:西安工程学院博士论文,1997:1-45.
    [51]程谦恭,彭建兵,胡广韬等.高速岩质滑坡动力学[M].成都:西南交通大学出版社,1999:1-78.
    [52]Foda M.A. Landslides riding on basal pressure waves[J]. Continuum Mechanics and Thermodynamics.1994,6:61-79.
    [53]Kobayashi Y. Long runout landslides riding on a basal guided wave[J]. Engineering Geology and the Envir-onment.1997:761-766.
    [54]Davies T.R., McSavenvy M.J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal.1999,36:313-320.
    [55]Davies T.R., McSaveney M.J., Hodgson K.A. A fragmentation spreading model for long-runout avalanches[J]. Canadian Geotechnical Journal.1999,36:1096-1110.
    [56]Davies T.R., McSaveney M.J. Dynamic simulation of the motion of fragmentating rock avalanches [J]. Canadian Geotechnical Journal.2002,39:789-798.
    [57]周鑫.地震触发高速远程滑坡气垫效应的研究[D].成都理工大学硕士论文,2010:2-37.
    [58]张伟.青川马公窝铅滑坡成因机理与运动特征研究[D].成都理工大学硕士论文,2009:1-42.
    [59]李东林.陕西陇县水银河斜坡变形演化与典型滑坡研究[D].中国地质科学院博士论文,2007:1-33.
    [60]Wilson C.J.N. The role of fluidization in the emplacement of pyroclastic flows:an experimental approach[J]. Journal of Volcanology and Geothermal Research,1980,8: 231-249.
    [61]Hungr O., Morgenstern N.R. Experiments on flow behavior of granular material at high velocity in an open channel flow[J]. Geotechnique.1984a,34:405-413.
    [62]Hutchinson J.N. A sliding-consolidation model for flow slides[J]. Canadian Geotechnical Journal.1986,23:115-126.
    [63]McClung D.M., Lied K. Statistic and geometrical definition of snow avalanche runout[J]. Cold Regions Science and Technology.1987,13:107-119.
    [64]McClung D.M., Mears A.I. Dry-flowing avalanche run-up and run-out [J]. Journal of Glaciology.1995,41(138):359-372.
    [65]McClung D.M. Extreme avalanche runout in space and time[J]. Canadian Geotechnical Journal.2000,37:161-170.
    [66]McClung D.M. Extreme avalanche runout:a comparison of empirical models[J]. Canadian Geotechnical Journal.2001,38(6):1254-1265.
    [67]Fleming R.W., Ellen S.D., Algus M.A. Transformation of dilative and contructive landslide debris flows-an example from marin county, caliafornia[J]. Engineering Geology.1989,27:201-223.
    [68]Iverson R.M., Reid M.E., LaHusen R.G. Debris-flow mobilization from landslides[J]. Annual Review of Earth Planet Sciences.1997,25:85-138.
    [69]Shaller P.J. Analysis of a large moist landslide, Lost River Range, Idaho, U.S.A.[J]. Canadian Geotechnical Journal.1991,28:584-600.
    [70]Sousa J., Voight B. Computational flow modelling for long-runout landslide hazard assessment, with an example from Clapiere landslide, France[J]. Bulletin of the Association of Engineering Geologists.1992,29(2):131-130.
    [71]Boves M.J., Dagg B.R. Debris flow triggerred by impulsive loading:mechanical modeling and case studies [J]. Canadian Geotechnical Journal.1992,29:345-352.
    [72]Hallworth M.A., Phillips J.C., et al. Entrainment in turbulent gravity currents[J]. Nature.1993,362:829.
    [73]Evans S.G., Hungr O., Enegren E.G. The Avalanche Lake rock avalanches, Mackenzie Mountains, Northwest Territories, Canada:description, dating, and dynamics[J]. Canadian Geotechnical Journal.1994,31:749-768.
    [74]Hungr O. A model for the runout analysis of rap id flow slides, debris flows, and avalanches [J]. Journal of Geotechnical Engineering.1995,32:610-623.
    [75]Straub S. Predictability of long runout landslide motion:implications from granular flow mechanics[J]. Geology and Resouces.1997,86:415-425.
    [76]Dade W.B., Huppert H.E. Long-runout rockfalls[J]. Geology.1998,26(9):803-806.
    [77]Bozhinskiy A.N. Physical modeling of avalanches using an aerosol cloud of powder materials[J]. Annals of Glaciology.1998, (26):242-246.
    [78]Hewitt K. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himlaya, nor-thern Pakistan[J]. Geomorphology.1998,26:47-80.
    [79]Hewitt K. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himlaya, northern Pak-istan[J]. Quaternary Research.1999,51:220-237.
    [80]Egashira S., Honda N., Itoh T. Experimental study on bed material entrainment into debris flow[J]. Physics and Chemistry of the Earth,Part C.2001,26(9):645-650.
    [81]Okura Y., Kitahara H., Sammori T. Fluidization in dry landslides[J]. Engineering Geology.2000,56:347-360
    [82]Iverson R.M., Vallance J.W. New view of granular mass flows[J]. Geology.2001, 29(2):115-118.
    [83]Fannin R.J., Wise M.P. An empirical-statistical model for debris flow travel distance[J]. Canadian Geotechnical Journal.2001,38(5):982-994.
    [84]Stead D., Eberhardt E., Coggan J. New developments in the simulation of rock slope failure[C]. In:Proceedings of the 3rd Canadian Conference on Geotechnique and Natural Hazards, Edmonton, Alta.,8-10 June 2003. Canadian Geotechnical Society, Alliston, Ont.:161-168.
    [85]Eberhardt E., Stead D., Karami A., et al. Numerical analysis of brittle fracture propagation and steppath failure in massive rock slopes[C]. In:Proceedings of the 57th Canadian Geotechnical Conference, Queb-ec City, Que.,24-27 October 2004. Canadian Geotechnical Society, Alliston, Ont. Session 7c:1-8.
    [86]Crosta G.B., Imposimato S., Roddeman D.G. Numerical modeling of large landslides stability and runout[J]. Natural Hazards and Earth System Sciences.2003,3:523-538.
    [87]Gauer P., Issler D. Possible erosion mechanisms in snow avalanches[J]. Annals of Glaciology.2004,38:384-392.
    [88]Felix G, Thomas N. Relation between dry granular flow regimes and morphology of deposits:form-ation of levees in pyroclastic deposits[J]. Earth and Planetary Science Letters.2004,221:197-213.
    [89]Pollet N., Schneider J.L.M. Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps)[J]. Earth and Planetary Science Letters.2004,221:433-448.
    [90]Fritz H.M., Hager W.H., Minor W.H. Near field characteristics of landslide generated impulse waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering.2004,130(6):287-302.
    [91]Ferrara V., Pappalardo G. Kinematic analysis of rock falls in an urban area:the case of Castelmola hill near Taormina (Sicily, Italy)[J]. Geomorphology.2005,66(1-4): 373-383.
    [92]Hungr O., Coriminas J., Eherhardt E. Estimating landslide motion mechanism, travel distance and velocity. In:Landslide Risk Management J]. Taylor & Francis Group,London,2005:99-128.
    [93]Crosta G.B., Imposimato S., Roddeman D.G., et al. Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador)[J]. Engineering Geology.2005,79(3-4):185-214.
    [94]Pollet N., Cojean R., Couture R., et al. A slab-on-slab model for the Flims rockslide (Swiss Alps)[J]. Canadian Geotechnical Journal.2005,42:587-600.
    [95]Friedmann S.J., Taberlet N., Losert W. Rock-avalanche dynamics:insights from granular physics experiments[J]. International Journal of Earth Sciences.2006, 95:911-919.
    [96]Kwan J.S.H., Sun H.W. An improved landslide mobility model[J]. Canadian Geotechnical Journal.2006,43:531-539.
    [97]Locat P., Couture R., Leroueil S., et al. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal.2006,43:830-851.
    [98]Olivares L., Damiano E. Postfailure mechanics of landslides:laboratory investigation of flowslides in pyroclastic soils[J]. Journal of Geotechnical and Geoenvironmental Engineering.2007,133(1):51-62.
    [99]Gerolymos N., Gazetas G. A model for grain-crushing-induced landslides-application to Nikawa, Kobe 1995[J]. Soil Dynamics and Earthquake Engineering.2007, 27:803-817.
    [100]Zambrano O.M. Large rock avalanches:A kinematic model[J]. Geotechnical and Geological Engneering.2007,26(3):283-287.
    [101]Tommasi P., Campedel P. Consorti, C., et al. A discontinuous approach to the numerical modeling of rock avalanches[J]. Rock Mechnics and Rock Engineering.2008,41(1):37-58.
    [102]Francois B., Tacher L. Bonnard Ch., et al. Numerical modeling of the hydrogeological and geomechanical behavior of a large slope movement:the Triesenberg landslide (Liechtenstein)[J]. Canadian Geotechnical Journal.2008, 44:840-857.
    [103]Sosio R., Crosta G.B., Hungr O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology.2008, 100(1-2):11-26.
    [104]Gray J.M.N.T., Kokelaar B.P. Large particle segregation, transport and accumulation in granular free-surface flows[J]. Journal of Fluid Mechanics.2010, 652:105-137.
    [105]郭崇元.大型滑坡及其速度计算[A].见:水利水电科学院科学研究论文集,第8集[C].北京:水利水电出版社,1982:28-45.
    [106]方玉树.超大型滑坡动力学问题研究[J].水文地质工程地质,1988,(6):20-24.
    [107]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测[A].见:一九八七年全国滑坡学术讨论会滑坡论文选集[C].成都:四川科学技术出版社,1989,117-124.
    [108]黄润秋,王士天,张倬元.斜坡岩体高速滑动的“滚动摩擦”机制[A].见:工程地质科学新进展[C].成都:成都科技大学出版社,1989,318-325.
    [109]卢万年.用空气动力学分析坡体高速滑坡的滑行问题[J].西安地质学院学报.1991,13(4):77-85.
    [110]王效宁.滑坡温度特性研究及其在三峡库岸稳定分析中的应用[J].岩石力学与工程学报.1993,12(2):126-137.
    [111]胡广韬.滑坡动力学跨世纪研究的展望[A].见:地质工程与水资源新进展[C].西安:陕西科技出版社,1997,3-16.
    [112]Tiande M., Zhongyu L., Yonghong N. A sliding block model for the runout p rediction of high2speed landslides[J]. Canadian Geotechnical Journal.2001, 38:217-226.
    [113]李忠生.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):64-70.
    [114]Keefer D.K. Landslides caused by earthquake[J]. Bulletin of Geological Society of America.1984,95(4):406-421.
    [115]张永双,雷伟志,石菊松等.四川“5.12”地震次生地质灾害的基本特征初析[J].地质力学学报.2008,14(2):109-114.
    [116]丁彦慧,王余庆,孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报.1999,42(增刊):101-107.
    [117]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [118]陈国顺.山西地展带中与强展活动有关的两种滑坡[J].华南地展,1991,11(2):40-46.
    [119]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报.1997,6(1):26-30.
    [120]Richter C.F. Elementary seismology[M]. San Francisco:W.H. Freeman and Co.,1958:12-65.
    [121]Keefer D.K. Rock Avalanche caused by earthquake-source characteristics [J]. Science.1984,223:1288-1290.
    [122]Keefer D.K. Earthquake-induced Landslides and Their Effects on Alluvial Fans[J]. Journal of Sedimentary Research.1999,69:84-104.
    [123]Prestininzi A., Romeo R. Earthquake-induced ground failures in Italy[J]. Engineering Geology.Special Issue.2000,58:3-4.
    [124]Papadopoulos G.A., Plessa A. Magnitude-distance relations for earthquake-induced landslide in Greece[J]. Engineering Geology.Special Issue.2000,58:3-4.
    [125]Keefer D.K. Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California Event[J]. Engineering Geology.2000,58:213-249.
    [126]Keefer D.K. Investigating landslides caused by earthquakes-a historical review[J]. Surveys in Geophysics.2002,23:473-510.
    [127]Khazai, Bijan, Sitar, Nicholas. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events[J]. Engineering Geology.2003,71:79-95.
    [128]Sato H.P., Harp E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth[J]. Landslides.2009,6: 153-159.
    [129]Runqiu HUANG, Wei LI. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China[J]. Bulletin of Engineering Geology and the Environment.2009, (68):363-371.
    [130]孙崇绍.特大地震的震害特征[J].西北地震学报.1993,23(2):2792-2797.
    [131]李天池.地震与滑坡[M].中国科学院成都地理研究所.1978:1-22.
    [132]周本刚,王裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报.1994,16(1):95-103.
    [133]辛鸿博,王余庆.岩土边坡地震崩滑及其初判准则[J].岩土工程学报.1999,21(5):591-594.
    [134]杨涛,邓荣贵,刘小丽.四川地区地震崩塌滑坡的基本特征及危险性分区[J].山地学报.2002,20(4):456-460.
    [135]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报.2008,16(4):433-444.
    [136]魏欣,胡瑞林,李丽慧,王珊珊.强震条件下高速滑坡的空间分布特征研究[J].工程地质学报.2010,18(4):490-496.
    [137]Shengwen Qi, Qiang Xu, Hengxing Lan. et al. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China[J]. Engineering Geology.2010,116:95-108.
    [138]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动.2005,25(1):164-171.
    [139]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报.2001,20(3):83-88.
    [140]姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析[D].中国地震局地质研究所博士论文,2004:2-67.
    [141]汪贤良.强震作用下堆积体边坡变形特征和稳定性分析[D].成都理工大学硕士论文,2009:5-32.
    [142]刘红帅.岩质边坡地震稳定性分析方法研究[D].中国地震局工程力学研究所博士论文,2006:1-90.
    [143]程燕.路堤桩板墙地震动力分析[D].西南交通大学硕士论文,2009:1-30.
    [144]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].防灾科技学院学报.2007,9(3):20-27.
    [145]徐明明.填方路堤地震响应分析[D].重庆大学硕士论文,2009:1-22.
    [146]董建华.地震作用下土钉支护边坡动力分析与抗震设计方法研究[D].兰州理工大学博士论文,2008:1-83.
    [147]李磊.滑坡堆积体的地震波动力响应研究[D].成都理工大学硕士论文,2010:1-43.
    [148]陈建君.复杂山区斜坡的地震动力响应分析[D].成都理工大学硕士论文,2010:1-36.
    [149]丁王飞.滇西红层软岩地区填方路基边坡抗震稳定性研究[D].重庆交通大学硕士论文,2010:4-27.
    [150]李镜芬.浅谈岩土边坡地震稳定性评价方法研究进展[D].广东科技,2008:1-48.
    [151]叶帅华.地震作用下框架锚杆支护边坡动力分析[D].兰州理工大学硕士论文,2010:2-42.
    [152]陶云辉.地震条件下桩板结构受力分析[D].西南交通大学硕士论文,2008:4-33.
    [153]许冲,戴福初,徐锡伟.汶川地震滑坡灾害研究综述[J].地质论评,2010,56(6):860-874.
    [154]李世凯.强震作用下岩质边坡崩塌的动力响应分析[D].成都理工大学硕士论文,2010:3-23.
    [155]建筑结构设计统一标准(GBJ-84).1984,北京:中国建筑工业出版社.
    [156]岩土工程勘察规范(GBJ50021).1995,北京:中国建筑工业出版社.
    [157]祁生文.边坡动力响应分析及应用研究[D].中国科学院地质与地球物理研究所博士论文,2002:5-63.
    [158]沈珠江,陆培炎.评当前岩土工程实践中的保守倾向[J].岩土工程学报.1997,19(4):115-118.
    [159]Newmark N.M. Effects of earthquakes on dams and embankments[J]. Geotechnique.1965,15(2):139-160.
    [160]王秀英,聂高众,王登伟.利用强震记录分析汶川地震诱发滑坡[J].岩石力学与工程学报.2009,28(11):2369-2376.
    [161]郭海英.抗震设计思路综述[J].科学之友.2008,(23):87-88.
    [162]Meei-Ling Lin, Kuo-Lung Wang. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology.2006,86(2):118-133.
    [163]王运生,罗永红,吉峰,等.汶川大地震山地灾害发育的控制因素分析[J].工程地质学报,2008,16(6):759-763.
    [164]李秀珍,孔纪名,邓红艳,等.5.12汶川地震滑坡特征及失稳破坏模式分析[J].四川大学学报(工程科学版).2009,41(3):72-77.
    [165]张鹏,陈新民,王旭东.近断层地震动与汶川地震灾区滑坡破坏特征分析[J].南京工业大学学报(自然科学版).2009,31(1):55-59.
    [166]胡卸文,黄润秋,朱海勇,等.唐家山堰塞湖库区马铃岩滑坡地震复活效应及其稳定性研究[J].岩石力学与工程学报.2009,28(6):1270-1278.
    [167]殷跃平.汶川地震地质与滑坡灾害概论[M].北京:地质出版社,2009:1-57.
    [168]陈兴长,陈慧.地震次生山地灾害及其防治对策—以汶川大地震次生山地灾害为例.西南科技大学学报.2009,24(1):42-47.
    [169]胡卸文,罗刚,黄润秋,等.唐家山滑坡后壁残留山体震后稳定性研究[J].岩石力学与工程学报.2009,28(11):2349-2359.
    [170]孙萍,张永双,殷跃平,等.东河口滑坡—碎屑流高速远程运移机制探讨[J].工程地质学报.2009,17(6):737-744.
    [171]岳庆河.基于ANSYS的土石坝渗流与稳定分析研究[D].山东农业大学硕士论文,2008:2-16.
    [172]柴贺军,刘汉超,张悼元.大型崩滑诸江事件及其环境效应研究综述[J].地质科技情报.2000,19(2):87-90.
    [173]周宏.有地表入渗的土坡饱和—非饱和渗流及稳定性分析[D].河海大学硕士论文,2006:1-25.
    [174]蒙富强.基于ANSYS的土石坝稳定渗流场的数值模拟[D].大连理工大学硕士论文,2005:2-33.
    [175]邓苑苑.病险土石坝渗流破坏机理分析[D].石河子大学硕士论文,2006:4-12.
    [176]Costa J.E., Schuster R.L. The formation and failure of natural dams[J]. Geological Society of America Bulletin.1988,100(7):1054-1068.
    [177]Perrin N.D., Hancox G.T. Landslide-dammed lakes in New Zealand-Preliminary studies on their distribution, causes and effects[J]. Landslide.1991,1457-1465.
    [178]Schuster R.L., Costa J.E. Effects of landslide damming on hydroelectric projects [A]. In Anon. Processding Fifth International Association Engineering Geology[C].1986,1295-1307.
    [179]Picard M.D. Cannon landslide dam, the Abruzzi, east-central lcaly[J]. Journal of Geological Education.1991,39(5):428-431.
    [180]Brooks G.R., Hickin E.J. Debris-avalanches in poundments of Squamish River, Mount Caylaey area Southwestern British Cohembia[J]. Canadian of Earth Science. 1991,91(2):129-140.
    [181]Asansa M., Nieto G.P., Schuster R.L.Yepes H. Landslide blockage of the Pisque river, northern Ecuador[J]. landslide news.1991,54(1):1899-1934.
    [182]Jennings D.A., Webby M.G., Partin D.T. Tunawaea Landslide Dam, King Country, New Zealand[J]. Landslide.1991,'1448-1452.
    [183]Mora S., Madrigal C., Estrada J., Schuster R.L. The 1992 Rio-Toro landslide Dam, Costa Rica Landslides section[J]. Disaster Prevention Research Institute.1993, 1183-1128.
    [184]王永兴.滑坡导致的溃坝型洪水研究[J].中国地质灾害与防冶学报.1995,6(1):15-23.
    [185]Read S.A., Beetham R.D. Lake Waikaremoana barrier-a large landslide dam in New Zealand, Landslide News[J].1991,54(1):1481-1487.
    [186]卢螽猷.滑坡堵江的基本类型、特征和对策[A].滑坡文集(6)[C].北京:中国铁道出版社.1988,106-117.
    [187]李娜.云南省山崩滑坡堵江灾害及其对策[A].滑坡文集(9)[C].北京:中国铁道出版社,1992,50-55.
    [188]柴贺军,刘汉超,张悼元.一九三三年叠溪地震滑坡堵江事件及其环境效应[J].地质灾害与环境保护,1995,6(1):7-17.
    [189]柴贺军,刘汉超,张悼元.中国滑坡堵江事件目录[J].地质灾害与环境保护.1995,6(4):1-9.
    [190]柴贺军,刘汉超,张倬元.中国滑坡堵江的类型及其特点[J].成都理工学院学报.1998,25(3):60-65.
    [191]Chai Hejun, Liu Hanchao, Zhang Zhuoyuan, et al. Landslide dams induced by Diexi earthquake and environmental effects[A]. In Anon Proceedings 8th international IAEG Congress, Vancouver, Canada[C].1999,2113-2117.
    [192]柴贺军,刘汉超,张倬元.中国堵江滑坡发育分布特征[J].山地学报.2000,18(S1): 51—54.
    [193]柴贺军,刘汉超.岷江上游多级多期崩滑堵江事件初步研究[J].山地学报.2002,20(5):104—108.
    [194]黄河,郑家祥,施裕兵.唐家山堰塞湖形成机制及应急处置工程措施研究[J].中国水利.2008,(16):12-16.
    [195]梅岩.四川省北川县5.12强震区泥石流危险性评价[D].成都理工大学硕士论文,2011,5-38.
    [196]唐朝阳,付峥.唐家山堰塞湖应急处置工程措施研究[J].宋胜武.汶川大地震工程震害调查分析与研究,中国四川成都,2009.科学出版社,2009:1023-1032.
    [197]施裕兵,巩满福,冯建明.唐家山堰塞坝泄流后稳定性研究唧.宋胜武.汶川大地震工程震害调查分析与研究,中国四川成都,2009.科学出版社,2009:1074-1079.
    [198]朱万强.唐家山堰塞坝整治方案及相应河段水电开发的设想[J].宋胜武.汶川大地震工程震害调查分析与研究,中国四川成都,2009.科学出版社,2009:1097-1107.
    [199]刘涛.高地震烈度区大型水电工程对岩土工程性质的影响研究[D].西南交通大学硕士论文,2011,1-21.
    [200]杨俊锋.唐家山堰塞湖库区马铃岩滑坡体稳定性研究[D].西南交通大学硕士论文,2010,5-25.
    [201]胡卸文,吕小平,黄润秋等.唐家山堰塞湖大水沟泥石流发育特征及堵江危害性评价[J].岩石力学与工程学报,2009,28(4):850-858.
    [202]邬爱清,林绍忠,马贵生等.唐家山堰塞坝形成机制DDA模拟研究[J].人民长江.2008,39(22):91-95.
    [203]马贵生,罗小杰.唐家山滑坡形成机制与堰塞坝工程地质特征[J].人民长理.2008,39(22):46-47.
    [204]汪明元,徐晗.唐家山堰塞坝泄流对坝坡稳定的效果分析[J].人民长江.2008,39(22):48-51.
    [205]胡卸文,罗刚,王军桥,等.唐家山堰塞体渗流稳定及溃决模式分析[J].岩石力学与工程学报.2010,29(7):1409-1417.
    [206]许强,裴向军,黄润秋等.汶川地震大型滑坡研究[M].北京:科学出版社,2009:7-35.
    [207]唐春安,左宇军,秦泗凤,等.汶川地震中边坡浅表层散裂与抛射模式及其动力学解释[C].2008,第十届全国岩石力学与工程学术大会论文集.
    [208]徐文杰,周玉县.唐家山滑坡高速运动及堵江机制研究[J].工程地质学报.2010,18(S1):374-390.
    [209]柴贺军,刘汉超,张悼元.滑坡堵江的基本条件[J].地质灾害与环境保护.1996,3(7):41-46.
    [210]罗刚,胡卸文,张耀.平面滑动型岩质边坡地震动力响应[J].西南交通大学学报.2010.45(4):521-526.
    [211]Parise M, Jibson R.W. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge, California earthquake [J]. Engineering Geology.2000,58(3/4):251-270.
    [212]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报.2007,26(3):433-454.
    [213]许强,黄润秋.5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报.2008,16(6):721-730.
    [214]许江,鲜学福,王鸿等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报.2006,25(s1):3040-3045.
    [215]尹祥础,张晖辉.加卸载响应比的新进展[J].国际地震动态,2005,(5):98.
    [216]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997(2):13-16.
    [217]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,188-189.
    [218]易顺明,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,8-36.
    [219]张伟,曹国云,刘祥梅.加卸荷对岩石弱化破坏的影响[J].矿业工程,2005,3(6):27-28.
    [220]游敏,聂德新.河谷斜坡卸荷综合分带研究[J].人民黄河,2011,23(1):103-105.
    [221]凌建明.节理岩体损伤力学及时效损伤特性的研究[D].同济大学博士论文,1992:2-90.
    [222]黄润秋,林峰,陈德基,等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报.2001,9(3):227-232.
    [223]沈军辉,张进林,徐进等.斜坡应力分带性测试及其在卸荷分带中的应用[J].岩石力学与工程学报.2007,29(9):1423-1427.
    [224]钱鸣高,刘昕成.矿山压力及其控制[M].北京:煤炭工业出版社,1991.
    [225]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报.1993,(4):321-327
    [226]刘佳,鲁海,崔颖辉,等.边坡稳定性的动力影响因素分析[J].北方工业大学学报.2009,21(1):90-94.
    [227]万洪,胡春林.地震荷载作用下岩质边坡稳定性分析[J].建材世界.2009,30(3):106-109.
    [228]毕忠伟,张明,金峰,等.地震作用下边坡的动态响应规律研究[J].岩土力学.2009,30(S1):180-183.
    [229]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报.2008,30(6):918-923.
    [230]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报.2008,27(3):624-632.
    [231]祁生文,伍法权,刘春玲等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报.2004,23(16):2792-2796.
    [232]戚承志,钱七虎.岩体动力变形与破坏的基本问题[M].北京:科学出版社,2009:9-62.
    [233]唐辉明,晏同珍著.岩体断裂力学理论与工程应用[M].北京:地质出版社,1993:20-35.
    [234]陈顒,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001:40-57.
    [235]封立志.隧道围岩力学参数估计及应用研究[D].湖南大学硕士论文,2009:12-33.
    [236]王蓬.巷道围岩力学参数估计及其稳定性评价[D].西安科技大学硕士论文,2010:45-53.
    [237]王辉.岩层厚度对顺层岩质边坡失稳机理的影响[D].贵州大学硕士论文,2010:34-42.
    [238]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [239]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报.2008,16(6):730-742.
    [240]崔芳鹏,胡瑞林,殷跃平,等.纵横波时差耦合作用的斜坡崩滑效应离散元分析——以北川唐家山滑坡为例[J].岩石力学与工程学报.2010,29(2):319-327.
    [241]Scheiddger A.E. On the prediction of reading and velocity of catastrophic landslides[J]. Rock mechanics.1973, (5):231-236.
    [242]邢爱国,高广远,陈龙珠等.大型高速滑坡启程流体动力学机理研究[J].岩石力学与工程学报.2004,23(4):607-613.
    [243]邢爱国,陈龙珠,陈明中.岩石力学特性分析与高速滑坡启动速度预测[J].岩石力学与工程学报.2004,23(8):1654-1657.
    [244]Itasca Consulting Group.Inc.. UDEC (Universal Distinct Element Code) user's manual, Version 3.0[R].[s.1.]:Itasca Consulting Group.Inc.,1996.
    [245]刘佑荣,唐辉明.岩体力学[M].北京:化学工业出版社.2001.
    [246]崔芳鹏,胡瑞林,殷跃平,等.地震动力作用触发的斜坡崩滑高差效应研究[J].水文地质工程地质.2010,37(4):39-45.
    [247]赵晓彦,胡厚田,齐明柱.云南头寨沟大型岩质高速滑坡碰撞模型试验[J].自然灾害学报.2003,12(3):99-103.
    [248]赵晓彦,胡厚田,刘涌江.大型高速滑坡滑动过程中碰撞特性的试验[J].水文地质工程地质.2003,(6):85-88.
    [249]卫宏,靳晓光,王兰生.滑坡碰撞作用及其岸坡环境效应[J].山地学报.2000,18(5):435-439.
    [250]宁晓秋.模糊数学原理与方法(第二版)[M].徐州:中国矿业大学出版社,2004.
    [251]陈景瑜.大相岭高速公路隧道岩爆预测研究[D].西南交通大学硕士论文,2009:3-41.
    [252]刘磊.成昆线K242-K331段崩塌灾害危险性研究[D].西南交通大学硕士论文,2010:4-51.
    [253]向望.内六线横江—大关段主要地质灾害危险性评估及防治对策研究[D].西南交通大学硕士论文,2008:22-39.
    [254]穆成林.成昆铁路线K494-K727段泥石流危险性评价与防治[D].西南交通大学硕士论文,2010:32-47.
    [255]齐洪亮.公路路基地质灾害评价及防治对策研究[D].长安大学硕士论文,2008:17-41.
    [256]苏永华,何满潮,孙晓明.岩体模糊分类中隶属函数的等效性[J].北京科技大学 学报.2007,29(7):670-675.
    [257]汪培庄,李洪兴.模糊系统理论与模糊计算机[M].北京:科学出版社,1996:92-129.
    [258]邱向荣.岩溶塌陷稳定性的灰色模糊综合评判[J].水文地质工程地质,2004(4):58-61.
    [259]唐建新,徐宁霞,康钦容.模糊综合评判在矿山地质环境中的应用[J].重庆大学学报.2010,33(5):145-150.
    [260]鲁道洪.基于AHP的模糊综合评判在公路地质灾害的危险性评价[J].四川地质学报.2009,29(3):357-360.
    [261]孟衡.模糊数学在岩质边坡稳定性分析中的应用[J].岩土工程技术.2008,22(4):178-181.
    [262]王新民,赵彬,张钦礼.基于层次分析和模糊数学的采矿方法选择[J].中南大学学报(自然科学版).2008,39(5):875-879.
    [263]胡厚田.高速远程滑坡流体动力学理论的研究[M].成都:西南交通大学出版社,2003.
    [264]刘涌江,胡厚田,赵晓彦.高速滑坡岩体碰撞效应的试验研究[J].岩土力学.2004,25(2):255-160.
    [265]刘玉存,王作山,王建华,等.NK-EH500调质钢爆炸硬化的冲击动力学研究[J].火炸药学报.2002,(4):1-13.
    [266]谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007:2-30.
    [267]马晓青,韩锋.高速碰撞动力学[M].国防工业出版社,北京,1998:10-200.
    [268]王修信,潘家铮,夏颂佑.坝踵断裂控制的塑性区尺寸因子法[J].河海大学学报.1992,20(4):40-46.
    [269]李俊明.倾倒变形体边坡在强震作用下的动力响应[D].成都理工大学硕士论文,2010:23-37.
    [270]张志.平庄西露天矿露井协调开采控制技术研究[D].辽宁工程技术大学博士论文,2010:13-41.
    [271]苟富刚,王运生,吴俊峰,等.都江堰庙坝地震高位滑坡特征与成因机理研究[J].工程地质学报.2012,20(1):21-29.
    [272]崔杰,王兰生,徐进.金沙江中游滑坡堵江事件及古滑坡体稳定性分析[J].工程地质学报.2008,16(1):06-10.
    [273]王延平.滑坡涌浪预测理论研究及计算模型开发[D].成都理工大学硕士论文,2005:23-51.
    [274]曹琰波,戴福初,许冲.唐家山滑坡变形运动机制的离散元模拟[J].岩石力学与工程学报.2011,30(S1):2878-2887.
    [275]王烨.综采放顶煤三维仿真研究[D].内蒙古科技大学硕士论文,2010:33-49.
    [276]郭春颖,李云龙,刘军柱UDEC在急倾斜特厚煤层开采沉陷数值模拟中的应用[J].中国矿业.2010,19(4):71-74.
    [277]王秀英,聂高众,王登伟.汶川地震诱发滑坡与地震动峰值加速度对应关系研究[J].岩石力学与工程学报.2010,29(1):82-89.
    [278]王庆永,贾忠华,刘晓峰Visual MODFLOW及其在地下水模拟中的应用[J].水资源与水工程学报.2007,18(5):90-92.
    [279]朱崇辉,王增红,刘俊.粗粒土的渗透破坏坡降与颗粒级配的关系研究[J].中国农村水利水电.2006,(3):72-74.
    [280]毛昶熙,段祥宝,吴良骥.砂砾土各级颗粒的管涌临界坡降研究[J].岩土力学.2009,30(12):3705-3709.
    [281]张我华,余功栓,蔡袁强.堤与坝管涌发生的机制及人工智能预测与评定[J].浙江大学学报.2004,38(7):902-908.
    [282]校小娥.地震作用下滑坡稳定性分析[D].西南交通大学硕士论文,2010:33-49.
    [283]申选召.混凝土斜拉桥三维地震反应研究[D].中国地震局工程力学研究所硕士论文,2006:31-49.
    [284]F.A约翰逊,P.艾丽斯,郝书敏.溃坝的分类[J].浙江水利科技.1978,(3):31-35.
    [285]匡尚富,汪小刚,黄金池等.堰塞湖溃坝风险及其影响分析评估[J].中国水利.2008,(16):17-21.
    [286]刘宁.巨型滑坡堵江堰塞湖处置的技术认知[J].中国水利.2008,(16):17-21.
    [287]徐娜娜.大型滑坡涌浪及堰塞坝溃坝波数值模拟研究[D].上海交通大学硕士论文,2011:10-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700