用户名: 密码: 验证码:
高分段大间距无底柱分段崩落采矿贫化损失预测与结构参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增大结构参数是现代无底柱分段崩落法的发展方向。本文结合大红山铁矿的建设项目,研究了高分段大间距无底柱分段崩落法的回采工艺。工业试验证明,分段高度由我国目前的15m增加到20m,可降低采切成本25%,单步距崩矿量增加到7000t,有效地提高了采场生产能力降低了出矿损失贫化。这一研究成果标志着我国无底柱分段崩落法的分段高度进入到20m的新阶段,拉近了与西方先进国家同类采矿方法技术水平(30m分段高)的距离。
     贫化损失指标的预测是无底柱分段崩落法放矿理论研究的重要内容,本文在原有放出体前方废石混入贫化指标计算的基础上,进一步研究了放出体顶部和侧面废石混入造成矿石贫化损失的原因,推出了放出体顶部和侧面废石混入造成贫化率的计算公式,各种贫化情况下回收率的计算公式,完善了端部放矿理论贫化损失指标的计算体系,为全面系统地进行贫化损失指标的预测奠定了理论基础。
     分段高度、进路间距和崩矿步距的不同组合,对放矿损失贫化指标影响重大。本文研究了结构参数优化的方法,在以“回贫差”最大化为目标函数,确定崩矿步距的基础上、建立了单位工业储量盈利最大化和单位精矿盈利最大化为目标函数的数学模型。改变了传统的仅考虑贫化损失指标最佳确定结构参数的方法,开辟了从保障矿床开采整体经济效益最大化确定结构参数的新途径。
     理论研究和实验都证明,不(低)贫化放矿可大幅度地降低出矿贫化率。但是目前的放矿管理方式与复杂的生产实际不适应。本文改变了过去的组合截止品位放矿管理办法,大胆使用了定量放矿管理方案。工业试验表明,采用定量放矿管理简单易行,完全可达到不(低)贫化放矿的目的,放出矿石的贫化率可控制到5%以内(不包括底部和次底部分层放矿),这种放矿管理方式为不贫化放矿的推广应用带来了新的发展契机。
     大红山铁矿上盘岩石自然崩落规律研究表明,主采区基建采场回采期间,需采用强制崩落顶板形成覆盖岩石;基建采场回采完毕,可采用自然崩落与强制崩落相结合的方法形成覆盖岩层,顶板岩层的自然崩落高度达到120m;持续采场回采完毕,矿体上盘岩层已完全形成自然崩落机制,可利用自然崩落顶板岩层形成覆盖岩层,顶板岩层最终的崩落高度达到160m;中部1和中部2采区完成第1步回采后,顶板岩层就可形成自然崩落机制,可依靠自然崩落形成覆盖岩石。
The enlarged structural parameter represents the development trend of modern pillarless sublevel caving. Cooperating with the construction project of Da Hong San Iron Mine, this dissertation studied the mining technology of high sublevel and large space drive interval of pillarless sublevel caving. The industrial experiment turned out that the sublevel height was increased from 15m to 20m, which could reduce 25% of the recovery and cutting costs, the ore volume of each step of blasting was increased by 7000t, the mining productivity was improved, and the ore loss and dilution rate was reduced effectively. The research achievements marks that sublevel height of pillarless sublevel caving in our country comes into a new state (20m high), the distance of similar mining technology level is shortened between our country and advanced western countries (30m high).
     The prediction of ore dilution and loss rate is one of the important part of drawing theory on pillarless sublevel caving. Based on the former resesrch about the dilution calculation of ore interfusion, a further research that the top and flank wastes were mixed into the drawing body causing loss and dilution of ore was made on in this dissertation. The calculation formula of top and flank wastes mixed dilution and recovery rate was worked out. And the system for loss and dilution rate calculation of side drawing theory is improved greatly, thus the theoretical basis for systematic predicting ore loss and dilution rate was established.
     Usually ore drawing dilution rate is influenced by the different combination of sublevel height, drive interval and step of blasting. The method of structural parameter optimization was studied in the dissertation. After objective function of the maximization of difference between recovery and dilution rate was founded to confirm step of blasting, the objective function of maximization of industrial unit of reserves gain and unin of concentrate gain were established as mathematical model. The traditional method only considering loss and dilution rate to define structural parameter was changed, a new approach was created to define structural parameter for the purpose of gaining the maximal bebefit in the deposit exploitation.
     Theory study and the experimental test turned out that ore-drawing dilution rate could be greatly reduced by low dilution ore-drawing. But nowadays ore-drawing managemen mode and the complicated conditions in practical production are not matched well. The dissertation changed the past combined cutoff grade ore-drawing, ration ore-drawing was applied for the first time.The industrial experiment showed that the mode of the ration ore-drawing is applicable with both simplicity and easiness, and the goal of low dilution ore-drawing could be well obtained. The dilution ratio of drawn ore could be controlled within 5% (not including the ore-drawing in the bottom and in the upper bottom sublevel). The new opportunity for the popularization and the application of the low dilution ore-drawing would be brought by the ore-drawing management mode.
     The study on the regularity of top rock level caving in Da Hong San Iron Mine showed that in mining in the newly-built mining quarters of the main mining field, blasting the top rock of body should be adopted in the formation of the covering rock. When mining in the newly-built quarters was finished, the combination of the two ways-level caving and blasting could be applied to form the covering rock. The height of the level caving of top rock was 120m. When mining in the following mining quarters were finished, the mechanism of level caving was completely formed in the top rock of body, and then the covering rock was formed through the use of the level caving of the top rock, the final height of the level caving reached 160m.In the middle mining field 1 and 2, after the first step mining were finished, the mechanism of the level caving in the top rock of body was formed and covering rock was formed by level caving afterwards.
引文
[1]斯塔热夫,等.瑞典地下矿的现状和前景[J].国外金属矿山,1992,(4):34-37
    [2]布鲁伊维斯.T.基鲁纳铁矿KVJ2000地下采矿发展规划[J].国外金属矿山,1995,(3):24-29
    [3]安宏,胡杏保.无底柱分段崩落采矿法应用现状[J].矿业快报,2005,(9):6-9
    [4]朱卫东,原丕业,鞠玉忠.无底柱分段崩落法结构参数优化主要途径[J].金属矿山,2000,(9):12-16
    [5]金闯,董振民,贡锁国,等.梅山铁矿无底柱分段崩落采矿法增大结构参数的研究[J].金属矿山,2000,(4):16-19
    [6]张志贵,刘兴国.无底柱分段崩落法出矿贫化程度与矿石回收关系的研究[J].中国矿业,1994,(5):35-41
    [7]刘德刚.SIMBA H252采矿凿岩台车的应用[J].金属矿山,1995,(5):52
    [8]杨肖荣.SIMBA H252采矿台车在西石门铁矿的应用[J].冶金矿山设计与建设,1994,(1):16-17
    [9]周我勇.WJD-1.5铲运机液压系统工作原理及维修方法探讨[J].中国矿业,1999,(8):272-276
    [10]宋卫东,匡忠祥.程潮铁矿采场结构参数的优化研究[J].金属矿山,1999,(2):9-11
    [11]梅智学.金山店余华寺采区分段崩落采矿法结构参数优化研究[J].金属矿山,2006,(11):86-88
    [12]范庆霞,金闯.梅山铁矿深部采场结构参数优化及实施建议[J].化工矿物与加工,2006,(3):29-31
    [13]刘兴国主编.放矿理论基础.[北京].冶金工业出版社.1995
    [14]李昌宁,吴尚勇,任凤玉,等.低贫化放矿研究及其在白银铜矿的应用[J].中国矿业,1998,(6):37-40
    [15]王光炯,周宗红.低贫化放矿在桃冲矿业公司的应用[J].矿业快报,2002, (2):10-12
    [16]周综红,任凤玉,穆太升,等.低贫损分段崩落法在夏甸金矿应用研究[J].矿业快报,2006,(1):12-15
    [17]刘兴国,张志贵.无底柱分段崩落法不贫化放矿[J].东北大学学报(自然科学版),1998(5):448-451
    [18]赵金先,原丕业,王军英,等.无底柱分段崩落法大间距结构参数的研究与实践[J].矿业快报,2004,(6):7-10
    [19]金闯,董振民,范庆霞.梅山铁矿大间距结构参数研究与应用[J].金属矿山,2002,(2):7-9
    [20]连明杰,李占科.北洺河铁矿无底柱分段崩落法大结构参数确定[J].金属矿山,2004,(2):14-16
    [21]陈林生.高端壁放矿无底柱分段崩落法初步实践[J].有色金属,1979,(2):5-8
    [22]马鞍山矿山研究院,漓渚铁矿.无底柱双菱形高分段崩落采矿法在漓渚铁矿的实践[J].金属矿山,1984,(6):10-14
    [23]赵怀遥,等.高分段无底柱分段崩落法在洒钢镜铁山的实践[J].金属矿山,1993,(12):3-8
    [24]刘兴国.崩落采矿法放矿时矿石的移动规律[J].有色金属,1979,(4)
    [25]刘兴国.放出体的基本性质及其应用[J].矿山技术,1984,(1)
    [26]刘兴国、王永嘉.归零量及其应用--放矿理论的新概念[J].有色金属,1984,(5)
    [27]刘兴国.椭球体放矿研究的新进展[J].矿山设计研究,1985,(2)
    [28]苏宏志.期望放出体表面间过渡关系[J].矿山技术,1987,(5)
    [29]魏善力.放出体形状的测定和研究.北京科技大学硕士学位论文.1982年
    [30]王永嘉、刘兴国.对多孔放矿放出体的研究[J].东北工学院学报,1980,(2)
    [31]任凤玉.放矿仿真的数学模型[J].东北大学学报(自然科学版),1996,(5):475-479
    [32]张志贵,刘兴国.计算机随机模拟在放矿研究中的应用[J].西南工业学院学报,1998,(3):31-36
    [33]雷学文,刘兴国.倾斜边壁条件下放矿规律研究[J].矿山设计研究,1980,(2)
    [34]任凤玉.放矿随机介质理论及其实际应用.东北工学院博士论文.1992
    [35]吕爱钟.崩落矿块放矿的理论研究及其应用.东北工学院博士论文.1992.
    [36]樊继平,胡杏保.梅山铁矿低贫化放矿工艺的应用[J].金属矿山,2004,(4):26-27
    [37]董振民.无底柱分段崩落法结构参数的优化[J].宝钢技术,2000,(5):1-3
    [38]胡杏保.大间距无底柱工艺在国内的应用[J].矿业快报,2002,(2):1-3
    [39]连明杰,李占科.北沼河铁矿无底柱分段崩落法大结构参数确定[J].金属矿山,2004,(2):14-16
    [40]王永嘉.放矿理论研究的新方向-随机介质理论,东工活页论文选,1962
    [41]王昌汉主编.放矿学.冶金工业出版社.1982
    [42]戴兴国.贮矿空间内散体矿岩的压力理论与流动机理研究.中南工业大学博士论文.1990
    [43]王永嘉等.离散元法在崩落法放矿应用的研究[J].有色金属,1987,(2)
    [44]王荣福.放矿理论统一数学方程[J].有色金属,1981,(1)
    [45]刘兴国,张国联,柳小波.无底柱分段崩落采矿法损失贫化分析[J].金属矿山,2006,(6):53-60
    [46]杨才亮、马建军.无底柱分段崩落采矿法截止品位的研究趋势[J].矿业研究与开发,2004,(4):17-19
    [47]杨才亮,马建军.对不同放矿截止品位关系的一点新认识[J].矿冶工程,2004,(5):5-8
    [48]刘兴国,李清望,张志贵,等.无底柱分段崩落采矿法放矿截止品位的确定方法[J].有色金属,1994,(4):13-18
    [49]刘兴国,张志贵.无底柱分段崩落采矿法不贫化放矿理论基础(一)[J].金属矿山,1995,(10):5-9
    [50]刘兴国,张志贵.无底柱分段崩落采矿法不贫化放矿理论基础(续一)[J].金属矿山,1995,(11):23-28
    [51]刘兴国,张志贵.无底柱分段崩落采矿法不贫化放矿理论基础(续二)[J].金属矿山,1995,(12):13-16
    [52]刘兴国,张志贵.无底柱分段崩落采矿法不贫化放矿理论基础(续完)[J].金属矿山,1996,(1):26-29
    [53]刘兴国,李清望,张志贵,等.采用无底柱分段崩落法矿山提高经济效益的重要途径[J].金属矿山,1994,(10):17-21
    [54]张志贵,刘兴国,宋克志,等.无底柱分段崩落法低贫化放矿的工业试验[J].金属矿山,1997,(3):8-11
    [55]张志贵,刘兴国.关于无贫化放矿在矿山应用的若干问题[J].化工矿山技术,1995,(4):18-21
    [56]熊国华,赵怀遥.无底柱分段崩落法[M].北京:冶金工业出版社,1988.
    [57]王昌兴主编.放矿学.冶金工业出版社,1982.
    [58]马鞍山矿山研究院地下采矿研究室.无底柱分段崩落采矿法端部放矿模拟试验[J].金属矿山,1976,(3):4-14
    [59]周传波.无底柱分段崩落法崩矿步距及贫损指标的计算模型与实例[J].有色矿冶,1994,(4):5-8.
    [60]乔登攀,汪高,张宗生.无底柱分段崩落采矿法采场结构参数确定方法研究[J].采矿技术.2006,(3):233-236
    [61]苏金明,阮沈勇.MATLAB 6.1应用指南.电子工业出版社,北京,2002
    [62]杨才亮,马建车.无底柱分段崩落法截止品位的研究趋势[J].矿业开发与研究,2004,(4):17-19
    [63]宋海燕.矿山截止品位组合优化及其在生产应用中的研究[D].北京科技大学硕士学位论文.1989
    [64]王彦武,文启虎.杨家坝铁矿放矿截止品位的确定[J].黑色金属矿山通讯,1993,(2):14-16
    [65]黄光球,杜中岳.截止品位和入选原矿品位动态优化方法[J].江西有色金属,1996,(4):1-5
    [66]黄光球,杜中岳.覆岩下放矿截止品位静态与动态优化新方法[J].中国钼业,1997,(1):11-15
    [67]乔登攀,李文增,张丹,等.放矿研究现状存在问题及发展方向[J].中国矿业,2004,(10):19-24
    [68]赵庆和.崩落采场放矿的现状与展望[J].云南冶金,2002,(3):9-17
    [69]刘兴国,张国联.论无底柱分段崩落采矿法的放矿方式.金属矿山,2002,(2):5-7
    [70]任凤玉,刘兴国.关于崩落放矿时矿岩的移动方程[J].有色金属.1985,(2)
    [71]廖美来.爆破网络参数的优化[J].世界采矿快报,2000,(5):154-156
    [72]Belenyesi S.Drilling and blasting technology for the sublevel caving mining method[J].Mine.1989,40(9):433-435
    [73]徐大富.降低一次性炸药单耗的途径[J].世界采矿快报,2000,(5):151-153
    [74]陈超,杨丽.井下中深孔孔间微差爆破技术的应用[J].河北冶金,1999,(4):26-28
    [75]宋克志,张传信、李安.无底柱分段崩落法的深孔爆破技术[J].金属矿山,1996,(1):16-18
    [76]郭兆雷.中深孔采矿系列爆破漏斗试验研究[J].江西有色金属,2004,(3):3-6
    [77]杨红兵.爆破漏斗试验确定中深孔爆破参数的方法[J].新疆有色金属,2005,(3):13-14
    [78]张建国,周百川,李长缨,等.地下垂直扇形中深孔孔底空腔爆破试验研究[J].中国矿业.1995,(4):27-33
    [79]王炎明,马英芳.扇形孔孔底起爆及其爆破机理研究[J].西部探矿工程,1996,(4):59-61
    [80]李昌宁,宁新亭,任凤玉.崩落法回采炮孔布置方式分析与研究[J].化工矿物与加工,1999,(10):4-6
    [81]任凤玉,周宗红,穆太升,等.夏甸金矿中深孔爆破参数优化研究[J].金属矿山,2005,(11):4-6
    [82]刘殿中主编.工程爆破实用手册.冶金工业出版社,1999
    [83]明士祥,宋卫东,董福荣.楔形拉槽法在高分段采场中的应用[J].工程爆破,1998,(3):50-53
    [84]任凤玉,康培生.无底柱分段崩落采矿法控制放矿中的矿废尺寸效应[J].中国矿业,1998,(6)
    [85]原丕业,王军英,赵金先,王剑波,贡锁国.无底柱分段崩落法生产系统优化[J].化工矿物与研究,2004,(8):1-5
    [86]张国联,邱景平,宋守志.无底柱分段崩落采矿法结构参数的确定方法.中国矿业,2003,(12):49-51
    [87]Lee c.f.A rock mechanics approach to seismic risk evaluation[J].Earthquake Hazard Reduction and Rock Mechanics,1978
    [88]Taybor H K.General background theory of cut-off grades[J].Transactions of the Institute of Mining and Metallurgy.1972,81(2)
    [89]Dowd P A.Application of dynamic and stochastic programming to optimise cut-off gradesand production rates[J].Transactions of the Institute of Mining an Metallurgy.1976,85(3)
    [90]孙秀山,黄立新,刘应华等.二维正交各向异性结构弹塑性问题的边界元分析[J].复合材料学报,2005,22(3):156-161
    [91]第1届全国矿山岩体力学会议论文编写组.第1届全国矿山岩体力学会议论文编写组选集[C]北京:冶金工业出版社
    [92]现代采矿技术国际学术讨论会编写组.现代采矿技术国际学术讨论会论文集[C]山东,山东矿业学院,1988(10)
    [93]岩石力学与工程学报编辑部.地下工程经验交流会论文选集合[C].北京:地质出版社,1986
    [94]张世雄.铜矿峪5号矿体崩落性与崩落机理的研究[D].北京:北京科技大学,1987
    [95]于学馥.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983
    [96]田允明.实用矿山地压.[M]中南工业大学出版社,1987
    [97]RE.Melcheks.Strutural Reliabity Analysis And Prediction[M].1987
    [98]徐秉业.弹性与塑性力学[M].北京:机械土业出版社,1981
    [99]于学馥.轴变论[M].北京:冶金工业出版社,1960
    [100]胡广韬,杨文远.工程地质学[M].北京:地质出版社,1997
    [101]谢和平.采矿工程中的力学问题与分形力学[M].北京:中国科学技术出版社,2000
    [102]浙江大学遍委会.分形几何原理及其应用[M].浙江大学出版社,1998
    [103]周焕林,牛忠荣,王秀喜等.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193-197
    [104]现代采矿科技论文集编写组.现代采矿科技论文集:庆祝童光煦教授八十华诞暨回国执教五十周年[C].北京:冶金工业出版社,1998(11)
    [105]邢纪波,王泳嘉.崩落采矿法放矿的离散单元仿真[J].东北工学院学报,1988,(2):17-21
    [106]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报,2005,24(10):1649-1653
    [107]鲍鹏,姜忻良,崔奕.可变形体离散元模型[J].天津大学学报,2005,38(6):552-555
    [108]陈文胜,王桂绕,刘辉等.岩石力学离散单元计算方法中的若干问题探讨[J].岩石力学与工程学报,2005,24(10):1639-1644
    [109]周瑞忠,周小平,吴琛.数值方法进展从连续介质到离散粒子模型[J].工程力学,2005,22(增):228-239
    [110]王学滨.剪切带图案的复杂性及应力一应变曲线的离散性[J].岩土力学,2005,26(增):26-30
    [111]李仲奎,戴荣,姜逸明.FLAC-(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,21(2):2387-2392
    [112]朱建明,徐秉业,朱峰等.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,9(4):78-81
    [113]吴洪词,胡兴,包太.采场围岩稳定性的FLAC算法分析[J].矿山压力与顶板管理,2002,(4):96-98
    [114]尹尚先,汪益敏.采矿工作面推进的准动态FLAC数值模拟[J].华南理工大学学报,2003,(7增):124-126
    [115]陈清运,明世祥,候大德.地下开采地表变形数值模拟研究[J].金属矿山,2004,(6):19-21
    [116]许加林,钱鸣高.岩层移动模拟研究中加载问题的探讨[J].中国矿业大学学报,2001,(3):252-255
    [117]王华宁,曹志远.地下开采过程损伤场演化与地表变形的时变分析[J].计算力学学报,2004,(5):601-608
    [118]张建国,蔡美峰.无底柱分段崩落采矿法进一步研究的几个问题[J].中国矿业,2003,(11):41-43
    [119]张建国,郭连军,周百川.无底柱分段崩落采矿法崩落矿石形态及影响研究[J].中国矿业,1997,(3):27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700