用户名: 密码: 验证码:
冲击波感度实验(SSGT)的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击波感度是衡量炸药爆轰的难易程度和起爆性能的重要指标,而小隔板试验(SSGT)是研究冲击波感度最普遍的方法。由于小隔板试验要耗费大量的人力、物力,那么通过对小隔板试验进行数值模拟仿真,就能为以后的小隔板试验选择最佳的实验方案,降低实验的费用,缩短研究的周期,甚至取代小隔板试验。本文应用LS-DYNA程序对小隔板试验进行了数值模拟。从国内外标准高能炸药冲击起爆实验中得到的数据来确定受主炸药的点火增长反应模型的参数,对HMX/F2641的90%TMD和 95.5%TMD的两种受试炸药, RDX/F2641的80%TMD、90%TMD、95%TMD的三种受试炸药进行了数值模拟。通过对数值模拟计算的结果与实验的结果对比,说明本文的计算模型较好的反映了小隔板试验的情况。对各种受试炸药的冲击波感度(隔板值)的误差都限定在0.05mm之间,比国内外文献中报道的隔板试验的模拟结果都更为精确。另外还对点火增长模型中的不同参数进行调整,定性地测定参数对冲击波起爆性能的影响。根据国内外对热点起爆的研究,探讨对点火增长模型的改进及其在LS-DYNA程序中的应用,为进一步在数值模拟中研究不同炸药粒度对冲击波感度的影响奠定基础。
    通过数值模拟计算和分析得出如下主要结论:
    由数值模拟的结果可以看出,用标准高能炸药冲击起爆实验中得到的数据来确定受主炸药的点火增长反应模型的参数是可行的。
    本文的计算模型较好的反映了冲击波感度实验(SSGT)的情况。根据实验结果调整相关参数的数值模拟结果,能够有效地再现实验中难于观察的细节过程。
    对点火增长模型中的不同参数进行调整,发现对冲击波起爆感度的影响,成长项比起爆项的影响大。
    有关研究方法可应用于起爆、传爆序列的设计和模拟仿真研究,为许多相关课题的研究提供帮助。
Shock sensitivity is an important index that can judge the difficult or easy degree of detonation and detonating performance of explosive. Small scale gap test (SSGT) is one of the most general methods that study shock sensitivity. Owing to consumption of so much manpower and material resources in small scale gap test, SSGT is simulated for making it possible to choose the best experimental programme, and reduce the experimental expenses, and shorten the research periods, and even replace SSGT. Small scale gap test is numerically simulated with LS-DYNA in this paper. The data from several standard shock initiation and HE performance experiments at home and abroad were used to determine the parameters required for the Ignition and Growth model of the acceptor explosive. The two test explosives of HMX/F2641 (90%TMD and 95.5%TMD) and the three test explosives of RDX/F2641 (80%TMD、90%TMD and 95%TMD) are numerically simulated. Compared with the experimental results, the results of numerical simulation show that this calculated model is in accord well with the real process of SSGT. The error of shock sensitivity is within 0.05mm, which is more precise than those reported on documentation at home and abroad. In addition, the different parameters in Ignition and Growth model are adjusted in order to qualitatively examine the influence on shock initiation behavior made by the parameters. According to the initiation research at home and abroad, the improvement in Ignition and Growth model and the application of the model in LS-NYNA are discussed, which provides a good basis for further research about the different effects on the shock sensitivity by particle size of different explosive in numerical simulation.
    Main conclusions could be reached by numerical simulation and analyses as follows:
    As can be seen from the results of the numerical simulation, it’s possible that the data
    
    
    from several standard shock initiation and HE performance experiments are used to determine the parameters required for the Ignition and Growth model of the acceptor explosive are feasible.
    This calculated model is in accord well with the real process of shock sensitivity experiments (SSGT). The results of numerical modeling by adjusting the related parameters based on the results of experiments effectively show the details hard to be observed from experiments.
    By adjusting the parameters of the Ignition and Growth, we can see that the growth terms have a much greater influence on the shock sensitivity than the ignition terms.
    This research technique in the paper could be used for the design and simulation of detonation initiation and propagation sequence, and also benefit other research related to the similar topic.
引文
[1]松全才,杨崇惠,金韶华.炸药理论.北京:兵器工业出版社.1997:398-398.
    [2]陈朗,冯长根.固体炸药冲击起爆实验和数值模拟.中国兵工学会,第十一届火工烟火学术年会论文集.2002:169-174.
    [3]贾泉生,冯长根,陈福梅.爆轰数值模拟.北京理工大学力学工程系:2-2.
    [4]恽寿榕,徐候杰,梁德寿,等.爆炸力学计算方法.北京:北京理工大学出版社.1995:1-1.
    [5] C .L .Mader .Numerical modeling of explosives and propellants.1998:156-188.
    [6]孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社.1995:409-423.
    [7]孙锦山.凝聚炸药非理想爆轰的数值模拟.力学进展,1995(1):127-133.
    [8]曹菊珍.爆轰波数值计算中人为粘性与空间步长的匹配关系.爆炸与冲击,1986(6):137-142.
    [9]朱建士,魏振典,周德忠.定常爆轰数值模拟中人为粘性与人为反应率的选取.爆炸与冲击.1983(3):21-27.
    [10]李德元,李维新.爆炸冲击研究中的数值模拟.爆炸与冲击,1984(1):89-96.
    [11]丁刚毅.爆轰数值模拟及其在含铝炸药冲击起爆中的应用.北京:北京理工大学.1993:1-2.
    [12]曹菊珍,周淑荣.铸装TNT爆轰性能的数值模拟.含能材料,1997,5(3):121-127.
    [13]周淑荣,曹菊珍,林忠.非均质炸药冲击起爆的数值模拟.爆炸与冲击,1982:532-537.
    [14]韩小平,张元冲,沈亚鹏,张泰华,赵壮华.冲击载荷下炸药动态响应的有限分析及热点形成机理的数值模拟.爆炸与冲击,1997, 17(2):143-152.
    [15]曹菊珍.PBX-9404和TATB的散心临界冲击引爆问题.爆炸与冲击,1986(4):350-353.
    [16]曹菊珍,张铁桥.射流引爆TATB的理论研究和数值模拟.兵工学报,1994,8(3):31-36.
    
    [17]王诚洪,张志杰.非均质凝聚炸药冲击波起爆的数值模拟.解放军国防科技大学,1983.10:1-10.
    [18]苏林祥,毕祝,孙义亭.非均匀凝聚炸药冲击起爆的数值模拟.1981.10:12-22.
    [19]毕祝,孙义亭.凝聚炸药冲击起爆和爆轰传播的数值模拟.西南流体物理研究所,10页.
    [20]丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟.兵工学报,1994(4):25-29.
    [21]陈朗,冯长根,赵玉华,方青.含铝炸药爆轰数值模拟研究.北京理工大学学报,2001,21(4):415-419.
    [22]Allen L. Bowman, Charles A. Forest. Numerical modeling of shock sensitivity experiments. LLNL, New mexico:479-487.
    [23]D. A. Jones, G. Kemister, R. A. J. Borg. Numerical simulation of detonation in condensed phase explosives.42p.
    [24] Y. K. Huang, A. L. Arbuckle. Numerical experiments on the shock sensitivity of munitions. Technical report ARBRL-TR-02387,1982.56p.
    [25]Murply.M.J.(Lawrence Livermore National Lab)Lee. E. L. Composition-B shock initiation report: DE95- 011425,-19940900.-206p.-UCRL-ID-118300 .
    [26] 北京理工大学ANSYS/LS-DYNA中国技术支持中心.ANSYS/LS-DYNA算法基础和使用方法.1999年.
    [27] 嘉木工作室编著.ANSYS5.7有限元实例分析教程.机械工业出版社.2002.
    [28] J.O. Hallquist. LS-NYNA theoretical manual.Livermore software technology corporation.1998.
    [29] 薜再清.爆轰产物状态方程及含铝炸药的爆炸过程.北京:北京理工大学机电工程学院,1998:1-3.
    [30]于川,刘文翰,李良忠,冯民贤,杨淑英,龙新平.钝感炸药爆轰产物JWL状态方程研究.中国工程物理研究院流体物理研究所.14p.
    [31]章冠人,陈大年编著.凝聚炸药起爆动力.北京:国防工业出版社.1991:150-154.
    
    [32]张振宇,卢芳云,王志兵,浣石. PBX-9404炸药高压反应率方程的研究.爆炸与冲击,1999(10):89-96.
    [33] M. J. Murphy and E. L. Lee, A. M. Weston, A. E. Williams. Modeling shock initiation in composition B, tenth symposium(international) on detonation, 1993:963-970.
    [34] E. L. Lee, C. M. Tarver. Phenomenological model of shock initiation in heterogeneous explosives. Phys, Fluids. Vol23, No12, 1980: 2362-2372.
    [35] R. L. Simpson, F. H. Helm, P. C. Crawford and J. W. Kury. Shock initiation studies on heterogeneous explosives . LLNL, Livermore, CA 94550(USA).
    [36]周刚.爆炸网络的数值模拟及其CAD的研究.北京:北京理工大学,2001:19-20.
    [37]刘玉存.炸药粒度及粒度级配对冲击波感度和输出的影响研究. 北京:北京理工大学,2000:44-60.
    [38] Steinberg D J. An equation of state for polymethy methacrylate. UCID 16982.1975.
    [39]C.M. Tarver and J.O. Hallquist. Modeling two-dimensional shock initiation and detonation wave phenomena in PBX9404 and LX-17. LLNL, California 94550:488-497.
    [40]H. R. James and B. D. Lambourn. A continnum-based reaction growth model for the shock initiation of explosives . Propellants, explosives, pyrotechnics.2001(26):246-256.
    [41]Craig M. Tarver. Shock compression and initiation of LX-10.Propellants, explosives, pyrotechnics .1993(18) :117-127 .
    [42]Dr.H.J.Verbeek.Shock initiation modeling of explosives. September 1997,A94KL482,PML 1997-A33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700