用户名: 密码: 验证码:
爆轰法合成碳包覆金属纳米材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪九十年代发现碳包覆金属纳米颗粒(Carbon-encapsulated metal nanoparticles, CEMNPs)以来,其已成为继发现富勒烯C60、碳纳米管之后的又一研究热点,再次掀起了碳材料领域的研究热潮。CEMNPs是一种新型的、核壳结构的碳-金属复合纳米材料,核心由球形纳米金属晶构成,外壳主要由多层石墨片层紧密环绕金属纳米晶核有序包裹。由于碳包覆层的保护,有效的防止了金属纳米晶团聚、长大,保护了内核金属纳米晶不发生氧化及环境腐蚀,同时提高了纳米金属活性与生物体之间的相容性。
     爆轰法以速度快、产率高、能耗低及操作工艺简单等优势在合成纳米金刚石、纳米氮化物、纳米氧化物、纳米碳材料等方面独树一帜。本文主要从实验分析和理论计算等多个方面分别进行研究和讨论。研究如何采用爆轰技术制备碳包覆金属纳米材料,并结合X-射线衍射仪(XRD)、透射电子显微镜(TEM)及能谱仪(EDX)、扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X光射线荧光光谱仪(XRF)、振动样品磁强计(VSM)、差热分析仪(DSC)和热失重分析仪(TG)等现代分析手段对所合成的纳米复合材料的物相成分、形貌结构、元素构成、磁性特征及前驱体热力学性能进行了分析并通过数值模拟探讨了其合成机理。
     在总结前人采用爆轰法合成纳米金刚石、纳米纳米管、石墨材料等基础上,首先对爆轰前驱体从氧平衡、爆炸性能、热力学性能、选择材料等方面对前驱体炸药进行初步设计。以此为出发点,首先开展了尿素硝酸盐络合物炸药爆轰合成碳包覆金属(N、Co、Fe)纳米颗粒的研究。结果表明,通过调整前驱体中元素摩尔比例,在密闭容器内惰性气体保护下,成功制备出碳包覆金属(Ni、Co、Fe)纳米材料并初步探讨了其合成机理。之后进一步开展了合成碳包覆合金纳米材料的研究。通过调整炸药前驱体中两种金属源与碳源材料的元素摩尔比例,成功地合成了碳包覆合金(FeNi、FeCo)纳米颗粒,且一次合成产率大约10~15%。再者,采用柠檬酸凝胶法对溶碳量较差的金属(以铜为代表),进行爆轰凝胶前驱体炸药合成碳包覆铜纳米材料的探索性研究。选用硝酸铜与柠檬酸按照一定摩尔比和RDX混合后形成了柠檬酸凝胶前驱体炸药,成功合成了碳包覆铜纳米材料。
     为了考察合成碳包覆金属(铁、钴、镍)的尿素硝酸盐络合物炸药的热安全性,分别采用DSC/TG热分析技术对其进行热分解动力学研究。通过对前驱体炸药各组分、炸药混合物及尿素硝酸盐络合物炸药的热分析并通过热分析动力学方程计算其动力学参数。结果表明,尿素络合物对金属离子的稳定作用并且遵循一定规律的动力学特征,探明了硝酸盐络合物炸药的热分解机理,为制备碳包覆金属纳米材料专用安全炸药提供了必要依据。
     最后,运用BKW炸药物态方程和金属的高温高压物态方程相结合并运用吉布斯最小自由能原理,通过编写GS-BKW专用程序,实现了爆轰产物与金属单质或者合金固体物态方程的耦合,并对前驱体专用炸药爆轰合成复合纳米颗粒的爆轰参数进行了数值模拟。结果表明:压力范围在9-15GPa,温度在2000-3500K之间有利于碳和金属团簇的生成并探讨了爆轰合成碳包覆金属纳米颗粒的生长机理。
Since the nineties of 20 th century, CEMNPs become the another major new discovery in carbon composite materials afterwards fullerene-C60,CNTs. The new type of core-shell structural carbon/metal nanocomposites, in which graphite carbon layers arrange round spherical metal nanocrystal located in the composite center. Because that CEMNPs have excellent properties and potential broad application prospects in many areas, this kind of unique structure and physical and chemical properties of CEMNPs have aroused wide attention and research from domestic and foreign scholars in recent years. Due to the carbon shell protection, bare metal nanocrystals were prevented from aggregation and growth and provided from the oxidation resistance and environmental effect and even improved the bio-compatibility.
     Among these methods, detonation technique has the advantage of high efficiency, simple and lower energy consumption so that it has prepared for many nanomaterials such as nanodiamond, nano-nitride, nano-oxide, carbon nanomaterial and so on. This paper mainly explained the synthetic mechanism of CEMNPs by two ways:experiment analysis and theoretic calculation. The CEMNPs have been prepared by detonation technique and characterized by means of XRD, SEM, TEM, EDX, XRF, Raman,VSM and DSC/TG characterization methods. Finally,the synthetic mechanism of CEMNPs was presented by numerical modeling of explosive precursors.
     Based on a large body of evidence on detonation synthesis of nanomaterials, the OB, explosion characterization, thermal safety and composition of explosive precursors were preliminary conceived and designed, so that the carbon-encapsulated metal (Ni, Co, Fe) nanoparticles were successfully synthesized. The results showed that the explosive precursors with a certain mole ratio of nitrate and complexing agent for metallic source materials, which mixed carbon source materials such as organic matter were ignited by detonator under nitrogen in closed detonation vessel. The preliminary reaction mechanism were discussed in this part.
     And then Carbon-encapsulated ferronickel and ferrocobalt nanomaterials were further synthesized and characterized. The results indicated that carbon-encapsulated ferronickel or ferrocobalt nanoparticles were prepared successfully and the spherical composite nanoparticles were with a core-shell structure. The yield of synthesized composite nanoparticles was about 10-15% one time. And the compatibility of carbon and a type of metal such as copper was poor. So the another gel-precursors were prepared by mixing copper nitrate, citrate and ethylene glycol then the gel mixed with RDX for gel-explosive precursors. The gel-precursors were synthesized by detonation technique for carbon-encapsulated copper nanoparticles under argon gas in closed vessel.
     The explosive precursors with iron/cobalt/nickel ions or its mixtures were thermodynamically analyzed for thermal safety by DSC/TG. Base on the thermal safety analysis on characteristics of thermal decomposition of the main ingredients and their mutual effect in explosive precursors. The results showed that the best stoichiometry content of metal ions in these precursors were obtained and the DSC/TG plots method along with several thermal analysis methods were employed to determine the kinetic parameters and model of the decomposition processes for detonation synthesis of CEMNPs.
     Finally, Based on BKW equation of state of detonation products, and the global minimum of Gibbs free energy were applied to originally design GS-BKW programs and described chemical reacted explosive and detonation products, which realized the coupling equation of state for gas and metal or alloy products. The calculated results showed that the pressure and temperature in the range of 9-15GPa and 2000-3500K are conducive to the formation of synthesizing CEMNPs, and the growth mechanism of CEMNPs and detonation pressure and temperature were analyzed and illustrated.
引文
[1]Feynman R P. There's plenty of room at the bottom[J]. Journal of Microeleciromechanical Systems,1992,3(1):60-66.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]白春礼.纳米科技及其发展前景[J].科学通报,2001,64(2):89-92.
    [4]张志捆,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [5]沈曾民.新型炭材料[M].北京:化学工业出版社,2003.
    [6]成会明.新型炭材料的发展趋势[J].材料导报,1998,12(1):5-9.
    [7]Heinmann R B, Evsyukov S E, Koga Y. Carbon allotropes:a suggested classification scheme based on valence orbital hybridization[J]. Carbon,1997,35:1654-1658.
    [8]Shenderova 0 A,Zhirnov V V, Brenner D W. Carbon nanostructure[J]. Critical Reviews in Solid State and Materials Science,2002,27(3/4):227-356.
    [9]Kroto H W, Heath J R, O'Brein S C, et al. C60:Buckminsterfullerene[J]. Nature,1985,318: 162-163.
    [10]Donohue J. The structures of the elements[M]. New York, Wiley,1974.
    [11]成会明.碳纳米管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [12]Popov V N. Carbon nanotubes:properties and application[J]. Materials Science and Engineering:R,2004,43:61-78.
    [13]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [14]Ruoff R, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nano-particles[J]. Science,1993,259:346-348.
    [15]Gonsalvesl K E. Chemical synthesis of nano-structured metals, metal alloys and semiconductors,Handbook of nanostructured[M]. Materials and Nanotechnology,2000.
    [16]陈国华.磁学研究所纳米磁性材料及器件的发展与应用[J].电子元器件应用,2002(1):1-4.
    [17]张阳德.纳米生物材料学[M].北京:化学工业出版社,2005.
    [18]Chatterjee J, Haik Y, Chen C J. Polyethylene magnetic nanopartice:a new magnetic materials for bio-medical applications[J]. Journal of Magnetism and Magnetic Materials, 2002,246:382-391.
    [19]Pasqualini E, Adelfang P, Regueiro M N. Carbon nanoencapsulation of uranium dicarbide[J]. Journal of Nuclear Materials,1996,231:173-177.
    [20]Saito Y, Oikkuda M, Yoshikawa T, et al. Correlation between volatility of rare-earth-metals and encapsulated of their carbides in carbon nanocapsules[J]. Journal of physics chemistry,1994,98:6696-6698.
    [21]Kelly B T. Physics of Grahpite[M]. Lodon:Applied Science,1981.
    [22]Dravid WP, Host J J, Teng M H, et al. Controlled-size nanocapsules[J]. Nature,1995,374: 602-603.
    [23]Tomita M, Saito Y, Hayashi T. LaC2 encapsulated in graphite nanoparticle[J]. Journal of Applied Physics,1993,32:L280-282.
    [24]Host J J, Bloek J A, Parvin K. Effeet of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals[J]. Journal of Appllied Physics, 1998,83(2):793-801.
    [25]Kiseleva T Yu, Novakova A A, Grigorieva T F, et al. Iron and indium interactions during mechanical attrition[J]. Journal of Alloys and Compound,2004,383(1-2):94-97.
    [26]Jeyadevan B, Suzuki Y, Tohji K. Encapsulation of nanoparticles by surfactant reduction [J]. Material Science Engeering A,1996,217/218:54-58.
    [27]Sun X C, Gutierrez A, Jose Y M, et al. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni[J]. Materials Science and Engineering A,2000,286:157-160.
    [28]Hao C C, Feng X.Cui Z L. Preparation and structure of carbon encapsulated copper nanoparticles[J]. Journal of Nanoparticle Research,2008,10:47-51.
    [29]Si P Z, Zhong Z D, Geng D Y. Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor[J]. Carbon,2003,41:247-251.
    [30]Schaper A K, Hou H, Greiner A. Copper nanoparticles encapsulated in multi-shell carbon cages[J]. Applied Physics A,2004,78:73-77;
    [31]许并社,闫小琴,王晓敏,等.电弧放电中纳米洋葱状富勒烯生成机理的研究[J].材料热处理学报,2010,22(4):9-12.
    [32]Schaper A K, Hou H, Greiner A. Copper nanoparticles encapsulated in multi-shell carbon cages[J]. Applied Physics A,2004,8:73-77.
    [33]Nolan P E, Lynch D C,Cutler A H. Cataytic disproportionation of CO in the absence of hydrogen:encapsulating shell formation[J]. Carbon,1994,32:477-483.
    [34]Zhong Z Y, Chen H Y, Tang S B. Catalytic growth of carbon nanoballs with and without cobalt encapsulation[J]. Chemical Physics Letters,2000,330(1/2):41-47.
    [35]刘静,雷中兴,李和平,等.碳包覆磁性纳米金属粒子的制备及表征[J].武汉科技大学学报(自然科学版),2003(6),123-125.
    [36]Tsai S H, Lee C L, Chao C W. A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon[J]. Carbon,2001,204:169-174.
    [37]Sano N, Akazawa H, Kikuchi T. Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen [J]. Carbon,2003,41 (11):2159-2179.
    [38]Singjai P, Thongtem T, Kumfu S, Thongtem S. Synthesis of CNTs via ethanol decomposition over ball-milled Fe2O3 coated copper sheets[J]. Inorganic Materials,2003,43(2):143-147.
    [39]Baker R T K, Chludzinski Jr J J, Dudash N S, et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum [J]. Carbon,1983,21:463-468.
    [40]Liu Z J, Yuan Z Y, Zhou WZ, et al. Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD[J]. Chemical Vapor Deposition,2001,7:248-251.
    [41]Harris P J F,Tsang S C A. A simple technique for the synthesis of filled carbon nanoparticles[J]. Chemical Physical Letters,1998,293:53-58.
    [42]Tomita S, Hikita M, Fujii M. A new and simple method for thin graphitic coating of magnetic metal nanopartcles[J]. Chemcal Physics Letters,2000,316:361-364.
    [43]Schaper A K,Hou H,Greiner A, et al. Copper nanoparticles encapsulated in multishell carbon cages[J]. Applied Physics A,2004,78,73-77.
    [44]张立,刘刚.胶状碳包覆前驱体工艺制备超细、纳米碳化钨粉的研究[J].中国钨业,2005(12),23-27.
    [45]李晓杰,罗宁.合成碳包纳米金属材料的研究现状[J].材料导报,2009(23)7,33-37.
    [46]Walter J, Shioyama H. Qusai two-dimensional palladium nanoparticles encapsulated into graphite[J]. Physics Letters A,1999,254(1/2):65-71.
    [47]吴卫泽,朱珍平.Fe/C复合纳米材料的制备研究[J].新型炭材料,2002(1),4-9.
    [48]Tsang S C, Qiu J S,Harris P J F, et al. Synthesis of fullerenic nanocapsules from bio-molecule carbonization[J]. Chemical Physics Letters,2000,332(6):553-560.
    [49]Yu C, Qiu J S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch[J]. Chemical Engineering Research and Design,2010,86:904-908.
    [50]邱介山,安玉良.生物基碳包覆纳米材料(Mn、Co)的制备[J].物理化学学报,2004,20(3):260-264.
    [51]邱介山,孙玉峰,周颖,等.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能[J].2006(9):202-205.
    [52]Song H H, Chen X H. Large-scale synthesis of carbon-encapsulated iron carbige nano-particles by co-carbonization of durene with ferroeene[]. Chemical Physics Letters, 2003,374:400-404.
    [53]Chen X H, Song H H. Structural features and magnetic property of nano-sized transition metal dispersed carbons from naphthalene by pressure [J]. Journal of Material Science, 2007,42:8738-8744.
    [54]Capobianchi A, Sabrina F, Imperatori P, et al. Controlled filling and external cleaning of multi-wall carbon nanotubes using a wet chemical method[J]. Carbon,2007,45:2205-2208.
    [55]Valdes-Soli s T, Valle-Vigon P, Sevilla M, et al. Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule [J]. Journal of Catalysis,2007,251:239-243.
    [56]Oyama T, Takeuchi K. Gas phase synthesis of Crystalline B4C encapsulated in graphitic particles by pulsed laser irradiation[J]. Carbon,1999,37(3):433-436.
    [57]Leconte Y, Veintemillas-Verdaguer S, Morales M P. Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis:Application as MRI contrasts[J]. Journal of Colloid and Interface Science,2007,313:511-518;
    [58]Hayashi T, Hirono S, Tomita M. Magnetic thin film of cobalt nanocrystals encapsulated in graphite-like carbon[J]. Nature,1996,381:772-774.
    [59]Nishijo J, Okabe C, Bushiril J,et al. Formation of carbon-encapsulated metallic nanoparticles from metal acetylides by electron beam irradiation[J]. The European Physical Journal D,2005,34,219-222.
    [60]Bystrzejewski M,Lange H, Huczko A,et al. Study of the optical limiting properties of carbon-encapsulated magnetic nanoparticles[J]. Chemical Physics Letters,2007,444: 113-117.
    [61]Uwakweh 0 N C, Bauer J P, Genin J M R. Mossbauer study of the distribution of carbon interstitials in iron alloys and the isochronal kinetics of the aging of martensite: the clustering ordering synergy[J]. Metallurgical and Materials Transactions A,1990, 21A(3):589-602.
    [62]Wu W Z, Zhu Z P, Liu Z Y. Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method[J]. Carbon,2003,41(2):317-321.
    [63]George P P, Pol V G, Gedanken A. Synthesis of carbon encapsulated nanocrystals of WP by reacting W(CO)6 with triphenylphosphine at elevated temperature under autogenic pressure[J]. Journal of Nanoparticle Research,2007,9:1187-1193.
    [64]Lu Y,Zhu Z P,Liu Z Y. Carbon-encapsulated Fe nanoparticles from detonation induced pyrolysis of ferrocene[J]. Carbon,2005,43(2):369-374.
    [65]袁华堂,冯艳,乔林军,等.石墨包覆对含Ti、Zr镁基合金性能的影响[J].2004,4:216-219.
    [66]薛俊,林航.超高分子量聚乙烯/石墨包覆纳米铜复合导电材料研究[J].2008,1:43-47.
    [67]陈国华.磁学研究所纳米磁性材料及器件的发展与应用[J].电子元器件应用,2002,1:1-4.
    [68]吕建强.纳米磁性液体制备及性能研究[D].北京:北京交通大学,2006.
    [69]Lee K T, Jung Y S, Oh S M. Synthesis of Tin-eneapsulated Spherical hollow carbon for anode material in lithium secondary batteries [J]. Journal of the Ameriean Chemieal Soeiety, 2003,125:5652-5653.
    [70]陈立宝,谢晓华,王可,等.碳包覆硅/碳复合材料的制备与性能研究[J].电源技术,2007,1:34-37.
    [71]Lalande G, Guay D, Dodelet J P, et al. Electroreduction of oxygen in polymer electrolyte fuel cells by activated carbon coated cobalt nanocrystallites produced by electric arc discharge[J]. Chemistry of Materials,1997,9:784-790;
    [72]Chatterjee J,Haik Y, Chen C J. Polyethylene magnetic nanopartice:a new magnetic materials for biomedical applications[J]. Journal of Magnetism and Magnetic Materials, 2002,246:382-391;
    [73]Salah A A. Magnetic study of nickel particles encapsulated in carbon nanoparticles[M]. UMI Company,1997.
    [74]Wozniak M J. Magnetic nanoparticles of Fe and Nd-Fe-B alloy encapsulated in carbon shells for drug delivery systems:Study of the structure and interaction with the living cells[J]. Journal of Alloys and Compounds,2006,13:87-91.
    [75]Teunissen W, Degroot F M F, Geus J. The structure of carbon encapsulated NiFe nano-particles[J]. Journal of Catalysis,2001,204:169-174.
    [76]Lu A H, Li W C, Kiefer A, et al. Fabrication of Magnetically Separable Mesosotructured Silica with an Open Pore System [J]. Journal of the American Chemical Society,2004,126: 8616-8617.
    [77]Pasoualini E, Adelfang P, Regueiro M N. Carbon nanoencapsulation of uranium dicarbide[J]. Jounal of Nucleur Materials,1996,231:173-177.
    [78]Bonitz M, Hansen N J S. Decay of a new 26ns isomeric state in 159Gd[J]. Nuclear Physics A,2002,111:551-560.
    [79]Einar K F, Heinz F, Aaron P. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic application-a review[J]. Journal of Aerosol Science,1998,29(5-6): 511-335.
    [80]张宝平,张庆明,黄凤雷.爆轰物理学[M].北京:兵器工业出版社,2001.
    [81]Dieter M G, Olga A S,Vul'Alexander Y. Synthesis properties and applications of ultrananocrystalline Diamond[M]. Springer:NATO Science Series Ⅱ Mathematics Physics and Chemistry,2004.
    [82]Wissler M. Graphite and carbon powders for electrochemical applications[J]. Journal of Power Sources,2006,156 (2):142-150.
    [83]Seraphin S, Zhou D, Jiao J, et al. Yttrium carbide in nanotubes[J]. Nature,1993,362: 503-505.
    [84]Kripasindhu S, Meenakshi D, Schwenzer B, et al. A simple single-source precursor route to the nanostructures of AlN, GaN and InN[J]. Journal of Materials Chemistry,2005,15: 2175-2177.
    [85]Li R Y, Li X J, Xie X H. Explosive synthesis of ultrafine A1203 and effect of temperature of explosion[J]. Combustion Explosion and Shock waves,2006,42(5):607-610.
    [86]Qu Y D, Li X J, Li R Y, et al. Detonation synthesis of titanium dioxide nanometer powders [J]. Materials Research Bulletin,2008,43 (1):97-103.
    [87]Xie X H, Li X J, Yan H H. Detonation synthesis of zinc oxide nanometer powders[J]. Materials Letters,2006,60(25-26):3149-3152.
    [88]Li X J, Qu Y D, Xie X H, et al. Preparation of SrA1204:Eu2+, Dy3+ Nanometer Phosphors by Detonation Method[J]. Materials letters,2006,60(29-30):3673-3677.
    [89]Wang X H, Li X J, Zhang Y J, et al. A new synthetic method for manganese ferrite ultramicropowders[J]. Glass physics and chemistry,2007,33(5):524-525.
    [90]Sun G L, Li X J, Yan H H. Detonation of expandable graphite to make micron-size powder [J]. New Carbon Materials,2007,22(3):242-246.
    [91]Bundy F P,Hall H T,Strong H M, et al. Man-made diamonds[J]. Nature,1955,176:51-55.
    [92]DeCarli P S, Jamieson J C. Shock Wave Synthesis of Diamond and Other Phases [J]. Journal of Chemistry Physics,1959(31),1675-1678;
    [93]Greiner N R, Phillips D S, Johnson J D, et al. Diamond in detonation soot[J]. Nature,1988, 333:440-441.
    [94]Lewis R S,Ming T, Wacker J F. Interstellar diamond in meteorites[J]. Nature,1987,326: 160-162.
    [95]Abadurov G A, Bavina T V,Breusov 0 N. Method of producing diamond and/or diamond-like modifications of boron nitride[P]. US Patent,4.483.836.
    [96]Yoshida M,Thadhani N N. In Shock Compression of Condensed Matter 1991[P]. American Physical Society,1992.
    [97]Fujihara S, Narita K, Saita Y, et al. In Shock Waves on The Graphite into Diamond[P]. Springer, Berlin,1992, P367.
    [98]Yoshida M, Fujiwara S. On Shock synthesis of Materials[P]. U. S. Army Research Office, May,24-26,1994.
    [99]周刚.利用炸药中的碳爆轰合成超细金刚石的研究[D].北京:北京理工大学,1995.
    [100]李世才,池军智,黄风雷,等.影响超细金刚石尺寸长大的限制机理[J].北京理工大学学报,1997,17(5):552-558.
    [101]徐康,薛群基.炸药爆炸法合成的纳米金刚石粉[J].化学进展,1997,9(2):201-208.
    [102]文潮,孙德玉,李迅,等.炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用[J].物理学报,2004(4):1260-1265.
    [103]文潮,金志浩,关锦清,等.炸药爆轰法制备纳米石墨粉[J].稀有金属材料与工程,2004,33(6):628-631.
    [104]谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007.
    [105]李宏年,池元斌,王立中,等.冲击石墨合成聚晶金刚石的实验研究[D].吉林:吉林大学,2000.
    [106]陈鹏万,恽寿榕,黄风雷,等.爆轰合成纳米超微金刚石的提纯方法研究[D].北京:北京理工大学,2000.
    [107]李晓杰.爆炸合成金刚石高密度相氮化硼[D].大连:大连理工大学,1998.
    [108]Frank A C. Microstructural characterisation of nanocrystalline GaN prepared by detonations of gallium azides[J]. Advanced Materials for Optics and Electronics,1998, 8(3):135-146.
    [109]Gruber J B, Sardar D K, Nash K L, et al. Comparative Study of the Crystal-Field Splitting of Trivalent Neodymium Energy Levels in Polycrystalline Ceramic and Nanocrystalline Yttrium Oxide[J]. Journal of Applied Physics,2007,102,023103:1-6.
    [110]Bukaemskii A A, Avramenko S S, Tarasoval L S. Ultra-Al2O3 Explosive Method of Synthesis and Properties [J]. Combustion Explosion and Shock Waves,2002,38(4):478-483.
    [111]Bukaemskii A A, Fedorova E N. Explosive compaction and low-temperature sintering of alumina nanopowders[J]. Combustion Explosion and Shock Waves,2008,44 (6):717-728.
    [112]Tsvigunov A N, Krasikov A S, Khotin V G. Combined shock-wave synthesis of noble spinel and laves cubic phase[J]. Glass and Ceramics,2006,63:5-6.
    [113]廖其龙,杨世源,蔡灵仓,等.用冲击波合成法制备羟基磷灰石粉体[J].高压物理学报,2002,16(4):249-253.
    [114]李瑞勇,李晓杰,赵峥,等.爆轰合成纳米γ-氧化铝粉体的实验研究[J].材料与冶金学报,2005,4(1):27-30.
    [115]郑敏,王作山.爆炸法合成纳米α-Fe2O3[J].硅酸盐学报,2005,33(8):930-935.
    [116]李晓杰,王小红,谢兴华,等.乳化炸药在爆轰合成纳米氧化物颗粒中的应用[J].含能材料,2007,51(5):468-470.
    [117]Qu Y D, Li X J, Li R Y, et al. Production of nanosized Ti2O by detonation[J]. Materials Research Bulletin,2008,43(1):97-103.
    [118]姚惠生,黄风雷,仝毅.以水为保护介质爆轰法合成纳米石墨[D].北京:北京理工大学,2000.
    [119]Thomas U,Marcus S, Gerhard M,et al. Synthesis of carbon nanotubes by detonation of 2,4,6-triazido-1,3,5-triazine in the presence of transition metals[J]. Carbon,2004, 42(4):823-828.
    [120]Faust R. Exposions as synthetic cycloalkynes as precursors to fullerenes, bucktubes and buckyonions[J]. Angewandte Chemie International Edition,1998,37:2825-2828.
    [121]Edwin K,Stefan W,Manfred W, et al. Siliranes:Formation, isonitrile insertions and thermal rearrangements[J]. Tetrahedron Letters,1996,37(21):3675-3678.
    [122]Lu Y,Zhu Z P,Wu W Z, et al. Detonation chemistry of a CHNO explosive:catalytic assembling of carbon nanotubes at low pressure and temperature state[J]. Chemical Communications,2002,22:2740-2741.
    [123]Lu Y, Zhu Z P, Su D S, et al. Formation of bamboo-shaped carbon nanotubes by controlled rapid decomposition of picric acid[J]. Carbon,2004,42(15):3199-3207.
    [124]吴卫泽,朱珍平,刘振宇.热处理对爆炸法制备的碳包裹碳化铁纳米颗粒的影响[J].新型碳材料,2002,17(4):7-13.
    [125]Lu Y, Zhu Z P, Liu Z Y. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene[J]. Carbon,2005,43(2):369-374.
    [126]Wang Z S, Li F S. Preparation of hollow carbon nanospheres via explosive detonation[J]. Materials Letters,2009,63 (1):58-60.
    [127]Sun G L, Li X J, Zhang Y J. A simple detonation technique to synthesize carbon-coated cobalt[J]. Journal of Alloys and Compounds,2009,473:212-214.
    [128]Zhu Z P. Detonation of molecular precursors as a tool for the assembly of nano-sized materials[J]. Modern Physics Letters B,2003,30(17):1477-1493.
    [129]Magnus G H C, Alexandre V. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures [J]. Materials and Design,2008,29(2):539-545.
    [130]卢怡.爆炸化学用于碳基纳米材料合成的研究[D].山西:中科院煤化所,2005.
    [131]孙贵磊.爆轰制备碳纳米材料及其形成机理研究[D].大连:大连理工大学,2008.
    [132]吕春绪.工业炸药理论[M].北京:兵器出版社,2003.
    [133]Cook M A,陈正衡.工业炸药学[M].北京:煤炭工业出版社,1987.
    [134]刘子如,阴翠梅,孔杨辉,等.高氯酸铵与HMX和RDX的相互作用[J].推进技术,2000,21(6):70-74.
    [135]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(2):63-65.
    [136]Hussain G, Ress G J. Thermal decomposition of HMX and mixture[J]. Propellants, Explosives, Pyrotechnics,1995,20(2):74-78.
    [137]罗宁,李晓杰,王小红,等.几种乳化炸药的热分解动力学行为[J].含能材料,2009,17(4):463-466.
    [138]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [139]Ferrari A C. Raman dpectroscopy in carbons:from nanotubes diamond[M]. London:The Royal Society,2006.
    [140]Wada N,Solin S A. Raman efficiency measurements of graphite[M]. Physica,1981,105: 353-361.
    [141]Piscanec S,Lazzeri M, Mauri F, et al. First-and Second-order Raman scattering from finite-size crystals of graphite[J]. Physics review letters,2004,91:087402-087409.
    [142]Du Y W, Xu M X, Wu J, et al. Magnetic properties of ultrafine of ultrafine nickel particles[J]. Acta Physica Sinica,1992,41:149-154.
    [143]都有为,徐明祥,吴坚.镍超细微颗粒的磁性[J].物理学报,1992,41(1):149-154.
    [144]戴道生,钱昆明.铁磁学[M].北京:科学出版社,1987.
    [145]Khanna S N. Magnetic behavior of clusters of ferro-magnetic transition metals[J]. Physical Review Letters,1991,67(6):742-745.
    [146]R.迈耶.爆炸物手册[M].北京:煤炭出版社,1981.
    [147]王文佑,云主惠.工业炸药[M].北京:兵器工业出版社,1993.
    [148]周霖.爆炸化学基础[M].北京:北京理工大学出版社,2005.
    [149]Abukhshim N A, Mativenga P T, Sheikh M A. Investigation of heat partition in high speed turning of high strength alloy steel[J]. International Journal of Mach Tools Manufacture,2005,45:1687-1690.
    [150]Kumara A S, Duraia A R, Sornakumar T. Wear behavior of alumina based ceramic cutting tools on machining steels[J].Tribol International,2006,39:191-196.
    [151]Arenas F, Arenas I B, Ochoa J, et al. Influence of VC on the microstructure and mechanical roperties of WC-Co sintered cemented carbides[J]. International Journal of Refractory Metals and Hard Materials,1999,17:91-98.
    [152]李安伦,方昭训,戴明凤.燃烧法合成铁镍合金纳米粉末及包覆金的制程与特性[J].过程工程学报,2004,4(8):212-218.
    [153]李儒,李红丽,张先,等.碳包覆坡莫合金纳米颗粒磁流体制备及表征[J].金属功能材料,2009,16(4):23-27.
    [154]盛玉宝,王相元,钱鉴,等.羰基铁粉介电常数调控与控制[J].宇航材料工艺,1989,4:50-51.
    [155]邓惠勇,官建国,甘治平.环氧树脂包裹超微铁磁性复合粒子电磁参数的研究[J].功能材料,2003,34(6):719-720.
    [156]Pu H T, Jiang F J, Yang Z L. Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nanofilms[J]. Materials Letters,2006, 60(1):94-97.
    [157]Wu L Z, Ding A J, Jiang H B, et al. Particle size influence to t he microwave properties of iron based magnetic particulate composites [J]. Journal of Magnetism and Magnetic Materials,2005,285(2):233-239.
    [158]Liu X G, Li B, Geng D Y, et al. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band[J]. Carbon,2009,47:470-474.
    [159]Abbas S M, Dixit A K, Chatterjee R, et al. Complex permeability and microwave absorption properties of ferrite-polymer composites[J]. Journal of Magnetism and Magnetic Materials,2007,309(1):20-24.
    [160]Massimiliano C, Yolande K. CVD from ethylene on cobalt ferrite catalysts:the effect of the support[J]. Carbon,2005,43(13):2820-2823.
    [161]Lu X G, Liang G Y, Zhang Y M, et al. Synthesis of FeNi3/(Ni0.5Zn0.5)Fe204 composites and its high-frequency complex permeability[J].Nanotechnology,2007,18(1):015701-015705.
    [162]Zhang Z D, Liu X G, Geng D Y. Microwave-absorption properties of FeCo microspheres self-assembled by A1203-coated FeCo nanocapsules[J]. Applied Physics Letters,2008, 92(24):243110-243113.
    [163]雷中兴,刘静,李轩科,等.CVD法制备的碳包覆(Fe, Co)纳米粒子的结构及电磁特性[J].磁性材料及器件,2003,34(4):3-6.
    [164]Zhu W, Zhao Z B, Qiu J S. In situ synthesis of Fe-filled carbon nanotubes by a floating CVD method with FeC13 as catalyst precursor[J]. Carbon,2009,47(12):2943-2947.
    [165]Hall R C, Byrnes W S, Crawford R G. Radiation effects on the anisotropy and magnetostriction of single crystals of several soft magnetic materials including Ni, Fe, Fe304 and alloys of Ni-Fe, Si-Fe, Al-Fe, Co-Fe and Mo-Ni-Fe[J]. Journal of Applied Physics,1959,30(4):2885-2891.
    [166]宛德福.磁性理论及其应用[M].武汉:华中理工大学出版社,1996.
    [167]Leslie-Pelecky D L,Rieke R D. Magnetic properties of nanostructured material[J]. Chemistry Materials,1996,8:1770-1783.
    [168]Grewal H S, Kalra K L. Fungal production of citric acid[J]. Biotechnology Advances, 1995,13(2):209-234.
    [169]Lotfy W A, Ghanem K M, El-Helow E R. Citric acid production by a novel Aspergillus niger isolate:II. Optimization of process parameters through statistical experimental designs[J]. Bioresource Technology,2007,98(18):3470-3477.
    [170]Takahashi R, Sato S, Sodesawa T, et al. Ni/SiO2 prepared by sol-gel process using citric acid[J]. Microporous and Mesoporous Materials,2003,66(2-3):197-208.
    [171]Verma A, Goel T C, Mendiratta R G, et al. Dielectric properties of NiZn f errites prepared by the citrate precursor method[J]. Materials Science and Engineering B,1999,60(2): 156-162.
    [172]Singh N B,Singh A K,Singh S P. Effect of citric acid on the hydration of portland cement[J]. Cement and Concrete Research,1986,16(6):911-920.
    [173]Hahn D W, Young H H. Co2Z type hexagonal ferrites prepared by sol-gel method[J]. Materials Chemistry and Physics,2006,95(2-3):248-251.
    [174]Cannas C, Concas G,Falqui A, et al, Investigation of the precursors of γ-Fe2O3 in Fe203/SiO2 nanocomposites obtained through sol-gel[J]. Journal of NonCrystalline Solids,2001,286(1-2):64-73.
    [175]Anuradha Ashok, Nadezhda Kochetova, Truls Norby, et al. Structural study of the perovskite system Ba6-yCayNb2011 hydrated to proton conducting Ba6-yCayNb2010(OH)2[J]. Solid State Ionics,2008,179(33-34):1858-1866.
    [176]Zhang S, Lee W E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings[J]. Journal of the European Ceramic Society,2003, 23(8):1215-1221.
    [177]刘军,王应德,马彦.Ni-Zn铁氧体粉末的溶胶-凝胶合成及微波性能[J].国防科技大学学报,2004,27(4):24-27.
    [178]刘钢.柠檬酸路线合成新型介孔材料及其催化性能研究[D].吉林:吉林大学,2007.
    [179]沙明杰.柠檬酸络合Sol-gel法制备(Er, Y)2Ti207纳米晶粉末的光致发光特性[D].大连:大连理工大学,2007.
    [180]Rajagopalan P, Advani B G. Dipolar Addition Reactions of Nitrile Oxides. II. A New Synthesis of Carbodiimides[J]. The Journal of Organic Chemistry,1965,30(10):3369-3371.
    [181]Rajagopalan P. A new synthesis of (±)-mesembrine involving the intramolecular nucleophilic attack of an allyl anion on a carbonyl function of an imide[J]. Tetrahedron Letters,1997,38(11):1893-1894.
    [182]吴卫泽.炭纳米粉和金属/炭复合纳米粉的制备研究[D].太原:中国科学院山西煤炭化学研究所,2002.
    [183]梁建波. α-羟基羧酸盐辅助合成氧化锌与银微纳米结构及光学性质研究[D].合肥:中国科技大学,2007.
    [184]Kraff M E, Scott I L. Romero R H. Acceleration of the thermal pauson-khand reaction by coordinating ligands[J]. Tetrahedron Letters,1992,33(27):3829-3832.
    [185]Li T,Wu T, Kan J Q. Synthesis and properties of polyaniline-cobalt coordination polymer[J]. Synthetic Metals,2009,159:1644-1648.
    [186]崔锦峰,韩培亮,郭军红,等.可生物降解弹性体聚柠檬酸-乙二醇的合成与性能[J].合成橡胶工业,2009,32(1):22-25.
    [187]Wang Y D,Ameer G A, Sheppard B J, et al. A tough biode-gradable elastomer[J]. Nature Biotechnology,2002,20(6):602606-602613.
    [188]Yang J, Webb A R,Pickeril S J, et al. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers[J]. Biomaterials,2006,27(9):1889-1898.
    [189]泽田澈哉,北京工业学院八系译.工业火药[M].北京:国防工业出版社,1992.
    [190]张杰,邹彦文.相稳定硝酸铵及其混合物的热分解[J].含能材料,2005,13(4):229-231.
    [191]Flynn J H. Comparison of temperature response within and between power compensated and differential temperature DSC instruments [J]. Thermochim Acta,1992,203 (1):519-526.
    [192]Vyazovkin S,Wight C A. The Application of Isoconversional Methods for Analyzing Isokinetic Relationships Occurring at Thermal Decomposition of Solids[J]. Journal of Solid State Chemistry,1995,114(2):392-398.
    [193]孙业斌,惠君明,曹欣茂,等.军用混合炸药[M].北京:兵器工业出版社,1995.
    [194]Dymarz R, Malecki A. Approximate description of multiple scattering in nucleus-nucleus collisions at high energies[J]. Physics Letters B,1980,95 (1),19-22.
    [195]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(2):63-65.
    [196]王志新,李国新,蒋新广,等.苦昧酸钾对含RDX硝铵火药热行为与点火性能的影响[J].火炸药学报,2008,31(3):29-32.
    [197]Santhosh G, Ghee A H. Synthesis and kinetic analysis of isothermal and non-isothermal decomposition of ammonium dinitramide prills[J]. Journal of Thermal Analysis and Calorimetry,2008,94(1):263-270.
    [198]胡荣祖,史启祯,高胜利,等.热分析动力学[M].北京:科学出版社,2008.
    [199]Satava V, Sestak J. Mechanism and kinetics of calcium sulfate hemihydrate by nonisothermal and isothermal thermogravimetry[J]. Thermochemica Acta,1971,2:423-428.
    [200]Ozawa T. A new method of analyzing thermogravimentric data[J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886.
    [201]Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):17022-17026.
    [202]罗宁,李晓杰,王小红,等.复合乳化剂制备乳化炸药的热分解行为[J].火炸药学报[J],200932(5):5-9.
    [203]Kaisersberger E, Kapsch E, Post E, et al. Coupling of Thermal Analysis and Gas Analysis Techniques and Applications[M]. London:The Royal Society,2001.
    [204]Friedman H L. Kinetics of thermal degradation of char forming plastics from thermogravimetry Application to a phenolic plastic[J]. Journal of Macromolecular Science:Part C,1963,6:183-195.
    [205]Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[J]. Journal of Computational Chemistry,1997,18(3):393-402.
    [206]高大元,申春迎,何松伟,等.非线性等转化率积分法在炸药热分析中的应用[J].含能材料,2009,17(5):578-582.
    [207]吕春绪.工业炸药理论[M].北京:兵器出版社,2003.
    [208]乔登江.核爆炸物理概论[M].北京:原子能出版社,1988.
    [209]孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业出版社,2000.
    [210]Mader C L. The time-dependent reaction zones of ideal gases, nitromethane and liquid TNT[R]. Los Alamos Scientific Laboratory Report LA-3764,1967.
    [211]Levine H B, Sharples R E. Operators manual for RUBY[R]. Lawerence Radiation Laboratory Report UCRL-6815,1962.
    [212]Cowperthwaite M, Zwisler W H. Tigger Computer program documentation[M]. Stanford, California:Stanford Research Institute Publication. No.Z106,1973.
    [213]Mader C L. An Equation of State for Non-ideal Explosives[R]. Los Alamos Scientific Laboratory Report LA-5864,1975.
    [214]Mader C L. Numerial Modeling of explosives and propellants[M]. New York:CRC press. 3nd Ed,2008.
    [215]Stanley P M. LASL shock hugoniot data[M]. California:University of California press, Berkeley and Los Angeles,1980.
    [216]Krishna Mohan V, Edmund Hay J. Reparameterization of the Becker-Kistiakowsky-Wilson equation of state for water-gel explosives[J]. Combustion and Flame,1983,50:207-218.
    [217]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [218]周维彪,许志宏.多相多组元化学平衡相平衡计算[J].化工学报,1987,1:49-56.
    [219]Gautam R,Seide W D. Calculation of phase and chemical equilibria, Part I:Local and constrained minima in Gibbs free energy [J]. AIChE Journal,1979,25(6):998-999.
    [220]Nghiem L X, Li Y K. Computation of multiphase equilibrium phenomena with an equation of state[J]. Fluid Phase Equilibria,1984,17:77-95.
    [221]Van Thiel M, Ree F H. Multiphase carbon and its properties in complex mixtures[J]. High Temperature-High Pressures,1992,24:195-198.
    [222]Cowan R D, Fickett W. Calculation of the detonation products of solid explosives with the Kistiakowsky-Wilson equation of state[J]. Journal of chemistry physics,1956,24: 932-939.
    [223]徐锡申,张万箱.实用物态方程理论导论[M].北京:科学出版社,1986.
    [224]汤文辉,张若棋.物态方程理论及计算概论[M].北京:高等教育出版社,2008.
    [225]Dugdale J S, MacDonald D K C. The Thermal Expansion of Solids [J]. Physical Review,1989, 4:832-835.
    [226]Dugdale J S, MacDonald D K C. Vibrational Anharmonicity and Lattice Thermal Properties [J]. Physical review,1996,1:57-63.
    [227]Huang Y K. Thermodynamics of shock compression of metals[J]. Journal of Chemistry Physics,1966,45:1979-1984.
    [228]张迎九,谢佑卿,李为民.N13A1的德拜温度及物理性质[J].中国有色金属学报,1996,6(4):114-119.
    [229]王沿东,孙祖庆,陈国良.TiAl金属间化合物德拜温度与价电子结构[J].中国有色金属学报,1992,2(2):44-46.
    [230]邢胜娣,余瑞璜.金属化合物Ti3Al的价电子结构及其力学性能[J].吉林大学自然科学学报,1985,1:62-70.
    [231]吴强,经福谦,李欣竹.零温物态方程输入参数βOK,β'OK和ρ OK的确定[J].高压物理学报,2005,19(2):97-104.
    [232]北京工业学院八系《爆炸及其作用》编写组,爆炸及其作用[M].北京:国防工业出版社,1979.
    [233]Curtiss L A, Zapol P, Sternberg M, et al. Quantum chemical studies of growth mechanisms of ultrananocrystalline diamond[J]. Russian Journal of Physical Chemistry A,1978,82 (11):1838-1846.
    [234]梁基谢夫H N.金属二元系相图手册[M].北京:化学工业出版社,2009.
    [235]向井楠宏.高温熔体的界面物理化学[M].北京:科学出版社,2009.
    [236]Shaw M S, Johnson L D. Carbon clustering in detonation[J]. Journal of Applied Physics, 1987,62 (5):2080-2085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700