用户名: 密码: 验证码:
两相爆轰的理论和数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对气体与碳氢化合物液体燃料颗粒以及悬浮铝粉尘中的非定常两相爆轰进行了理论和数值研究。建立了两相系统中爆轰增长与传播的模型,用有限差分方法编制了两相系统非定常爆轰波发展与传播的数值模拟程序,对两相爆轰波进行了详细的数值模拟,得到两相爆轰波参数,两相爆轰波的浓度极限和临界点火能量。
     首先对两相爆轰研究进行了回顾和总结,对两相爆轰所研究的范围、以及两相爆轰中所涉及的问题进行了探讨,从而对两相爆轰理论研究要解决的问题及研究中的热点和难点有充分的了解。
     对两相爆轰原有的ZND模型进行了讨论,探讨了在两相爆轰模型中如何考虑两相间相互作用、化学反应等一些主要因素及其影响。同时指出了原有的ZND模型的不足,如对化学反应过程的考虑过于简单化。
     建立了非定常的气体—燃料液滴两相系统爆轰波的理论模型,并对两相爆轰波的发展与传播进行了数值模拟。气体考虑组分的变化,化学反应用一步、三步反应模型进行描述。数值模拟得到与实验符合的结果。在此基础上针对化学反应参数对两相爆轰波的影响进行了数值模拟。数值模拟结果表明化学反应率对爆轰CJ参数的影响并不明显,但对气体—燃料液滴两相系统的爆轰极限有明显的影响。在相同的起爆能量的条件下,化学反应率越大,两相系统的爆轰极限的下限越小,上限越大。计算了不同燃料当量比时的点火能量。当量比φ=2时所需的点火能量比φ=1时所需的点火能量大得多。这一点,两相爆轰与气体中的爆轰点火能量的实验结果是一致的。
     研究了铝颗粒的激波点火问题。对铝颗粒在激波后气流作用下被加速、升温直至点火的整个过程进行了数值分析,得到铝颗粒在激波后气流作用下的点火延时并与实验比较;提出一个新的铝颗粒激波点火判据,该判据基于对铝颗粒的热应力分析。由于铝的热膨胀系数比其氧化物大,受热时只要温度升高70℃,其氧化层就会破裂。该判据认为如果颗粒在温度达到铝的熔点且铝完全熔化时,激波后的气流对颗粒的作用力引起氧化膜的进一步破裂,将导致点火的发生。但如果激波后的气流不能使氧化膜进一步破裂,铝颗粒将在其氧化物的熔点点火。用该判据得到的铝颗粒激波点火延时与实验符合很好。
     建立了非定常的悬浮铝粉尘爆轰波两相流体力学模型,并进行数值模拟。模型考虑气体与粒子间的温度和速度的差异,爆轰波中铝颗粒点火采用新判据,考虑了一些实际因素如爆轰波管壁的阻力和对流热传导、粗糙的铝颗粒表面引起表面积增加以及粒子颗粒尺寸分布对放能的影响,尤其是考虑了三氧化二铝在高温下的分解反应,得到的爆轰波速度及铝颗粒点火距离与实验结果符合。通过数值模拟得到不同浓度的悬浮铝粉尘的
    
    爆速,得到了爆轰波压力历史曲线的变化,并由此得到悬浮铝粉尘中爆轰极限的下限。
    悬浮铝粉尘具有很低的爆轰极限下限值。
     用一维数值模拟程序对爆轰波的不稳定性问题进行了数值模拟,得到了CZH6、
    CZHZ,CZ比与空气混合物中爆轰波的振荡和振荡波长,并试图将振荡波长与爆轰波的胞
    格尺寸联系起来。由不同的步长的解得到的压力振荡解有明显的区别,振荡的振幅没有
    趋于一致,但激波转爆轰的位置即第一次压力振荡的位置趋于一致,得到的压力振荡平
    均波长趋于一致,并与实验得到的爆轰波胞格平均长度接近。
Unsteady detonation in gas-fuel droplet systems and suspended aluminum dust was theoretically, numerically studied in this thesis. A model of detonation in two-phase systems was set up and numerically simulated with finite difference method. Numerical simulation program was designed and used to calculate the development and propagation of detonation in two-phase systems. The parameters of detonation in two-phase systems were obtained. Detonation limit and critical ignition energy were also obtained by calculation.
    The investigation for detonation in two-phase systems past years was reviewed and summarized. The problems related on the two-phase detonation were discussed. The problem involved in two-phase detonations was reviewed to know what was the most concerned in the research.
    ZND model of two-phase detonation was reviewed to understand how to consider the chemical reactions and the effect of two-phase flow between gas and particles in the systems. It was realized the deficiency of inchoate ZND model such as the over-simplified of the chemical reactions.
    A model was set up to describe unsteady detonation in gas-fuel droplet systems. The change of components in gas was taken into account. Chemical reaction was described with one-step and three-step reaction mechanisms. Numerical simulation results were well agreement with experimental ones. The influence of parameter of chemical reaction rate was further calculated. It was indicated that parameter of chemical reaction rate had little influence on the parameters of detonation in gas-fuel droplet systems whereas the detonation limit was obviously influenced from the results of calculation. In the same condition of ignition energy, the greater of chemical reaction rate, the lower of lower detonation limit and higher of upper detonation limit. Critical ignition energy was also calculated. The critical energy as the equivalence ratio (j)=2 was much more than that as =1. This result was consistent with the experimental one in gas detonation.
    The shock ignition of aluminum particles was analyzed in this thesis. The acceleration, rising of temperature by heat transfer of the particle was calculated in the flow field behind shock waves. The ignition time delay of particle was obtained and compared with experimental one. It was assumed a new criterion for shock ignition of aluminum particles. It was based on the analysis of thermal stress of aluminum particles. The results showed that as the temperature of aluminum particle increased about 70C, crack was developed in the oxide film shell of the particles. The criterion was that if the crack was enlarged by gas flow behind
    
    
    
    shock wave and the oxide film lost its protection to aluminum as the temperature of particle reached aluminum melting point and the aluminum was all melted, aluminum particle would be ignited, otherwise aluminum particle would be ignited at its oxide melting point.
    Model of the detonation in suspended aluminum dust in detonation tube was set up and numerically analyzed. The differences of velocity and temperature between gas and particles were considered. The dissipation by the convective heat transfer and viscosity through tube wall was taken into account. It was considered the influence of increase of surface area of aluminum particle because of its coarseness on the detonation velocity and ignition of particle. New criterion of ignition of aluminum particles in detonation waves was used. The decomposition of aluminum oxide was taken into account. Development and propagation of aluminum dust detonation in detonation tube was numerically simulated. Velocity of detonation and ignition distance of particles was obtained and well agreement with experimental ones. The distribution of pressure, density, velocity and temperature in the flow field of detonation wave was also obtained. The parameters of detonation in two-phase systems with different concentration were calcula
    ted and the lower detonation limit in suspended aluminum dust was very low.
    The nonlinear instability of one-dimensional detonatio
引文
1.爆轰术语,中华人民共和国国家军用标准,征求稿,2003年
    2.范宝春,两相系统的燃烧、爆炸和爆轰[M],北京,国防工业出版社,1998年
    3.周豪,我国烟草加工系统粉尘爆炸危险性分析[J],工业安全与环保,2003年第29卷第7期,26—27
    4.邵敬党,纺织厂棉尘的爆炸及防治措施[J],辽宁丝绸,2003年第1期,18—19
    5.王强,赵红,锌粉的爆炸与防爆[J],有色冶矿,2002年10月,第18卷第5期,40—41
    6. Gabrijel Z., Nicholls J. A., Cylindrical Heterogeneous Detonation Waves[J], Acta Astronautica, 1978, Vol. 5: 1051—1061
    7. Nicholls J. A., Sichel M., Fry R., et al, Theoretical and Experimental Study of Cylindrical Shock and Heterogeneous Detonation Waves[J], Acta Astronautica, 1974, Vol. 1: 385—404
    8. Bar-Or R., Sichel M., Nicholls J. A., The Propagation of Cylindrical Detonations in Monodispersed Sprays, 18th International Symposium on Combustion[C], The Combustion Institute, Pittsburgh, 1981:1599-1606
    9. Dabora E. K., A Model for Spray Detonation[J], Acta Astronautica, 1978, Vol. 6: 269—280
    10. Mitrofanov V. V., Pinaev A. V., Zhdan S. A., Calculations of Detonation Waves in Gas-Droplet Systems[J], Acta Astronautica, 1978, Vol. 6:281—296
    11.田宙,郭光辉,郝保田,气液爆轰波及冲击波传播的数值研究[J],计算物理,2000年3月,第17卷第1—2期,131—136
    12.郭光辉,田宙,郝保田,TVD格式在气液两相爆轰数值模拟中的应用[J],应用数学和力学,2000年6月,第21卷第6期,655—660
    13.刘庆明,白春华,张奇等,多相云雾爆轰计算机仿真[J],兵工学报,2002年2月第23卷第1期,19—22,
    14.范宝春,姚海霞,李鸿志,气云爆轰的一维模型[J],爆炸与冲击,1995年10月,第15卷第4期,307—314
    15.范宝春,姚海霞,陈志华,气云爆轰,气动实验与测量控制[J],1996年6月,第10卷第2期,9—16
    16. Li Y. C., Kauffman W., Sichel M., An Experimental Study of Deflagration to Detonation Transition Supported by Dust Layers[J], Combustion and Flame, 1995, Vol. 100: 505—515,
    17. Bielert U., Sichel M., Numerical Simulation of Dust Explosion in Pneumatic Conveyors[J], Shock Waves, 1999, Vol. 9: 125—139,
    18. Mintz K. J., Upper Explosive Limit of Dusts: Experimental Evidence for Its Existence Under Certain Circumstances[J], Combustion and Flame, 1996, Vol. 94: 125—130
    
    
    19. Tsuboi N., Hayashi A. K., Matsumoto Y., Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation[J], Shock Waves, 2000, Vol. 10:277-285,
    20. Veyssiere B., Arfi P., Khasainov B. A., Detonation of Starch Suspensions in Gaseous O_2/N_2 and Stoichiometric H_2/O_2 Mixtures[J], Combustion and Flame, 1999, Vol. 117: 477—492,
    21. Tunik Y. V., Global Modeling of Heat Release during Initiation and Propagation of Detonation and Deflagration Waves in Methane-Air-Particle Systems[J], Shock Waves, 1999, Vol. 9: 173—179
    22. Klemens R., Kapuscinski M., Wolinski M., et al, Investigation of Organic Dust Detonation in the Presence of Chemically Inert Particles[J], Combustion and Flame, 1994, Vol. 99: 742—748
    23.范宝春,邢晓江,李鸿志,可燃介质中高温火团诱导的爆炸及其抑制[J],兵工学报,2001年5月,第22卷第2期,195—198
    24.范宝春,谢波,张小和等,惰性粉尘抑爆过程的实验研究[J],流体力学实验与测量,2001年12月,第15卷第4期,20—25
    25. Carrel R. O., Thomas G. O., Brown C. J., Some Observation of Detonation Propagation through a Gas Containing Dust Particle Suspension[J], Shock Waves, 2003, preprint
    26. Eidelman S., Yang X., Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions[J], Combustion Science and Technology, 1993, Vol. 89:201-218,
    27. Ogle R. A., Beddow J. K., Chert L. D., An Investigation of Aluminum Dust Explosion[J], Combustion Science and Technology, 1988, Vol. 61:75-99,
    28. Veyssiere B., Khasainov B. A., Structure and Multiplicity of Detonation Regimes in Heterogeneous Hybrid Mixtures[J], Shock Waves, 1995, Vol. 4: 171—180,
    29. Uphoff U., Hanel D., Roth P., Numerical Modeling of Detonation Structure in Two-Phase Flows[J], Shock Waves, 1996, Vol. 6: 17—20
    30. Khasainov B. A., Veyssiere B., Initiation of detonation regimes in hybrid two-phase mixtures[J], Shock Waves, 1996, Vol. 6: 9-15
    31.刘晓利,李鸿志,郭建国等,铝粉—空气混合物燃烧转爆轰(DDT)过程的实验研究[J],爆炸与冲击,1995年7月,第15卷第3期,217—228
    32.刘庆明,白春华,铝粉粉尘云和戊烷云雾燃烧诱导爆炸研究[J],北京理工大学学报,1999年10月,第19卷第5期,566—568
    33.陈志华,范宝春,刘庆明等,大型管中两相爆炸现象的实验研究[J],流体力学实验与测量,1998年3月,第12卷第1期,56—62
    34.陆守香,范宝春,激波后沉积粉尘的燃烧特征[J],南京理工大学学报,1996年2月,第20卷第1期,17—20
    35.刘晓利,李鸿志,叶经方等,障碍物对铝粉火焰加速作用的实验研究[J],爆炸与冲击,1995,第15卷第1期,11—19
    
    
    36.范宝春,陆守香,激波诱导的燃烧粉尘云边界层的结构[J],力学学报,1995年11月,第27卷第6期,653—662
    37.钟圣俊,邓煦帆,有机粉尘爆炸的数值模拟[J],中国粉体技术,2000年10月,第6卷2000年专辑,239—243
    38. Butler P. B., Lembeck M. F., Krier H., Modeling of Shock Development and Transition Initiated by Burning in Porous Propellant Beds[J], Combustion and Flame, 1982, Vol. 46:75—93
    39. Kapila S., Son F., Bdzil J. B., et al, Two-Phase Modeling of DDT: Structure of the Velocity-Relaxation Zone, Physics Fluids[J], 1997, Vol. 9:3885—3897,
    40. Saurel R., Larini M., Loraud J. C., Ignition and Growth of a Detonation by a High Energy Plasma[J], Shock Waves, 1992:Vol. 2, 19—29
    41.贾祥瑞,李冬香,孙锦山等,高能固体推进剂燃烧转爆轰数值模拟[J],兵工学报,1997年2月,第18卷第1期,46—51
    42.贾祥瑞,池军智,断卓平等,高能推进剂燃烧转爆轰实验研究[J],兵工学报,1996年11月,第17卷第4期,359—362
    43.刘德辉,彭培根,王振芳等,AP/HMX丁羟复合推进剂燃烧转爆轰研究[J],潘孟春,兵工学报,1994年2月,第1期,33—36
    44.张泰华,卞桃华,高能推进剂燃烧转爆轰的实验和数值研究[J],弹道学报,2001年,第13卷第3期,58—63
    45.李小燕,扬燕华,徐济鋆,水蒸汽爆炸粗混合阶段机理研究的实验设计[J],核动力工程,2003年6月,第24卷第3期,285—288
    46.林文胜,顾安忠,鲁雪生,容器的蒸气爆炸现象初探[J],低温与特气,2002年2月,第20卷第2期,20—24
    47.愈吕铭,Venart J.E.s,熊音,一种冷爆炸现象的物理数学分析初探[J],工程热物理学报,1995年8月,第16卷第3期,354—357
    48. Westbrook C., Chemical Kinetics of Hydrocarbon Oxidation in Gaseous Detonations[J], Combustion and Flame, 1982, Vol. 46: 191—210,
    49. Baulsch D. L., Cobos C. J., Cox R. A., Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1[J], Combustion and Flame, 1994, Vol. 98: 59—79,
    50. Lefebvre M. H., Vanderstraeten B., Van Tiggelen P. J., Modeling of Gas Phase Detonation in Complex Reactive System[J], Shock Waves, 1995, Vol. 4: 271—276
    51. Seshari K., Bollig M., Peters N., Numerical and Asymptotic Studies of the Structure of Stoichiometric and Lean Premixed Heptane Flames[J], 1997, Vol. 108: 518—536,
    52. Jones W. P., Lindstedt R. P., Global Reaction Schemes for Hydrocarbon Combustion, Combustion and Flame[J], 1988, Vol. 73: 233—249
    
    
    53. Kiehne T. M., Matthews R. D., Wilson D. E., An Eight-Step Kinetics Mechanism for High Temperature Propane Flames[J], Combustion Science and Technology, 1987, Vol. 54:1—23
    54.李招宁,清泉,王永国等,铝粉快速反应光谱的研究[J],高压物理学报,1996年6月,第10卷第2期,131—136
    55. Yuasa S., Zhu Y., Sogo S., Ignition and Combustion of Aluminum in Oxygen/Nitrogen Mixture Streams[J], Combustion and Flame, 1997, Vol. 108:387—396
    56. Bucher P., Yetter R. A., Dryer F. L., et al., Condensed-phase Species Distributions about Al Particles Reacting in Various Oxidizers[J], Combustion and Flame, 1999, Vol. 117:351—361
    57. Bhatia R., Sirignano W. A., Flame Propagation in Metal Sprays[J], Combustion and Flame, 1995, Vol. 100:605—620
    58. Wong S. C., Turns S. R., Ignition of Aluminum Slurry Droplets[J], Combustion Science and Technology, 1987, Vol. 52: 221—242
    59. Turns S. R., Wong S. C., Combustion of Aluminum-Based Slurry Agglomerates[J], 1987, Vol. 54:299—318
    60. Nguyen K., Branch M. C., Ignition Temperature of Bulk 6061 Aluminum[J], 302 Stainless Steel and 1018 Carbon Steel in Oxygen, 1987, Vol. 53: 277—288
    61.崔瑞禧,周克,张炜,球形铝粉对低燃速丁羟推进剂燃烧特性的影响[J],固体火箭技术,1999年,第22卷第3期,29—33
    62.赵秀珍,球形铝粉在丁羟固体推进剂中的应用[J],固体火箭技术,1994年6月,第2期,35—39
    63.邓康清,王光天,王桂兰,超细铝粉的燃烧特性及燃烧模型[J],固体火箭技术,1996年3月,第19卷第1期,29—33
    64. Chen J. C., Taniguchi M., Narato K., etc, Laser Ignition of Pulverized Coals[J], Combustion and Flame, 1994, Vol. 97: 107—117
    65. Sirignano W. A., Convective Burning of a Droplet Containing a Single Metal Particles[J], 1993, Vol. 93: 215—229
    66. Shyu M., Liu T. K., Combustion Characteristics of GAP-Coated Boron Particles and the Fuel-Rich Solid Propellant[J], Combustion and Flame, 1995, Vol. 100: 634—644
    67.汪亮,刘华强,刘敏华等,铝粉破裂燃烧的实验观测[J],固体火箭技术,1999年6月,第22卷第2期,40—44
    68. Foelsche R., Burton R. L., Krier H., Boron Particle Ignition and Combustion at 30-150 ATM[J], Combustion and Flame, 1999, Vol. 117: 32—58
    69. Kurtz J., Vulcan T., Steinberg T. A., Emission Spectra of Burning Iron in High-Pressure Oxygen[J], Combustion and Flame, 1996, Vol. 104: 391—400
    
    
    70. Mawid M., Aggarwal S. K., Chemical Kinetics Effects on the Ignition of a Fuel Droplet[J], Combustion Science and Technology, Vol. 65, 137—150
    71. Bergeron C. A., Hallett W. L. H., Autoignition of Single Droplets of Two-Component Liquid Fuels[J], Combustion Science and Technology, Vol. 65, 181—194
    72. Hsiang L. P., Faeth G. M., Drop Deformation and Breakup due to Shock Wave and Steady Disturbances[J], International Journal of Multiphase Flow, 1995, Vol. 21:545—560
    73. Hsiang L. P., Faeth G. M., Drop Properties after Secondary Breakup[J], International Journal of Multiphase Flow, 1993, Vol. 19: 721—735
    74. Temkin S., Mehta H. K., Droplet Drag in an Accelerating and Decelerating Flow[J], Journal Fluid Mechanics, 1982, Vol. 116: 297—313
    75. Igra O., Takayama K., Shock Tube Study of the Drag Coefficient of a Sphere in a Non-Stationary Flow[J], Proc. R. Soc. Lond. A, Vol. 442, 231—247
    76.陈军,吴国栋,韩肇元等,FAE爆炸抛洒后云雾液滴尺寸的测量,爆炸与冲击,2003年1月,第23卷第1期,74—77
    77. Bull D. C., Elsworth J. E., Hooper G., Concentration Limits to Unconfined Detonation of Ethane-Air[J], Combustion and Flame, 1979, Vol. 35: 27—40
    78. He L., Theoretical Determination of the Critical Conditions for the Direct Initiation of Detonations in Hydrogen-Oxygen Mixtures[J], Combustion and Flame, 1996, Vol. 104, 401—418
    79. Alekseev V. I., Dorofeev S. B., Sidorov V. P., Direct Initiation of Detonations in Unconfined Gasoline Sprays[J], Shock Waves, 1996, Vol. 6: 67—71
    80.杨立中,王清安,刘荣海等,碳氢燃料空气混合物无约束起爆临界起爆能估算[J],实验力学,1998年3月,第13卷第1期,72—78
    81.解立峰,郭学永,果宏,徐晓峰,燃料—空气云雾爆轰的直接引爆实验研究[J],爆炸与冲击,2003年,第23卷第1期,78—80
    82.徐晓峰,解立峰,彭金华等,氢燃料云雾爆轰特性的实验研究[J],爆破器材,第32卷第1期,2003年2月,1—4
    83.宋述忠,彭金华,陈网桦等,几种燃料云雾爆轰临界起爆能的研究[J],爆炸与冲击,2002年10月,第22卷第4期,373—376
    84. Wolanski P., Kauffman C. W., Sichel M., et al, Detonation of Methane-Air Mixtures[J], 18th International Symposium on Combustion[C], The Combustion Institute, Pittsburgh, 1981, 1651—1660
    85. Tieszen S. R., Stamps D. W., Westbrook C. K., et al, Gaseous Hydrocarbon-Air Detonations[J], Combustion and Flames, 1991, Vol. 84: 376—390,
    86.黄超,杨绪杰,陆路德等,一元醇非常温爆炸极限的测定[J],天然气化工,2002年,第27卷第5期,51—54
    
    
    87.王克强,冯瑞英,有机化合物爆炸下限的理论探讨及预测[J],含能材料,2002年3月,第10卷第1期,
    88.张奇,白春华,刘庆明等,一次引爆燃料空气炸药及其爆炸效应研究[J],实验力学,2000年12月,第15卷第4期,448—453
    89. Dorofeev S. B., Bezmelnitsin A. V., Sidorov V. P., et al, Turbulent Jet Initiation of Detonation in Hydrogen-air Mixtures[J], Shock Waves, 1996, Vol. 6: 73—78
    90. Obara T., Yajima S., Yoshihashi T., et al, A Hihg-Speed Photographic Study of the Transition from Deflagration to Detonation Wave[J], Shock Waves, 1996, Vol. 6: 205—210
    91. Smirnov N. N., Panfilov I. I., Deflagration to Detonation Transition in Combustible Gas Mixtures[J], Combustion and Flame, 1995, Vol. 101, 91—100
    92. Lindstedt R. P., Michells H. J., Deflagration to Detonation Transitions and Strong Deflagration in Alkane and Alkene Air Mixtures[J], Combustion and Flame, 1989, Vol. 76:169—181
    93.胡栋,王永国,卢洪斌等,硝基甲烷和氧的气态混合物燃烧及爆轰特性[J],含能材料,1994年6月,第2卷第2期,13—18
    94.毕明树,王淑兰,丁信伟等,无约束气云弱点火爆炸压力实验研究[J],化工学报,2001年1月第52卷第1期,68—71
    95. Pantov E. G., Fischer M., Th. Kratzel, Decoupling and Recoupling of Detonation Waves Associated with Sudden Expansion[J], 1996, Shock Waves, Vol. 6, 131—137
    96. Bull D. C., Elsworth J. E., Shuff P. J., Detonation Cell Structures in Fuel/Air Mixtures[J], Combustion abd Flames, 1982, Vol. 45:7—22
    97. Knystautas R., Lee J. H., Guirao C. M., The Critical Diameter for Detonation Failure in Hydrocarbon-Air Mixtures[J], Combustion and Flame, 1982, Vol. 48, 63—83
    98.徐胜利,陈成光,李剑,爆轰波在扩张管内临界传播特性的研究[J],爆炸与冲击,1995年1月,第15卷第1期,69—75
    91. Zhang F., Gronig H., Two-Headed Detonation in Reactive Partiele-Oxidization Gas Flow[J], Physics Fluid 1992, A 4(10): 2308—2315
    99. Taki S., Fujiwara T., Numerical Simulation of Triple Shock Behavior of Gaseous Detonation[J], 18th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1981, 1671—1681
    100. Oran E., Weber J., Stefaniw E., A Numerical Study of a Two-Dimensional H_2-O_2-Ar Detonation Using a Detailed Chemical Reaction Model[J], Combustion and Flame, 1998, Vol. 113: 147—163
    101. Hanana M., Lefebvre M. H., Van Tiggelen P. J., Pressure Profiles in Detonation Cells with Rectangular and Diagonal Structures[J], Shock Waves, 2001, Vol. 11:77—88
    102.胡湘渝,张德良,气相爆轰波贯穿胞格变化研究[J],北京理工大学学报,2001年6月,第21卷第3期,286—291
    
    
    103. Zhang F., Gronig H., Propagation Mechanism of Dust Detonations[J], Shock Waves, 1992, Voi. 2:81—88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700