用户名: 密码: 验证码:
轴向分段式外永磁转子爪极电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型轴向分段式外永磁转子爪极电机具有转矩密度高、结构简单、制造成本低和节约材料等优点,因而受到广泛关注。它既可以作为调速电机应用于电气传动系统,又可以作为发电机应用在汽车发电以及水力、风力发电等领域,具有很好的应用前景。国内外对新型轴向分段式外永磁转子爪极电机的研究尚处于起步阶段,针对目前缺乏该种电机系统的分析理论与设计方法的研究现状,在辽宁省教育厅创新团队项目和与德国Trimerics研发公司国际合作项目的支持下,从电机的基本电磁关系出发,开展了针对轴向分段式外永磁转子爪极电机系统的研究工作。
     首先,对轴向分段式外永磁转子爪极电机的有关分析理论和电磁模型进行了系统研究。与传统爪极电机相比,定转子结构和磁路型式的不同决定了现有的分析模型和方法不再直接适用于该种电机的研究。为此,本文分析了轴向分段式外永磁转子爪极电机的基本电磁关系以及机电能量转换机理;对定子爪极所用的软磁复合材料(SMC)进行了分析,阐述了该材料的特性,并与硅钢片的性能进行了对比;建立了轴向分段式外永磁转子爪极电机的等效磁路、电路和热路模型,推导了模型中各部分磁阻、热阻的解析表达式,并研制开发了该种电机的设计仿真程序,对各种运行工况进行了仿真研究。
     其次,电机参数是仿真研究电机运行特性的基础,为了准确计算该种电机的电磁参数,对轴向分段式外永磁转子爪极电机进行了磁场分析。运用三维有限元分析方法研究了电机的空载反电动势及气隙磁密分布;对电机的电抗、等效气隙磁密计算系数、等效空载漏磁系数等参数进行了深入系统的研究;该种电机漏磁通丰富且路径复杂,通过对漏磁通进行分析计算,修正了磁路模型中磁阻解析公式中近似处理带来的误差。
     第三,对轴向分段式外永磁转子爪极电机的转矩密度和齿槽转矩进行了深入研究。分别推导了该种电机转矩密度和齿槽转矩的解析计算式,并用三维有限元法对上述解析式进行了验证,从该种电机齿槽转矩产生原因入手,提出了该特殊结构电机齿槽转矩的抑制办法。
     第四,针对该种电机控制策略尚不成熟的问题,建立了轴向分段式外永磁转子爪极电机的传递函数和微分方程数学模型,并在此基础上,设计了该种电机的控制系统,利用所建立的仿真模型分别对其电动机和发电机两种状态下的运行特性进行了仿真研究。在理论与仿真研究的基础上,提出了轴向分段式外永磁转子爪极电机的控制策略。
     在上述理论研究的基础上,提出了该种电机的设计特点和设计方法。设计并研制了一台1.5kW的12极实验样机,对样机进行了详细的性能测试;实验结果与理论分析的一致性,验证了所提出设计与分析方法的正确性和可行性,为进一步深入研究该种电机奠定了理论和技术基础。
Novel axial sectional claw pole machine with PM outer rotor (ASCPM) has caused wide concern because of high torque density, simple structure and low cost. It acts not only as an adjustable velocity electric machine to be applied in electrical drive system but also as a generator to be applied in car, water power and wind power. Study on ASCPM is still at an elementary stage at home and abroad, due to lack of analysis theory and design method about this kind of machine at present, the systemic research works are done from the starting of the basic electromagnetic relationship under the supports of creative group project from education office of Liaoning province and international cooperation project with Trimerics Gmbh of Germany.
     Firstly, analytic theory and electromagnetic model about ASCPM have been studied systematically. In comparison with conventional claw pole machine, its structure of stator and rotor and magnetic circuit are different, the existing analysis model and method are no longer adapted for this machine. Therefore, basic electromagnetic relationship and principle of electromechanical energy conversion about ASCPM are analyzed; and soft magnetic composite material (SMC) used in rotor claw pole is described; the characteristics of material and performance comparison with silicon steel sheet is presented; Models of equivalent magnetic circuit, electrical circuit and thermal circuit about ASCPM are created; calculation equations of reluctance and thermal resistance of key segment are derived; the design simulation procedure is developed and the simulation research is done under the different operating conditions.
     Secondly, parameters of electric machine are research foundation of operating characteristics, in order to acquire the parameters of ASCPM correctly, magnetic analysis about ASCPM is done. By means of three dimension (3D) finite element analysis (FEA) method, no load electromotive force and air gap magnetic flux density distribution are studied; the reactance, equivalent coefficient of air gap magnetic flux density and equivalent leakage magnetic coefficient about ASCPM are studied deeply; Leakage flux of this machine is complex, through the computation of leakage flux, the errors caused by approximate treatment in magnetic circuit model are amended.
     Thirdly, torque density and cogging torque are studied deeply. Analytical formulas of torque density and cogging torque are deduced respectively; formulas are verified by means of 3D FEA method. The methods of decreasing the cogging torque about ASCPM are put forward.
     Fourthly, due to immaturity of control methods about ASCPM, Mathematic models of the transfer function and differential equation of ASCPM are established; the control system of electric machine is designed; the simulation researches operated as a motor and a generator are done by means of simulation model. On the basis of theory and simulation research, the control strategy is brought forward.
     Finally, based on theoretical research above, design characteristic and design procedure are put forward. A 1.5kW 12-poles prototype of ASCPM is designed and manufactured; the whole performance test of this prototype is completed; Correctness and feasibility of design and analysis method mentioned are verified through the comparison of experiment result and theory analysis, foundation of theory and technology is laid on further research on this kind of machine.
引文
[1]汤姆﹒德恩顿著.汽车电气系统与电子系统.南京:江苏科学技术,2005.1-10.
    [2]徐卫,何全陆.稀土永磁汽车发电机的开发现状与前景展望.微特电机,1998,(5):44-45.
    [3]梁昌勇.我国车用永磁发电机的发展前景及现状.微电机.1998,31(2):34-36.
    [4]黄延允,黎庆昌.汽车用永磁发电机综述.微特电机,2000,(4):34-36.
    [5]翁兴园.永磁材料在汽车电机领域的应用及其发展前景.新材料产业,2002,(10):26-30.
    [6]张世福.新型永磁外转子爪极发电机的磁电模型建立与三维有限元分析:(硕士学位论文).沈阳:沈阳工业大学,2007.
    [7]李开成,张健梅.爪极永磁同步发电机的设计特点.微电机,1998,31(1):7-9.
    [8]吉崇庆.爪极磁极同步发电机转子漏磁场分析.微电机,1987,(3):7-10.
    [9]邱阿瑞.爪极永磁发电机的优化设计.电工电能新技术,1996,(3):6-10.
    [10]王群京,倪有源,李国丽编著.爪极电机的结构、理论及应用.合肥:中国科学技术出版社,2006.54-92.
    [11] G. Henneberger, I. Ramesohl, et al. Numerical calculation simulation and design optimisation of claw pole alternator for automotive application. IEEE. Savoy Place, 1996.
    [12]王群京,李国丽,马飞等.具有永磁励磁的混合式爪极发电机空载磁场分析和电感计算.电工技术学报,2002,17(5):1-5.
    [13] Guo Y.G.,Zhu J.G., Magnetic Field Calculation of Claw Pole Permanent Magnet Machines Using Magnetic Network Method.Journal of Electrical and Electronics Engineering. 2002, 22(1): 69-75.
    [14] Guo Y.G., Zhu J.G.,P. A. Watterson., Improved Design and Performance Analysis of a Claw Pole Permanent Magnet SMC Motor with Senseless Brushless DC Drive. PEDS’2003, (1): 704-709.
    [15] Vlado Ostovic, John M. Miller, Vijay K. Garg, et al. A Magnetic-circuit-based Performance Computation of a Lundell Alternator.IEEE Transactions on Industry Applications, 1999, 35(4): 825-830.
    [16] H.C.Lai, D.Rodger., Three-dimensional Finite Element Modelling of a Claw Pole Type Car Alternator. IEEE Transactions on Industry Applications, 1995, (1): 457-451.
    [17] Christian Kaehler, Gerhard Henneberger., Transient 3-D FEM Computation of Eddy-current Losses in the Rotor of a Claw-pole Alternator.IEEE Transactions on Machines,2004,40(2): 1362-1365.
    [18] Christian Kaehler, Gerhard Henneberger. Eddy-current Computation in the Claws of a Synchronous Claw-pole Alternator in Generator Mode. IEEE Transactions on Magnetics, 2002, 38(2): 1201-1204.
    [19] Sai Chun Tang, Thomas A. Keim, David J. Perreaul. Thermal Modeling of Lundell Alternators. IEEE Transactions on Energy Conversion, 2005, 20(1): 25-36.
    [20]张伟雄,张敬华,郑婵君.基于磁网络模型爪极电机气隙磁场的研究.微特电机,2000,24(6):10-16.
    [21] Xiao Huo Bao, Qun Jing Wang, You Yuan Ni, et al. Research on the Mathematics Model and Parameter Optimization of the Claw-pole Alternator. Icems, 2005: 2005-2008.
    [22] J.J. Zhong, J.G. Zhu, V.S. Ramsden, and Y.G. Guo, Magnetic properties of composite soft magnetic materials with 2-D fluxes, in Proc. Australasian Universities Power Eng. Conf., Sept. 27–30, 1998: 377-382.
    [23] Rasmussen, C.B., and Ritchie, E., A Magnetic Equivalent Circuit Approach for Predicting PM Motor Performance, Proceeding of IEEE IAS Annual Meeting, New Orleans, Louisiana, 5-8 October 1997: 10-17.
    [24]Ostovic.V., Miller, J.M., Garg, V.K., Schultz, R.D., et al. A Magnetic-Equivalent-Circuit-Based Performance Computation of a Lundell Alternator, IEEE Transactions on Industry Applications, Vol. 35, No. 4, Aug 1999: 825-830.
    [25] L Ramesohl,G. Henneberger.Calculation and measurement of time characteristics of local field quantities in the air-gap of claw-pole alternators.IEEE Transactions on Magnetics,1997,33(5): 4200-4202.
    [26] Hua Bai,Steven D.Pekarek et al.Analytical derivation of a coupled-circuited model of a claw-pole alternator with concentrated stator windings. IEEE Transactions on Energy Conversions, 2002,17(1): 32-38.
    [27] C. Kaehler, G. Henneberger, Eddy-current computation on a one pole-pitch model of a synchronous claw-pole alternator, COMPLEL, Vol. 22, No. 4, 2003: 834–846.
    [28] Nehl T W,Fouad F A,Demerdash N. Determination of Saturated Values of Rotating Machinery Incremental and Apparent Inductances by an Energy Perturbation Method. IEEE Transactions on Power Apparatus and Systems, PAS’2101: 4441-4451.
    [29] You Guang Guo, Jian Guo Zhu, Wei Wu. Thermal Analysis of Soft Magnetic Composite Motors Using a Hybrid Model with Distributed Heat Sources. IEEE Transactions on machines, 2005,41(6): 2124-2128.
    [30] R.Belmans, CzSwaenen, W Geysen.Calculation of the characteristics of a claw pole generator, IEEE Transactions on Magnetics, 1990, 26(2): 952-955.
    [31]王群京,倪有源,姜卫东等.汽车用爪极发电机负载磁场和电感的分析与计算.中国电机工程学报,2004,24(3):91~95.
    [32]王群京,倪有源,张学.基于棱单元法计算爪极发电机负载特性.电工电能新技术,2005,24(1):27-30.
    [33]王群京.一种新型混合励磁爪极发电机的建模和计算.中国电机工程学报,2003,23(2):67-70.
    [34]郭有光,朱建国等.SMC爪极永磁同步电动机的参数与性能计算.华中理工大学学报,2000,28(6):15-17.
    [35] Y.G. Guo, J.G. Zhu, and H.Y. Lu, Accurate determination of parameters of a claw-pole motor with SMC stator core by finite-element magnetic-field analysis, IEEE Proc. Electr. Power Appl., Vol.153, No.4, Jul 2006: 568-574.
    [36] Wang R,Demerdash N. Computation of Load Performance and other Parameters of Extra High Speed Modified Lundell Alternators from 3D FE Magnetic Field Solutions. IEEE Transactions on Energy Conversions, 1992(7): 342-352.
    [37]王群京,孙明施等.表面磁钢无刷直流电动机的电感计算和数字仿真研究.电工技术学报,2001,16(11):21-25.
    [38] You Guang Guo,Jian Guo Zhu. Effects of Armature Reaction on the Performance of a Claw Pole Motor with Soft Magnetic Composite Stator by Finite Element Analysis. Compumag, 2005:1-4.
    [39] You Guang Guo,Jian Guo Zhu,Hai Wei Lu. Design of SMC Motors Using Hybrid Optimization Techniques and 3D FEA with Increasing Accuracy. Icems, 2005: 2296-2301.
    [40] Ramesohl I,Henneberger G,Kuppers S,et al. Three Dimensional Calculation of Magnetic Forces and Displacements of a Claw Pole Generator. IEEE Transaction on Magnetics, 1996, 32(3): 1685-1687.
    [41]郭有光,朱建国,V. S. Ramsden等.爪极永磁同步电动机脉动转矩的计算.华中理工大学报,2000,28(8):30~32.
    [42] Caliskan V. A Dual/High-voltage Automobile Electrical Power System with Superior Transient Performance. [Ph.D. thesis], Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2000.
    [43] Comanescu M,Keyhani A,Dai M. Design and Analysis of 42-v Permanent-magnet Generator for Automotive Applications. IEEE Transaction on Energy Conversion, 2003, 18(1): 107-112.
    [44] David J. Perreault,Vahe Caliskan. Automotive Power Generation and Control. IEEE Transactions on Power Electronics, 2004, 19(3): 618-627.
    [45]倪有源,王群京,李争等.汽车用爪极发电机新型控制系统.电力电子技术,2005,39(3):56~58.
    [46] Naidu M,Walters J. A 4-kW 42-v Induction-machine Based Automotive Power Generation System with a Diode Bridge Rectifier and a PWM Inverter. IEEE Transaction on Industry Applications, 2003, 39(5): 1287-1293.
    [47] Guo Y G., Zhu J G., Watterson P A. et al. Comparative Study of 3-D Flux Electrical Machines with Soft Magnetic Composite Cores. IEEE Transactions on Industry Applications, 2003, 39(6): 1696-1703.
    [48] Guo Y G.,Zhu J G.,Watterson P A. etc. Design and Analysis of a Three-phase Three-stack Claw Pole Permanent Magnet Motor with Soft Magnetic Composite Core. Proceedings of the 2003 Australasian Universities Power Engineering Conference (AUPEC’2003), Christchurch, New Zealand, 2003: 85-86.
    [49] Y.G. Guo,J.G. Zhu,and W. Wu. Design and Analysis of Electric Motors with Soft Machine Composite Core. IEEE Transactions on Industry Applications, 2002, 39(6): 1658-1664.
    [50] A.G. Jack, Experience with the use of soft magnetic composites in electrical machines, in Proc. Int. Conf. Electrical Machines, Istanbul, Turkey, 1998: 1441–1448.
    [51] J.G. Zhu and V.S. Ramsden, Improved formulations for rotating core losses in rotating electrical machines, IEEE Trans. Magn. vol. 34, Jul 1998: 2234–2242.
    [52] Y.G. Guo. J.G. Zhu. J.J. Zhong. and W.Wu. Core losses in claw pole permanent magnet machines with soft magnetic composite stators. IEEE Trans.Magn, Vo1.39. No.5. Sept. 2003: 3199-3201.
    [53] J.G. Zhu and V.S. Ramsden, Two-dimensional measurement of magnetic field and core loss using a square specimen tester, IEEE Trans. Magn. vol. 29, Nov. 1993: 2995–2997.
    [54] Guo, Y.G., Zhu, J.G., Lin, Z.W., and Zhong, J.J. Measurement and Modeling of Core Losses of Soft Magnetic Composites under 3D Magnetic Excitations in Rotating Motors. IEEE Tran. Magn., 2005, 41 (10): 3925-3927.
    [55] J. M. Rivas. Output Power Increase at Idle Speed in Alternators. Master’s thesis, Departament of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Expected, June 2003.
    [56]唐任远.稀土永磁电机的关键技术与高性能电机开发.沈阳工业大学学报,2005,27(2):162-170.
    [57] J.G. Zhu, J.J. Zhong, V.S. Ramsden, and Y.G. Guo, Power losses of composite soft magnetic materials under two dimensional excitations, J. Appl. Phys., vol. 85, Apr. 1999: 4403–4405.
    [58] Roisse, H., Hecquet, M., and Brochet, Simulations of Synchronous Machines Using an Electric-Magnetic Coupled Network Model, IEEE Transactions on Magnetics, Vol. 34, No. 5, September 1998: 3636-3659.
    [59] Oszkar Biro and Kurt Preis, An Edge Finite Element Eddy Current Formulation Using a Reduced Magnetic and a Current Vector Potential, IEEE Trans. Magn, 2000: Vol. 36, No. 5, 3128–3130.
    [60]宋春瑶.应用MATLAB/Simulink的硅整流器发电机供电系统仿真.微特电机,2005,第6期:11~13.
    [61]陈娓,陈传淼.爪极发电机漏磁的有限元分析.工程数学学报,2004,21(1):1-6.
    [62]李宁,刘启新编著.电机自动控制系统.北京:机械工业出版社,2003.138-156.
    [63]王成元等编著.电机现代控制技术.北京:机械工业出版社,2003.54-65.
    [64]黄允凯,朱建国,胡虔生.采用三维有限元设计高速爪极式永磁电机.微特电机.2007,(7): 4-7.
    [65] R.Belmans, CzSwaenen, W Geysen. Calculation of the characteristics of a claw pole generator, IEEE Transactions on Magnetics, 1990, 26(2): 952-955.
    [66]冯垛生,曾岳南编著.无速度传感器矢量控制原理与实践.北京:机械工业出版社,1997.
    [67]郭有光,朱建国,Ramsden V S.SMC爪极永磁电动机的设计特点.华中理工大学报,2000,28(5):89-91.
    [68]邹继斌,李巍,李勇.爪极式单相永磁步进电机特性的数值计算与分析.电工技术学报,2007,22(10):1-5.
    [69] Y.G. Guo, J.G. Zhu, and V.S. Ramsden, Performance analysis and experimental validation of a single phase claw pole permanent magnet motor with composite magnetic core, in Proc. 3rd Chinese Int. Conf. Electrical Machines, Xi’an, China, Aug. 29–31, 1999: 179-182.
    [70] Lundmark,S.T. and Hamdi E.S. Design of claw-pole machines using SMC cores. WSEAS Transactions on Circuits and Systems. 2004,3(8): 1729-1734.
    [71]钟步青.汽车发电机的结构.微电机.2001,31(2):53-56.
    [72] Angel J D,et al.Three-dimensional finite element solution for a permanent magnet axial-field machines. IEEE Trans. PAS. 1983,102(1): 83-90.
    [73]辜成林.转子无铁心式直流永磁电机的磁场和解析与优化设计.中国电机工程学报,1996,16(2):125-129.
    [74] Angel J D,et al.Three-dimensional finite element solution for a permanent magnet axial-field machines. IEEE Trans. PAS. 1983,102(1):83-90.
    [75] Powers W F,Nicastri P R. Automotive Vechicle Control Challenges in the 21st Century. Control Engineering Practice, 2000, 39(5): 605-618.
    [76] M.Persson,P.Jansson,A.G.Jack and B.C.Mecrow. Soft Magnetic Composite Materials-Use for Electrical Machines. The 7th IEE Conf. On Electrical Machines and Drives, Durham, England,11-13 Sept.1995: 242-246.
    [77] P.R. Upadhyay, K.R. Rajagopal and B.P. Singh. Effect of Armature Reaction on the Performance of an Axial-field Permanent-magnet Brushless DC Motor Using FE Method. IEEE Trans.Magn. Vol.39,No.5,July.2004: 2023-2005.
    [78]许实章著.电机学.北京:机械工业出版社,1989.304-320.
    [79] M. Gyimesi and D. Ostergaard, Inductance Computation by Incremental Finite Element Analysis. IEEE Trans.Magn., 1999: Col.35, 1119-1122.
    [80] Y.G. Guo, J.G.Zhu, H.W. Lu, R.Chandru, S.H. Wang, and J.x. Jin, Determination of Winding Inductance in a Claw Pole Permanent Magnet Motor with Eng. Conf., Hobart,Australia, Setp.2005: 491-496.
    [81]谢德馨,姚缨英,白保东.三维涡流场的有限元分析.北京:机械工业出版社,2001.10-21.
    [82]邹继斌,刘宝廷,崔淑梅等.磁路与磁场.哈尔滨:哈尔滨工业大学出版社,1998.34-51.
    [83] D. J. Perreault and V. Caliskan, Automotive Power Generation and Control, LEES Tech. Rep. TR-00-003, Laboratory for Electromagnetic and Electronic Systems, MIT, Cambridge, MA, May 2000.
    [84] J.G. Kassakian. Automotive electrical systems-the power electronics market of the future. IEEE Applied Power Electronics Conference and Exposition (APEC 2000), Vol.1, pp. 3–9.
    [85]陈世坤著.电机设计.北京:机械工业出版社,1982.118-139.
    [86] Howe D,Zhu Z Q. The Influence of Finite Element Discretisation on the Prediction of Cogging Torque in Permanent Magnet Excited Motors. IEEE Transaction on Magnetics, 1992, 28(2): 1080-1083.
    [87] J. Saari, Thermal Analysis of High-Speed Induction Machines, Ph.D. thesis, Laboratory of Electromechanics, Helsinki University ofTechnology, Otaniemi, Finland, 1998.
    [88]刘刚,王志强.永磁无刷直流电机控制技术与应用.北京:机械工业出版社,2008.132-146.
    [89]唐任远等.现代永磁电机理论与设计.北京:机械工业出版社,1997.61-91.
    [90] Rolf Blissenbach and Gerhard Henneberger, New Design of A Soft Magnetic Composite Transverse Flux Machine with Special Attention on the Loss Mechanisms, in 4th International Symposium on Advanced Electromechanical Motion Systems, Bologna, Italy, June 2001, Electromotion, 409–414.
    [91] Yukihiro Okada, Yoshihiro Kawase, Member, IEEE, and Yoshiyuki Hisamatsu, Analysis of Claw-Poled Permanent Magnet-Stepping Motor Considering Deterioration of Material Characteristics by Remains Stress. IEEE Trans. Magn, Vol.39, No. 3, MAY 2003:1721-1724.
    [92]黄允凯,朱建国,胡虔生.软磁复合材料在电机中的应用.微特电机.2006,(11):1-8.
    [93]褚文强,辜承林.新型横向磁通永磁电机磁场研究.中国电机工程学报.2007,27(24):58-62.
    [94]夏长亮著.无刷直流电机控制系统.北京:科学出版社,2009.31-43.
    [95]黄允凯,朱建国,胡虔生.采用软磁复合材料设计高速爪极式永磁电机.电机与控制应用.2007,34(12):6-13.
    [96]包广清,江建中,施进浩.多相聚磁式横磁通永磁电机的自定位力矩研究.中国电机工程学报,2006,26(15):139-143.
    [97]苏凤飞,邱阿瑞.异步电动机的功率密度与转矩密度分析.防爆电机.2007,1(42):1-3.
    [98]郭庆鼎,王成元.交流伺服系统.北京:机械工业出版社,1994.135-140.
    [99]何松波,施进浩编.微特电机设计程序.北京:上海科技出版社,1983.201-236.
    [100]何秀伟主编.电机测试技术.北京:机械工业出版社,1995.45-89.
    [101]李宜达编著.控制系统设计与仿真.北京:清华大学出版社,2004.149-198.
    [102]李亚旭编著.横向磁通永磁电机拓扑结构初析.船电技术.2003,23(1):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700