水牛胚胎生殖样细胞分离培养及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.从形态观察、碱性磷酸酶染色、表面抗原的免疫组化检测、多能性的标志基因表达和体外分化潜能等方面对水牛胚胎生殖样细胞(EG-likecells)的生物学特性进行了研究。结果发现,水牛EG样细胞形成多层结构的克隆,有明显的边界与饲养层分开,与小鼠的ES/EG克隆形态相似。通过组化染色发现,水牛EG样细胞表达AP、SSEA-1、SSEA-3、SSEA-4以及OCT-4。另外,RT-PCR结果显示,Fgf4除外,水牛EG样细胞均表达OCT-4、NANOG、SOX2、FOXD3、GP130、STAT3和HEB基因。将细胞延迟培养2个星期后,可以观察到成纤维样细胞,神经样细胞,肌样细胞和上皮样细胞的分化形成。悬浮培养的水牛EG样细胞可以形成简单拟胚体和复杂拟胚体(EB),复杂拟胚体仍然表达FOXD3、GP130、STAT3以及HEB基因,但已经无法检测出OCT-4、NANOG和SOX2这三个基因。此外,三个胚层标志基因的表达也在复杂拟胚体检测出来,分别是内胚层KERATIN-14(Endoderm),中胚层GATA4、ACTA2(Mesoderm)以及外胚层TUBB3(Ectoderm),表明这些水牛EG样细胞可在体外分化形成三个胚层。以上结果表明,水牛EG样细胞具有与人和小鼠ES/EG相似的生物学特性。
     2.探讨了水牛EG样细胞分离培养及传代的影响因素(性别、胎龄、分离方法、饲养层及细胞因子)。结果发现,雄性胎牛组的单位胎牛克隆数和克隆直径都显著高于雌性胎牛组(5.77±6.34 vs 1.03±2.64;227.76±83.84vs.102.34±40.59,P<0.05)。80~90 dpc胎牛组的单位胎牛原代克隆形成数为1.60±2.63个,显著低于其他各组(P<0.05),其形成的克隆直径(190.63±65.11),也显著低于除70~80 dpc组以外的其他各组(P<0.05),并且80~90 dpc组的最高传代数仅为3代,而其他各组都达到或超过了6代。对于单位胎牛原代克隆形成数和克隆直径,机械组都显著高于胰酶消化组(8.087±6.935 vs 1.765±4.747;216.95±77.41 vs140±38.76,P<0.05)。BEF饲养层组的各代克隆形成数都显著高于其它各组(P<0.05),STO饲养层组的传代数仅为5代,而MEF(小鼠胎儿成纤维细胞)和BEF(水牛胎儿成纤维细胞)组为8代以上。在F_1代,添加20ng/mLLIF+20ng/mLbFGF+20ng/mLSCF或20ng/mL LIF+40ng/mL bFGF+40ng/mL SCF组的克隆形成数显著高于添加10ng/mLLIF+10ng/mL bFGF组和对照组;在F_2-F_8代,添加20ng/mLLIF组的克隆形成数显著高于添加10ng/mLLIF组。对照组的传代数仅为2代,添加10ng/mL LIF组为5代,而添加20ng/mLLIF组都为8代以上。以上结果表明,(1)胎牛的性别和胎龄以及分离方法对水牛EG样细胞的分离培养效果有显著影响,雄性胎牛优于雌性胎儿,小于80dpc的胎儿由于大于80dpc的胎儿,机械分离方法优于酶消化法;(2)BEF饲养层利于水牛EG样细胞的传代培养;LIF对水牛EG样细胞的传代培养有重要作用,而bFGF和SCF的作用不明显。
     3.对基因转染水牛胚胎生殖样细胞(EG-like cells)的影响因素及利用转GFP基因EG样细胞制备嵌合体囊胚的可行性探讨。结果发现,脂质体浓度为8μL/mL和12μL/mL的转染率显著高于2μL/mL和4μL/mL(33.6%,36.2%vs 13.3%,16.8%;P<0.05);质粒DNA 2μg/mL组的转染率显著高于质粒DNA 1μg/mL和4μg/mL组(28.8%vs 14.5%,15.2%;P<0.05);不同代数水牛EG样细胞(0、2、4、8)所获得的表达GFP基因克隆率之间差异不显著(19.8%vs 22.9%vs 25.8%vs 19.0%vs 16.9%;P>0.05);将转染GFP基因的阳性水牛EG样细胞注入到8-16细胞水牛胚胎后的囊胚发育率与注入转染GFP基因阳性水牛胎儿成纤维细胞(BEF)的囊胚发育率差异不显著(35.6%vs 33.3%;P>0.05),但EG样细胞组获得10个表达GFP的囊胚,而BEF组则没有获得表达GFP的囊胚。以上结果表明,0-8代的水牛EG样细胞均可用于GFP基因转染研究,适宜的脂质体量和质粒DNA浓度分别为8μL/mL和2μg/mL;水牛EG样细胞具有胚胎嵌合能力,而成纤维细胞则无此能力。
     4.对不同代数水牛EG样细胞以及转染GFP基因的EG样细胞的核移植效果进行了研究。结果发现,不同代数水牛EG样细胞(0、2、4、8)以及胎儿成纤维细胞核移植后的融合卯率、分裂率和囊胚率差异都不显著(82.0%vs 84.5%vs 80.1%vs 78.7%vs 84.0%,67.6%vs 72.9%vs 72.0%vs 62.9%vs 63.1%,11.4%vs 12.4%vs 13.4%vs 10.0%vs 7.1%;P>0.05);GFP阳性水牛EG样细胞与未转染的水牛EG样细胞核移植后的融合卵率、分裂率和囊胚率亦无显著差异(79.0%vs 81.0%,62.4%vs 71.4%,11.0%vs 13.3%;P>0.05)。以上结果表明,O-8代的水牛EG样细胞均可用于核移植,且其核移植重构胚的发育能力不受GFP基因转染的影响。
1. The biological characteristic of buffalo embryonic germ-like cells (EG-like cells) hadbeen investigated in this study by morphology, AP staining, exterior antigensimmunohistochemical staining, pluripotent marker gene expressing, and differentiationpotential in vitro). Buffalo EG like cells grew in large, multilayered colonies which weredensely packed with an obvious border resembling the mouse embryonic stem cells (EScells) and EG cells. The buffalo EG-like cells expressed AP, SSEA-1, SSEA-3, SSEA-4and OCT-4. Undifferentiated swamp buffalo EG-like cells also expressed the OCT-4,NANOG, SOX2, and FOXD3, GP130, STAT3, HEB gene mRNA, but not Fgf4. Whenthese cells were cultured for more than 2 wk without passage, they could differentiate intoseveral types of cells including fibroblast-like, neuron-like, smooth muscle-like, andepithelium-like cells. Some cells formed simple embryoid bodies (EBs) and cystic EBs bysuspension culture. Cystic EBs expressed FOXD3, GP130, STAT3 and HEB gene mRNA,but not OCT-4, NANOG, and SOX2 gene mRNA which could be detected in theundifferentiated buffalo EG-like cells. Meanwhile, the mRNA of KERATIN-14(Endoderm), GATA4, ACTA2 (Mesoderm) and TUBB3 (Ectoderm) gene were alsodetected in cystic EBs, indicating that these cells are capable of forming three germ layersin vitro.. In conclusions, expression of OCT-4, NANOG and SOX2 may be the pluripotentstate mark of buffalo EG-like cells, and buffalo EG-like cells have morphology andcharacterization similar to those of the established EG/EG-like cells in mouse and human.
     2. Factors (gender, fetal age, dissociating methods, feeder, cytokines) affected the isolationand culture of the buffalo EG-like cells were investigated in this study. Male fetus yieldedsignificantly more buffalo EG-like colonies (5.77±6.34 vs 1.03±2.64 from each fetus) andlarger primary colonies (227.76±83.84μm vs 102.34±40.59μm, P<0.05) in comparisonwith female fetus. The average number of primary colonies derived from 80~90dpc groupwas just 1.60±2.63, which was significantly (P<0.05) lower than other groups. Thediameter of colony from 80~90dpc group is 190.63±65.11μm, which was also significantly(P<0.05) lower than other groups with the exception of 70~80 dpc group. The EGlikeCells from 80~90 dpc group was just three passages in the maximal subculture, but other groups were more than six passages. The mechanical dissociation yielded significantlymore buffalo EG-like colonies (8.087±6,935 vs 1.765±4.747 from each fetus, P<0.05) andlarger primary colonies (216.95±77.41μm vs140±38.76μm, P<0.05) in comparison withtrypsin isolation. More colonies formed when the EG-like cells were cultured on the BEFfeeder group in comparioson with other groups(P<0.05), and the EG-like cells growing onMEF and BEF feeder were eight passages at least, but growing on STO feeder was justfive passages. In F_1 subculture, addition of 20ng/mLLIF+20ng/mL bFGF+20ng/mLSCFor 20ng/mL LIF+40ng/mL bFGF+40ng/mL SCF to the culture medium resulted insignificantly more EG-like cell colonies formed in comparison with the control group (nocytokines group) and 10ng/mL LIF+10ng/mL bFGF group (P<0.05). In F_2-F_8 subculture,addition of 20ng/mLLIF resulted in significantly more EG-like cell clones formed incomparison with 10ng/mLLIF group (P<0.05). The passages of EG-like cells in controlgroup was just two in the maximal subculture, and were increased to five and eight byaddition of 10ng/mL LIF and 20ng/mLLIF respectively. In conclusions, (1) the sex and ageof fetus, and dissociating method have a significant influence on the isolation and cultureof buffalo EG-like cells, male and younger than 80 dpc fetus are more suitable to theisolation and culture of buffalo EG-like cells, mechanical dissociating method is lessdamage to buffalo EG-like cells than trypsin digestion; (2) BEF feeder is benefit to thesubculture of buffalo EG-like cell, LIF, plays an important role in the subculture of buffaloEG-like cells, but bFGF and SCF do not.
     3. Factors (lipid and plasmid DNA consentration, EG-like cells passages) affecting GPFgene transfection of the buffalo EG-like cells were investigated, and the feasibility ofproducing chimeric embryos by introducing GFP-EG-like cells was explored. Thetransfection efficiency of buffalo EG-like cells was higher when 8μL/mL and 12μL/mL oflipid were used in comparison with 2μL/mL and 4μL/mL lipid (33.6%, 36.2% vs 13.3%,16.8%; P<0.05). The optimum concentration of plasmid DNA was proved to be 2μg/mL,in which higher transfection efficiency was achieved in comparison with 1μg/mL and4μg/mL group (28.8% vs 14.5%, 15.2%; P<0.05). There was not significantly differencein transfection efficiency among the different passage (0-8) EG-like cells (19.8%, 22.9%,25.8%, 19.0% and 16.9% respectively, P>0.05). The blastocyst yield of 8-16 cell buffaloembryos injected with GFP-EG-like cells was not significantly different from the 8-16 cellbuffalo embryos injected with GFP-BEF (35.6% vs 33.3%; P>0.05). However, ten ofsixteen blastocysts from GFP-EG-like cells group expressed GFP, but none of blastocystsfrom BEF group expressed GFP. In conclusions, 0-8 passages of buffalo EG-like cells canbe used for GFP gene transfection and the optimal concentration of lipid and plasmid DNAwas proved to be 8μL/mL and 2μg/mL respectively; buffalo EG-like cells can merge into the buffalo chimeric embryos, but fibroblasts do not.
     4. The influenCeS of different passages EG-like cells and GFP-EG-like cells on nucleartransfer were investigated in this study. There was not significantly difference amongdifferent passage (0-8) EG-like cells and fibroblast cells in the efficiency of fused, cleaved,and blastocyst developed after nuclear transfer (82.0% vs 84.5% vs 80.1% vs 78.7% vs84.0%, 6.7.6% vs 72.9% vs 72.0% vs 62.9% vs 63.1%, 11.4% vs 12.4% vs 13.4% vs 10.0%vs 7.1%; P>0.05), the efficiency of fused, cleaved, and blaStocyst developed after nucleartransfer were also similar between GFP-EG cells and non-transtected EG-like cells (79.0%vs 81.0%, 62.4% vs 71.4%, 11.0% vs 13.3%; P>0.05). In conclusions, buffalo EG-likecells (0-8 passages) can be used as donor cells for nuclear transfer, and their nucleartransfer efficiency is not affected by GFP gene transfection.
引文
安静,杜立新,张玉国.饲养层及细胞因子对胚胎干细胞的影响[J].生命的化学.2002,22:136-138
    安立龙.牛胚胎干细胞的分离与克隆[J].西北农业大学博士论文.1999.中国杨凌
    柴桂营,韩嵘,尚克刚.C57BL,/6J小鼠ES细胞系的建立及其特性[J].细胞生物学杂志.1996,8:121-126.
    常万存,窦忠英,马鸿飞等.原始生殖细胞的人类胚胎克隆[J].西北农业大学学报1998,26:105-108
    常万存.人原始生殖细胞的分离培养[D].西北农业大学博士研究生毕业论文.1998
    陈伟胜,韩嵘,尚克刚.小鼠ES细胞种系嵌合体的获得[J].遗传学报.1999,26:126-134
    陈系古,黄冰.BALB/cj小鼠胚胎干细胞系的建立及其嵌合体小鼠的产生[J].中山医科大学学报.2000,21(2):封2
    丛笑倩,杜忠伟,芮荣,李秀兰等.中国小型猪胚胎生殖细胞的培养和建系[J].细胞生物学杂志.2003,25:325-331
    丛笑倩,姚鑫.小鼠胚胎干细胞(ES-8501细胞)建系过程的核型及特性分析[J].实验生物学报.1987:237-251.
    董晓.猪胚胎干细胞建系影响因素的研究[D].中国农业大学博士学位论文.2003
    冯秀亮.猪胚胎干细胞的分离与克隆[J].西北农业大学硕士论文.1999.中国杨凌
    葛秀国,华进联,杨继建,徐小明,窦忠英.山羊原始生殖细胞的分离与培养[J].西北农林科技大学学报(自然科学版).2005年02期
    葛秀国.牛和山羊胚胎生殖细胞的分离与培养[J].西北农林科技大学学报.硕士学位学位论文.2004
    韩建永,桑润滋,孙国杰等.山羊PGCs用于分离与克隆类ES细胞[J].中国兽医学报,2002,22:344-347
    韩嵘,尚克刚.小鼠生殖细胞的胚胎发育[J].遗传,2002,24:77-81
    何维,吴鹤龄.HDC细胞与MESPU-13细胞形成嵌合鼠能力的比较研究[J].实验生物学报,1997,30(4):363-368
    胡立新,尚克刚.6个小鼠ES细胞系的建立和鉴定[J].北京大学学报(自然科学 版).1996,32:248-253
    华进联,窦忠英,徐小明等.影响人类胚胎生殖细胞分离克隆的因素[J].农业生物技术学报.2004,12:294-299.
    华进联,窦忠英,张若平等.原始生殖细胞源的hES细胞的分离克隆[J].农业生物技术学报.2002,10:64-66.
    姜泊.分子生物学常用实验方法.北京人民军医出版社.1996,157
    赖良学,郑瑞珍,秦鹏春等.影响体外培养兔胚发育和兔类ES细胞的若干因素[J].中国兽医学报.1996,16(1):16-21.
    赖良学,郑瑞珍,孙方臻等.胚胎干细胞分离培养的影响因素[J].解剖科学进展.1995,1:202-208
    赖良学.兔胚胎干细胞的分离与培养[D].东北农业大学博士论文.1995.中国哈尔滨
    李明.猪胚胎多能性干细胞的分离、培养和鉴定[D].中国农业大学博士学位论文.2003
    李朝辉,范必勤.建立兔胚胎干细胞系方法的研究[J].江苏农业学报.1996,19:32-35
    李光鹏,谭景和.小鼠原始生殖细胞的起源、迁移和增殖[J].细胞生物学杂志.1998,20:4-9.
    李贵刚,张虹,胡维瑶等.阳离子脂质体介导的角膜内皮细胞基因转染研究[J].眼科研究,2003,21:526.
    李吉霞,王新庄,金立方等.胚胎干细胞体外诱导分化研进展[J].中国兽医科技.2004,34:40-43
    李松,窦忠英,华进联等.影响牛胚胎干细胞分离克隆因素的研究[J].生物技术通报,2002,3:35-39
    李松.从原始生殖细胞中分离克隆牛胚胎干细胞[D].西北农林科技大学硕士研究研究生毕业论文.2000
    李场,昊凯峰,郭旭东,郭继彤,旭日干.脂质体介导外源基因体外转染牛胎儿成纤维细胞条件的优化[J].遗传.2002,24:653-655.
    刘红林,范必勤,宗卉等.小鼠孤雌胚胎干细胞集落的建立[J].动物学报.1998,44:112-114
    刘红林.哺乳动物的基因组“印记”研究进展[J].遗传.2000,22:269-272
    刘建忠,李宁,丁翔等.转基因动物研究进展[J].农业生物技术学报.1998,6:269-276
    刘娜,陆敏.胚胎干细胞自我更新相关信号转导途径及信号分子[J].科学通报.2005,50:623-628
    刘泽隆.牛原始生殖细胞的分离培养[D].西北农林科技大学博士研究生毕业论文,2000
    陆凤花,石德顺,韦英明等.不同融合条件对水牛体细胞核移植效果的影响[J].广西农业生物科学.2005,1:1-5.
    陆凤花.水牛核移植效果的影响[D].广西大学博士论文.2004
    钱锋,肖成祖.影响非洲绿猴肾细胞脂质体转染效率的因紊[J].生物技术通报.1998,5:31-35
    钱永胜,窦忠英,樊敬庄.牛和猪胚胎干细胞的分离与克隆[J].四川大学学报(自然科学版).1996(专辑)142-147
    秦茂林,蔡文琴,姚忠祥.昆明种系小鼠胚胎干细胞的分离及特性鉴定[J].第三军医大学学报.2001,23:1071-1073.
    秦鹏春等.哺乳动物胚胎学.北京:科学出版社,2001
    尚克刚,李子玉,吴鹤龄.建立小鼠胚胎多能干细胞(ES)的几个主要影响因素[J].遗传学报.1992,19:491-496.
    沈干,从笑倩,杜忠伟.小鼠胚胎干细胞分化为血管内皮细胞的永生化研究[J].实验生物学报,2000,35:218-228
    石德顺,陆凤花,韦精卫等.水牛成纤维细胞核移植的研究[J].草食家畜(增刊).2001,191-196.
    宋震涛,李秋棠.从早期胚胎多能干细胞生成的嵌合鼠[J].遗传学报.1993,20(6):499-503.
    童英,尚克刚.在小鼠早期胚胎发育和种系中特异表达的转录因子Oct4[J].遗传.1998,20(2):35-38
    童英.兔ES样细胞系的建立及其特性分析[J].北京大学学报(自然科学版).1997,33:500-507.
    王瓞,林其谁.阳离子脂质体介导基因转染的最优化条件[J].生命的化学,1997,17:32
    王东红.人胚胎干细胞及其潜在应用[J].中国热带医学.2004,4:296-298
    王鸿.胚胎干细胞的分离及克隆[D].大连理工大学博士学位论文,2002.
    徐洁,丛笑倩,姚鑫.维生素和双丁酰环腺苷单磷酸对小鼠胚胎干细胞的诱导分化[J].实验生物学报.1991,24:353-367
    徐军.猪胚胎干细胞的分离与克隆[D].西北农业大学硕士论文.1997.中国杨凌
    徐小明,华进联,葛秀国等.牛胚胎生殖细胞的分离与培养[J].动物学报.2004(05):828-833.
    徐小明,杨炜峰,窦忠英等.胚胎干细胞与胚胎生殖细胞[J].西北农林科技大学学报.2002,30:237-240
    许新,丛笑倩,严缘昌.小鼠原生殖细胞建系过程及其分化特性的研究[J].实验生物学报.1999,32:251~263
    杨奇.牛胚胎干细胞的分离与克隆[D].西北农业大学硕士论文.1999.中国杨凌
    杨素芳,石德顺,冯贵雪等.供体细胞培养处理方法对水牛核移植效果的影响[J].中国兽医学报.2004,24:612-616.
    姚鑫.胚胎干细胞的特性、体外分化及其应用前景[J].上海免疫学杂志.1999.19:
    姚云清,张定风,罗云等.电穿孔对原代大鼠生物学状态的影响[J].中华肝脏病杂志.2001,9:178
    于建宁.脂质体法转染小鼠体细胞的研究[J].山东大学硕士学位论文.2005
    张军强,李红霞.胚胎干细胞研究进展[J].国外医学妇产科学分册.2004,31:27-280
    张蓉.兔和牛原生殖细胞用于胚胎干细胞系建立的研究.甘肃农业大学硕士学位论文.2000
    赵开典,赵家民,王朋武.世界水牛奶业的开发动态及其对我们的启示[J].黄牛杂志.2004,30:76-80
    郑瑞珍,宋红立,辛俭等.家兔胚泡ICM在体外培养系统中的行为[J].实验生物学报.1995,28:115
    周智,张定凤,任红.重组质粒电穿孔转染条件探讨[J].重庆医科大学学报.1999,24:130-132
    祝玲.猪胚胎干细胞的分离培养鉴定和分化的研究[D]。甘肃农业大学博士学位论文.2004
    Abe K., Hashiyama M., Macgregor G, Yamamura K. Purification of primordial germ cells from TNAPbeta-geo mouse embryos using FACS-gal. Dev Biol. 1996, 15,180:468-472
    Allioli N, Thomas J, Chebloune Yet al. Use of retrovial vectors to introduce and express the β-galactosidase marker gene in cultured chicken primordial germ cells. Dev Biol. 1994, 165:30~37
    Amit M, Melissa K, Carpenter, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for proloned periods of culture. Dev Biol. 2000, 227:271-278
    Anderson GB, Choi SJ, BonDurant RH. Survival of porcine inner cell masses in culture and after injection into blastocysts, Theriogenology. 1994, 42:204-212
    Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C. The onset of germ cell migration in the mouse embryo. Mech Dev. 2000, 91:61-68
    Anna DC, Massimo DF.A Role for E-cadherin in mouse primodial germ cell development. Developmental Biology. 2000, 226:209-219
    Asano T, Hanazono Y, Ueda Y, et al. Highly efficient gene transfer into primate embryonic stem cells with a simian lentivirus vector. Mol Ther. 2002, 6:162-168.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003,17: 126-140.
    Axelord HR, Lader E. Embryonic stem cells derived from biastocyst by a simplified technique. Dev Biol. 1984, 101: 225-228
    Baguisi A, BehboodiE, Melican DT, et al. Production of goats by somtic cell nuclear transfer. Nat Biotechnol. 1999,17: 456-461.
    Bain G, Kitchens D, Yao M, Huettner J E, Gottlieb D L. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995, 168: 342-35
    Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. spermatogenic cells of the prepubertal mouse: isolation and morphological characterization. Cell Biol. 1977, 74, 68-85.
    Bendel-Stenzel MR, Gomperts M, Anderson R, Heasman I, Wylie C. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech Dev. 2000, 91: 143-152.
    Bongso A, Fong CY, Ng SC, et al. THe growth of inner cell mass cells from numan blastocysts. Theriogenology. 1994, 41: 167
    Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo,derived teratocarcinoma cell lines. Nature: 1984, 309: 255-256.
    Brinster BL. The efect of cells transferred into the mouse btastocyst on subsequent development. J Exp Med. 1974,140:1049-1056
    Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA. 1997,94:5709-5712
    Brustleet, Jones K N, Learish D, et al. Embryonic stem cellderived gail precurors: a sources of myelinating transplants. Science, 1999, 285: 754-75
    Buehr M. The primordial germ cells of mammals: some current perspectives. Exp Cell Res. 1997, 232:194-207
    
    Campbell K. H S, J Mewhir. Sheep cloned by nuclear transrer from cultured cell line. Nature. 1996,1380: 64-66
    Caplen NJ, Alton EW, Middleton PqDorin, Stevenson BJ, Gao X, Durham SR, Jefery PK, Hodson ME, Coutelle C, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995 Jan; 1: 39-46.
    Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005,132:885-896.
    Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells .Cell.2003,113:643-655.
    Chang I, Jeong DK, Hong YH et al. Production of germline chimeric chicken by transfer of cultured chick primordial germ cells. Cell Biol Int. 1997, 21:495-499
    Chang Wan-Cun, Dou Zhong Ying, Ma Hong-Fei, et al. Embryonic stem cell-like colonies from primordial germ cells in human. Acta Univ Agric Boreali occidentalis (in Chinese). 1998, 26:105-107.
    
    Cheng L, Fu J, Tsukamoto A, et al. Use of green fluorescent protein invariant stomonitor gene transfer and expression in mammalian cells. Nat Biotechnol. 1996,14:606-609.
    
    Cherny RA, Merei J. Evidence for pluripotency of bovine primordial germ cell lines maintained in long-term culture.Theriogenology. 1994, 41:175.
    
    Cherny RA, Stokes TM, Merei J, et al. Strategies for the isolation and characterization of bovine embryonic stem cells. Reprod Fertil Dev.1994, 6:569-575
    
    Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol. 2002, 20: 366-369.
    Chiquoine, AD.The identification, origin and migration of the primordial germ cells in the mouse embryo. Anat.Rec. 1954,118: 135-146.
    Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells. Development. 1998,125: 725-732
    
    Choi SJ, Anderson GB. Development of tumors from bovine primordial germ cells transplanted to athymic mice. Anim Reprod Sci. 1998,52:17-25.
    
    Cibelli J B, SL Stice, JJ kane, et al. Bovine chimeric offspring Produced by transgenic embryonic stem cells generated from somatic cell nuclear transfer embryos. Theriogenology.1998, 49: 236
    
    Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol. 1998,16: 642-646.
    
    Cibelli JB, Stice SL, Kane JJ, et al. Production of grem line chimeric bovine fetuses from transgenic embryonic stem cells. Theriogenology.1997, 47: 241
    Cibelli JB, Grant K A, Chapman K B, et al. Parthenogenetic stem cells in nonhuman primates. Science. 2002,295:819
    Dattena M, Chessa B, Lacerenza D, Accardo C, Pilichi S, Mara L, Chessa F, Vincenti L, Cappai P. Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts.Mol Reprod Dev. 2006,73: 31-39.
    
    Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, Reik W. Altered imprinted gene methylation and expression in cell-derived mouse Development, fetuses association with aberrant completely ES phenotypes. 1998,125:2273-2282
    
    Dekel B, Reisner Y. Embryonic committed stem cells as a solution to kidney donor shortage. Expert Opinion on Biological Therapy. 2004, 4: 443-454.
    
    Delhaise F, Bralion V, Schuurbiers N, et al. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos.Eur J Morphol. 1996,34:237-43.
    
    Delhaise F, Ectors FJ, Roover R de et al.Nuclear transplantation using bovine primordial germ cells from male fetuses. Reprod Fert Dev, 1995, 7:1217-1219
    
    Doetschman T, Williams P, Maeda N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol. 1988,127: 224-227
    
    Doetschman, TC, Eistattaer, et al.The in vitro development of blastocyst derived embryonic stem cell line: formation of yolk sac, blood islangds and myocardium. J. Embryol. Exp. Morphol. 1985, 87, 27-45
    Dolci S, Willams DE, Ernst MK,et al. Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature. 1991, 352:809-811
    Donovan PJ, Gearhart J . The end of the beginning for pluripotent stem cells. Nature. 2001,414: 92-97.
    Durcova-Hills G, Ainscough J and McLaren A. Pluripotential stem cells derived from migrating primordial germ cells.Differentiation.2001; 68: 220-6.
    Eisteter H R. Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulaes. Dev, growth and Diff. 1989, 31: 275-282
    Elaine F, Segre JA. Stem Cells: a new lease on life. Cell. 2000,100:143-155.
    Ernst M, Nova kU, Nicholson SE, Layton JE, Dunn AR. The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation. Involvement of STAT3. J Biol Chem.1999, 274: 9729-9737.
    Escriou V, Carriere M, Bussone F, Wils P, Scherman D.Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J Gene Med. 2001Mar-Apr; 3:179-87.
    Evans M J, Notarianni E, Laurie S, et al. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology.1990, 33:125-128
    Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156.
    
    Fang ZF, Jin F, Gai H, Chen Y, Wu L, Liu AL, Chen B, Sheng HZ. Human embryonic stem cell lines derived from the Chinese population. Cell Res. 2005,15: 394-400.
    
    Feigner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop Ringold GM,Danielsen M. Lipofection: a highly eficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov; 84: 7413-7.
    Feigner PL, Tsai YJ, Sukhu L, Wheeler CJ, Manthorpe M, Marshall J, Cheng SH. Improved cationic lipid formulations for in vivo gene therapy.Ann N Y Acad Sci. 1995 ,772:126-39
    Felici MD, Mclaren A, Isolation of mouse primordial germ cells. Exp Cell Res, 1982,142: 476-483
    First NL, Sims MM, Park SP, Kent-First MJ. Systems for production of calves from cultured bovine embryonic Cells [J]. Reprod Fertil Dev. 1994, 6: 553-562.
    Fleischman RA. From white spots to stem cells: the role of the Kit recrptor in mammalian development.Trends Genet. 1993, 9:285
    Galli, C, Lagutina, 1, Crotti, G, et al. A cloned horse born to its dam twin. Nature. 2003, 424: 635.
    Gao S, McGarry M, Ferrier T, Pallante B, Priddle H, Gasparrini B, Fletcher J, Harkness L, De Sousa P, McWhir J, Wilmut I. 2003. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell Line. Bio1 Reprod. 2003, 68:595-603
    Gerd HG, Moe-Behrens,F rancesca Gioia Klinger, et al. Akt/PTEN Signaling Mediates Estrogen-Dependent Proliferation of Primordial Germ Cells in Vitro. Mol. Endocrinol. 2003,17: 2630-2638.
    Giles JR, Yang X, Mark W, Foote RH. Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol Reprod Dev. 1993, 36:130-138.
    Gill DR, Southern KW, Moford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, RatclifR, Bilton D, Lane DJ, Litlewood JM, Webb AK, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997 Mar; 4: 199-209
    Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cells. Dev Biol 2004,269: 360-380.
    Ginsburg M, Snow M H, McLaren A, Primordial germ cells in the mouse embryo during gastrulation. Development. 1990, 110:521528
    Godin L, Wylie C, Heasman J. Genital ridges exert long-range efects on mouse primordial germ cell numbers and direction of migration in culture. Development.1990, 108: 357-63.
    Golueke P J, Cibelli J B, Balise J, Morris J, et al. Transgenic Chimeric pigs derived from cultured embryonic cell lines.Theriogenology. 1998, 49:323
    Gondos and Hobel.Ultrastructure of germ cell development in the human fetal testis. Z Zellforsch Mikrosk Anat. 1971,119:1-20.
    Graves K. H., Moreadith R. W., Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Repord Dev.1993, 36:424-428
    
    Gurdon JB. Nuclear transplantation in eggs and oocytes. J Cell Sci.1986, 4:287-318
    Hadjantonakis A K, Gertsenstein M, Ikawa M, et al. Generating green fluorescent mice by germline transmission of green fluorescent Es cells. Mech Dev. 1998,76: 79-90.
    Haegele L, Ingold B, Naumann H, et al. Wnt signaling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neuro sci.2003, 24: 696-708
    Handyside A. Towards the isolation of embryonic stem cell lines from the sheep Roux's Arch Dev Biol, 1987,196:185-190
    Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 2002, 16: 2650-2661.
    Hara T, Tamura, Miguel KM, et al. Distinct roles of oncostatin M and leukemia inhibitory factor in the development of primordial germ cells and sertoli cells in mice. Dev Biol,1998; 201: 144-53.
    Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn. 2004, 230: 187-198.
    Hatano SY, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T, Suemori H, Nakatsuji N, Tada T. Pluripotential competence of cells associated with Nanog activity. Mech Dev. 2005,122:67-79.
    
    Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, Kawate N, Tamada H, Sawada T, Kumagai D, Sugiura K, Inaba T. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol Reprod Dev. 2006,73:298-305.
    
    Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J,Tanaka S, Shiota K. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem.2004,23,279:17063-17069.
    Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 knock-down induces similar patterns of endodermand trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells. 2004, 22: 225-235.
    
    Heath J K. Development in mammalis (ed M H Johnson). North Holland. New York. 1978 3:267
    Heningson CT, Stanislaus MA, Gewirtz AM. Embryonic and adult stem cell the therapy. J Allergy Clin Immunol. 2003,111:745-753
    Hong Y, and Schartl M. Establishment and growth responses of early medaka fisembryonic cells in feeder layer-free cultures. Mol Biol. Biotechnol. 1996, 5:93 104.
    Hong Y, Chen SL, Winkler C, et al. Medarkafish embryonic stem cells as a model for genetic improvement of aqua culture live stocks in "New development in marine biotechnology". New York: Blenum Pree. 1998
    Iannaccone PM, Tabom GU, Garton RL, et a]. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol. 1994,163: 288-29
    Johnson LR, Lamb KA, Gao Q, Nowling TK, Rizzino A. Role of the transcription factor Sox-2 in the expression of the FGF-4 gene in embryonal carcinoma cells. Mol Reprod Dev. 1998,50: 377-386.
    Jonathan D, Judson R, Terry D, et al. Embryonic stem cells differentiated in vitro as a novel source of cells foe transplantation. Cell Trans. 1996, 5: 131-141.
    Jumnian Saikhun, Kanok Pavasuthipaisit, Mayurachat Jaruansuwan, et al. Xenonuclear transplantation of buffalo (Bubalus bubalis) fetal and adult somatic cell nuclei into bovine (Bos indicus) oocyte cytoplasm and their subsequent development. Theriogenology.2002, 57:1829-1837
    Kahn B. W. and Ephrussi B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst.1970, 44: 1015-1029
    Kato Y, Hilton K, Barton SC. Developmental potential of mouse primordial germ cell. Development. 1999,126: 1823-1832.
    Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of single adult. Science. 1998. 282:2095-2098.
    Kaufman M H, Robertson E J. Handyside AN H, et al. Establishmeant of pluripotential cell lines from haploid mouse embryas. J Embryol Exp Morph.1983, 73: 249-261
    Kawase E, Yamazaki Y, Yagi T, Yanagimachi R, Pedersen RA, Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis.2000, 28:156-163
    Kehat I, Kenyagain karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomycytes. J Clin Invest. 2002, 2008: 407-414
    KellerG, Kennedy M., Papayannopoulou T., Wiles M. V., Hematopoietic commitment during embryonic stem cell diferentiation in culture. Mol Cell Biol. 1993,13: 473-486
    Kitiyanant Y, Sailchun J, Jaroensuwan M, et al. Nuclear transfer of buffalo fetal fibrobalsts and oviductal cells into enualeated bovine oocytes and their subsequent development. Theriogenology, 2000, 53: 226.
    Klug M. G., Soonpaa M. H., Field L. J., DNA synthesis and multinucleation in embryonic stem cell derived cardiomyocytes. Am 1 Physiol. 1995, 269: 913-1921
    Klug MG, Soonpaa MH, Koh GY, et al. Genatically selected cardiomyocytes from differenting embryonic stem cells from stable intracardiacgraft. J Clin Invest. 1996, 98:216
    Koshimizu M, Watanabe M and Nakatsuji N.Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Developmental Biology.1994,168:683-685.
    Koshimizu U, Taga T, Watanabe M, Saito M, Shirayoshi Y, Kishimoto T, Nakatsuji N. 1996. Functional requirement of gpl30-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development.122: 1235-1242.
    Kuwana T, Fujimoto T. Active locomotion of human primordial germ cells in vitro. Anat Rec. 1983,205: 21-26.
    
    Labosky PA, Barlow DP, Hogan BLM, Mouse embryonic germ cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (IGF2r) gene compared with embryonic stem cell line. Development. 1994,120: 3197-3204
    Lavoir MC, Conaghan J, Pederson RA. Culture of human embryos for studies on the derivation of human pluripotene cells: a preliminary investigation. Reprod Fertil Dev. 1998,10: 557--561
    Lavoir MC, Rumph N, Moens A et al. Development of bovine nuclear transfer embryos made with oogonia. Biol Reprod.1997,56:194-199
    Lawson K and Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse.Ciba Found. Symp.1994,182: 68-91
    Lawson KL, Dunn NR, Roelen BA, et al. Bmp4 is required for the generation of promodinal germ cells on the mouse embryo. Genes and Development. 1999, 13: 424-436.
    Ledda S, Naitannas S, Loip, et al. Transplantation of primordial germ cells (PGCs) into enucleated oocytes in sheep. Theriogenology.1996,45: 288
    Lee CK, Scales N, Newton G, et al, Isolation and initial characterization of primordial germ cell-derived cells from goat, rabbit and rats. Asian-Aus Anim Sci.2000, 13: 587-594
    Leichthammer F, Baunack E, Brem G. Behavior of living primordial germ cells of livestock in vitro. Theriogenology. 1990.33:1221-1230
    Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang WH. Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev. 2003.65: 429-434.
    Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther. 2000,7:314.
    Li Song, Dou Zhongying, Hua Jinlian, Qu Lei, Yang Chunrong. Isolation and cloning of bovine ES cells from primordial germ cells. Journal of Agricultural Biotechnology (in Chinese). 2000.8:349-352
    
    Lin T, Chao C, Saito S, Mazur S J, Murphy M E, Appella E, Xu Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol.2005, 7: 165-171.
    Lysdahl H, Gabrielsen A, Minger SL, Patel MJ, Fink T, Petersen K, Ebbesen P, Zachar V. Derivation and characterization of four new human embryonic stem cell lines: the Danish experience. Reprod Biomed Online. 2006. 12: 119-126.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in
    Mitani T, Takahashi N, Kawase E, et al. Proliferation of alkaline phosphatase-positive cells from cultured primordial germ cells in rats. Theriogenology .1994,41:336
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell.2003.113: 631-642.
    
    Modinski JA, Reed MA. Embryonic stem cells: development capacities and their possible use in mammalian embryo cloning. Anim Reprod Sci.1996, 42: 437-447
    Modinski JA, Gerhauster D, Lioi B .Derivation and characterization of putative pluripential ES cell lines from preimplantation bovine embryos. Development. 1990,108: 337-348.
    Moens A, Betteridge K, Brunet A, et al. Low levels of chimeras in rabbit fetuses produced from preimplantation embryos microinjected with fetal gondal cells. Mol Reprod Dev.1996, 43:38
    Moens A, Chastant S, Chesne P et al. Differential ability of male and female rabbit fetal germ cell nuclei to be reprogrammed by nuclear transfer. Differentiation.1996, 60:339-345
    Mueller S, Prelle K, Rieger N, et al. chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol Reprod Dev.1999, 54: 244-254
    Munsie MJ, Michalska AE, OBrien CM, et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei.Curr Biol. 2000,10: 989-92.
    Munsie MO Brien C and Mountford P. Transgenic strategy for demonstrating nuclear reprogramming in the mouse. Cloning Stem Cells. 2002, 4:121-130.
    Naito M, Sano A, Matsubara, et al. Localization of primordial germ cells or their precursors in stage X blastoderm of chickens and their ability to differentiate into functional gametes in opposite-sex recipient gonads [J].Reproduction.2001,121.547-552
    Nakatsuji N, Chuma S. Differentiation of mouse primordial germ cells into female or male germ cells. Int J Dev Biol. 2001, 45: 541-548
    Nakayma N, Fang I, Elliott G. Natural killer and B-Lymphold potential in CD34+ cells derived form embryonic stem cells differentiated in the presence of vascular endothelial growth factor. Blood. 1998, 91: 2283-2295.
    Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by DATA-4 defficient embryonic stem cells. Cells Development. 1996,122: 3755-3764.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebe-Nius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95: 379-391.
    Nichols J., Evans E., P, Smith A G Establishment of germline competent embryonic stem (ES) cells using diferentiating inhibiting activity. Dev, 1990,110:1341-1348
    Niemann H, Strelchenko N. Isolation and maintance of rabbit embryonic stem (ES) cell lines, Theriogenology, 1994, 41:265
    Nishimoto M, Fukushima A, Okuda A, Muramatsu M. The gene for the embryonic stem cell coactivator UTF1 carriesa regulatory element which selectively interacts with a complex composed ofOct-3/4 and Sox-2. Mol Cell Biol, 1999,19: 5453-5465.
    Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998,12: 2048-2060.
    Niwa H, Miyazaki J, Smith AG Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000, 24: 372-376.
    Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct, 2001, 26:137-148.
    Notarianni E, Laurie S, Moor RM, et al. Maintenance and diferentiation in culture of pluripotential embryonic cell lines from pig blastocyst. J Reprod Fertil (Suppl), 1990, 41: 51-56
    Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 1990, 60: 461-472.
    Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science. 2000. 289: 1188-1190.
    Pacacios R,Golunsli E, Samaridis J. In vitro generation of hematopoietic stem cells from an embryonic stem cell line. Proc. Natl. Acad. Sci USA, 1995, 92: 7530-7534
    Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut_J, Etches RJ. 1996. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122: 2339-2348.
    Pan G, Pei D. The stem cell pluripotency factor NANOG activate stranscription with two unusually potent subdomains at its C terminus. J Biol Chem, 2005, 280:1401-1407.
    Papaionnou, V E., McBumey, M. W., Gardner, R. L., and Evans, M. J., Nature, 1975, 258: 70-73
    Parnpai R, Tasripoo K I, Camonpatana M. Development of cloned swamp buffalo embryos derivaed from fetal fibroblasts: comparison in vitro cultured with or without buffalo and cattle oviductal epitheial cells. Buffalo J. 1999, 3: 371-384.
    Pease S and Williams RL. Formation of germ-line chimeras from embryonic stem cells maintained with recombinant leukemia inhibitory factor. Exp Cell Res. 1990, 190: 209-211.
    Peli J, Schmol F, BemQ, et al. Comparison of aggregation and injection techniques in producing chimeras with embryonic stem cells in mice. Theriogenology, 1996, 45: 833-842
    Pelisek J, Engelmann MG, Golda A, et al. Optimization of nonviral transfection: variables influencing liposome—mediated gene transfer in proliferating VS quiescent cells in culture and in vivo using a porcine restenosis model [J]. J Mol Med.2002, 80.724-736
    Pesce M, Farrace MG, Piacentini M, et al. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survial by suppressing programmed cell death (apoptosis) . Dev, 1993,118: 1089 -1094
    
    Pesce M, Scholer HR. Oct-4: Gate keeper in beginning of mammalian development. Stem Cells 2001,19:271-278.
    
    Piedrahita JA, Anderson GB, BonDurant RH. Influence of feeler layer type on the efficiency of isolation of porcine embryo--derived cell lines .Theriogenology, 1990, 34: 865-877
    Piedrahita JA, Moore K, Oetama B, et al Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod, 1998, 58: 3121-3129
    Piedrahita JA, Anderson GB, Bondurant RH. on the isolation of embryonic stem cell: Camparative Behavior of murine, porcine, ovine embryos. Thereiogenology. 1990, 39:879-901
    Rosfjord E, Rizzino A.The octamer motif present in the Rex-1 promoter binds Oct-1 and Oct-3 expressed by EC cells and ES cells. Biochem Biophys Res Commun. 1994, 203: 1795-1802.
    Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature.1990,345: 686-692.
    Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, Hirayama H, Kageyama S, Pan J, Murata T, Kobayashi Y, Obata Y, Yokoyama KK. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun.2003,309:104-113.
    Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like cell lines culture over several passages, Roux's Arch Dev Biol. 1992,201:134-141
    
    Saitou M, Barton SC and Surani MA. A molecular programme for the specification of germ cell fate in mice [J]. Nature.2002,418: 293-300.
    
    Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T, Ishii H, Tanioka Y, Ohnishi Y, Suemizu H, Sugawara A, Tamaoki N, Izawa K, Nakazaki Y, Hamada H, Suemori H, Asano S, Nakatsuji N, Okano H, Tani K. Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells.2005,23: 1304-1313.
    
    Sato N, Sanjuan IM, Heke M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol, 2003, 260: 404-413.
    Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Grass P. New type of POU domain in germ line-specific protein Oct-4. Nature .1990,344: 435-439.
    
    Seamark RF. Progress and emerging problems in livestock transgenesis: a summary perspective. Reprod Fertil Dev.1994,6: 653-657.
    
    Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci. USA, 1998, 95: 13726-13731
    Shi Deshun, Fenghua Lu, Yingming Wei, Kuiqing Cui, Sufang Yang, Jingwei Wei, and Qingyou Liu. Buffalos (Bubalus Bubalis) Cloned by Nuclear Transfer of Somatic Cells. Biology of Reproduction. 2007 (In press)
    Shim H, Anderson GB. In vitro survival and proliferation of porcine germ cells. Theriogenology, 1998, 49: 521-528
    Shim H, Gutierrez A, Chen LR, et al. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod, 1997, 57:1089-1095
    Shin T, Kraemer D, Pryor J, et al. A cat cloned by nuclear transplantation. Nature, 2002, 415:859.
    
    Sims M, First NL. Production of calves by nuclear transfer of nucleic from cultured inner cell mass. Porc Natl Acad Sci USA.1993,91:6143-6147
    
    Smith AQHooper ML. Bufalo rat liver cells produce a difusible activity which inhibits the diferentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol, 1987, 121: 1-9
    Smith Michelle, First N L. Production of calves by tranfer of nuclei from cultured inner mass cells.Development biology, 1993, 90:6134-6147.
    Spector M S, Schnur J M. DNA order in gonalipid membrane. Science, 1997, 275: 791-792
    Starr R, Nova kU, Willson TA, Inglese M, Murphy V, Alexander WS, Metcalf D, Nicola NA, Hilton DJ, Ernst M. Distinct roles for leukemia inhibitory factor receptor alphachain and gp130 in cell type-specific signal transduction. J Biol Chem, 1997, 272: 19982-19986.
    Stevens LC. Embryology of testicular teraomas in strain 129 mice. J Nail Cancer Inst, 1957, 20:1257 -1275
    Stewart CL, Gadi I and Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol. 1994,161: 626-628.
    Stic SL, Strelchenko NS, Keeferel, et al. Pluripotent bovine embryonic development following nuclear transfer [J].Bio Reprod, 1996, 54:100-110.
    Strelchenko N, Bettauser J, Jurgella G et al. Use of somatic cells in cloning. Park City, UT:Proc Gen Eng Clon Anim, 1998, (Abstract)
    
    Strelchenko N. Bovine pluripotent stem cells. Theriogenology.1996,45:131-140.
    Strojek RM. Reed MA, Hoover JL, et al. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33: 901-913
    Sukoyan MA, Golubitsa AN, Zhelezova Al, et al. Isolation and cultivation of blastocyst-derived stem cell lines from American Mink (Mustela Vision). Mol Reprod Dev, 1992,33: 418-413
    Sukoyan MA, Vatolin SY, Golubitsa AN, Zhelezova AI, Semenova LA, Serov OL. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol Reprod Dev.1993,36: 148-158.
    
    Tae Sub Park, Jae Yong Han. Derivation and characterization of pluripotent embryonic germ cells in chicken. Molecular Reproduction and Development. 2000, 56:475-482
    
    Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol, 1997,15:797-819.
    
    Tam PP, Snow M H. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol. 1981, 64:133-147
    
    Teom Yl. Germline regulatory element of oct-4 specific for the totipotent cycle of embryonal cell. Development. 1996.122:881
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science.1998,282: 1145-1147.
    Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A .1995,92: 7844-7848.
    Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod .1996,55: 254-259.
    
    Tillmann SM, Meinecke B. Isolation of ES-like cell lines from bovine and caprine preimplantation embryos. J Anim Breed Cenet, 1996,113: 413-426
    
    Tilmann C and Capel B. Mesoneprotic cell migration induces testis cord formation and sertoli cell differentiation in mammalian gonad. Development, 1999,126:2883-2890.
    
    Torri R, Hosoi Y, Fujinami N, et al. Establishment of the primate embryonic stem cell lines from blastocysts produced by cytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) using the Japanese Monkey and the cynomolgus Monkey. Theriogenology. 2001, 55:374
    
    Toyoda H, Obinata M, Matsui Y. Members of the ErbB receptor tyrosine kinase are involved in germ cell development in fetal mouse gonads. Dev Biol, 1999, 215:3994
    Tseng WC, Haselton FR, Giorgio TD. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem. 1997 Oct 10; 272: 25641-7
    Tsuchiya Y. Isolation of ICM derived cell colonies from sheep blastocysts. Theriogenology. 1994,41:321
    Tsung HC, Du ZW, Rui R, Li XL, Bao LP, Wu J, Bao SM, Yao Z. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Res.2003,13:195-202.
    
    Uyttersprot N,Costagtiola S, Miot F. A new tool for efficient transfection of dog and human thyrocytes in primary culture.Mol Cell Endocrinol.1998,142:35-39
    
    Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS. 2006. Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev. 2006 Oct 10
    
    Voge G. The hottest stem cells are also the toughest. Science. 2002, 292: 429.
    
    Wagner TE.Mammalian gene transfer and gene expression. Advances In Experimental Medicine And Biology.1986, 205.319-349
    
    Wakamatsui Y, Ozato K, Hashimoto H, et al. Generation of germ line chimers ainmedaka (Oryziaslaticeps) Mol. Mar. Biol. Biotechnol. 1993, 2: 325-332.
    
    Wakayama T, Rodriguez I, Perry ACF, Yanagimachi R, and Mombaerts P. Mice cloned from embryonic stem cells. Natl Acad Sci USA. 1999. 96:14984-14989
    Wang L, Duan E, Sung LY, Jeong BS, Yang X, Tian XC. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod .2005,73:149-155.
    Wang R, Clark R, Bautch VL. Embryonic stem cell-derived cystic embryoid bodies from vascular channels: an invitro model of blood vessel development. Development. 1992, 114: 303-316.
    Wang SH, Tsai MS, Chiang MF, Li H. A novel NK-type homeobox gene, ENK (early embryo specific NK) , preferentially expressed in embryonic stem cells. Gene Expr Patterns.2003, 3: 99-103.
    
    Watanabe M, Shirayoshi Y, Koshimizu U, et al. Gene transfection of mouse primordial germ cells in vitro and analysis of their survival and growth control. Exp Cell Res, 1997, 230:76-83
    Wheeler MB, Runde LA, Bleck GT, et al Production of chimeric swine from embryonic stem (ES) cells. Biol Reprod, 1995, 52:136
    Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev. 1994, 60: 563-568
    Wiles M. V., Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. 1991, 111: 259-267.
    Wilmut I, Schnieke AE, Mcuhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385:810-813
    
    Wobus AM, Holzhausen H, Jakel P, Schoneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res .1984,152: 212-219.
    
    Wobus AM, Holzhausen H, Jakelp. Chararterization of a pluripotent stem cell line derived from a mouse embryo .Exp.Cell Res.1984,152:212-219.
    Wood S, Pascoe W, Schmidt C, et al. Simple and efficient production of embryonic stem cell embryo chimeras by coculture. Proc-Natl-Acad-Sci-U-S-A, 1993, 90: 582-585.
    Woods GL, White KL, Vanderwall DK, et al. A mule cloned from fetal cells by nuclear transfer. Science, 2003, 301:1063.
    Wylie C. Germ cells. Cell. 1999, 96:165-174
    Wylie CC. Migrations proliferation and potency of primordial germ cells. Semi.in Develop.Biol. 1993, 4:161-170
    Xu CH, Giovanna L, Adamaon ED, et al. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking cripto-1. Dev Biol. 1998,196: 237-247.
    Xu CH, Inokuma MS, Denham J, et al, Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology. 2001.19:971- 974
    Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns.2005,5: 639-646.
    Yan W,Suominen J and Toppari J. Stem cell factor protects germ cells from apoptosis in vitro. J Cell Sci. Jan 2000; 113:161-168.
    Ying QL, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cel self-renewal in collaboration with STAT3. Cell, 2003, 115:281-292
    Zabner J, Fasbender A J, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270:18997-19007.
    Zakhartchenko V, Durova-Hills G, Schernthaner W et al. Potential of fetal germ cells for nuclear transfer in cattle. Mol Reprod Dev, 1999, 52: 421~426.
    Zemcka-Goetz M, Pines J, McLean Hunter S, et al. Following cell fate in the living mouse embryo. Development. 1997, 124:133-137
    Zhou Q, Jouneau A, Brochard V, Adenot P, Renard JP.Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod. 2001, 65: 412-419.
    Zhou Q J, Shao JZ, Xiang LX, Hu RZ, Lu YL, Yao H, Dai LC. Generation of embryoid bodies from mouse embryonic stem cells cultured on STO feeder cells. Cell Biol Int.2005,29: 817-825.
    Zhou X, Huang L. DNA transfection medi.ated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta. 1994, 19; 1199:195-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700