用户名: 密码: 验证码:
碳材料负载的碳化钼对植物油脱氧反应催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物质能源的开发利用正逐渐受到越来越多的关注,其中生物柴油是一种清洁可再生的生物质能源。在自然界中广泛存在、来源丰富,属可再生资源的植物油脂和柴油在结构组成上均含有长的碳链组分。柴油主要是指含10-22个碳原子的烃类混合物,燃烧热值高,是一种优良燃料。植物油脂主要是由一分子甘油和三分子分别含有8-22个碳原子的长链脂肪酸形成的,但是这类化合物存在含氧量高、粘度大、挥发性差、不稳定、不易存储等缺点,不适合直接用作内燃机燃料,而通过脱羧、脱羰、加氢脱氧等方法对植物油脂进行提质即可得到清洁的可再生柴油组分。
     本论文合成了一系列不同结构碳材料为载体负载的钼基催化剂,并以植物油选择性脱氧制备柴油类烃为目标对催化剂进行活性测试并对其脱氧反应机理进行了研究,详细分析了相关催化剂的物理化学性质并考察了不同碳载体及负载的钼基催化剂在植物油脱氧反应中的影响。主要研究结果如下:
     (1)考察了四种主要以sp2杂化的碳材料(石墨烯、碳纳米管、石墨和富勒烯)负载的钼基催化剂对玉米油的脱氧反应及异构化反应研究,运用“碳热氢还原法”合成出了不同物相组成的钼基催化剂。实验结果表明碳材料在反应中起着重要的作用,C渗入到Mo的晶格中可使Mo的d电子密度增加,而载体石墨烯的高导电性,又通过碳化钼中的碳传递给Mo,使它的d电子密度更大,从而增加了碳化钼的催化活性。
     (2)与共轭结构的碳材料作为对比,作者考察了三种无定型结构碳材料,介孔碳、以蔗糖为原料通过水热合成制备的活性炭和普通活性炭,负载的碳化钼催化剂对玉米油的脱氧反应效果及烃类产物分布规律。无定型碳材料负载的碳化钼催化活性低于共轭结构的石墨烯和碳纳米管为载体的碳化钼催化活性,作者推断其原因主要是碳的价电子杂化轨道及碳原子的排列结构不同,rGO的碳原子的价电子通过sp2杂化轨道成间层或若干层二维结构,活性炭中碳原子的价电子主要以sp3、部分以sp2排列的三维结构,其作为催化剂载体后对活性组分的影响不同导致催化活性的差别。
     (3)通过“碳热氢还原法”成功制备出了碳纳米纤维负载的碳化钼催化剂(Mo2C/CNF),碳纳米纤维具有与碳纳米管类似的物化性质,并且价格低廉。以脂肪酸甲酯为模型化合物研究了碳化钼催化剂的脱氧反应活性,并考察了对真实的植物油体系在超临界正己烷中的脱氧反应过程。以脂肪酸酯、脂肪酸和烯烃作为探针分子,讨论了脂肪酸酯在碳化钼催化剂上转变为烷烃的反应机理,为进一步阐明植物油脂脱氧制备柴油类烃的反应过程提供理论基础。
     (4)以石墨和活性炭为碳源,采用“碳热氢还原法”合成出了添加含N元素C3N4的混合碳材料负载的碳化钼催化剂,通过XRD、Raman和TEM分析初步考察了添加和不添加N元素对碳化钼催化剂形成的影响。比较了两类催化剂对玉米油催化活性及目标产物选择性的影响,并考察了碳材料负载的碳化钼催化剂对植物油的脱氧反应机理。
In recent years, development and utilization of biomass-based energy resources is a hot domain all over the world. Biodiesel is a clean and renewable source of biomass. Vegetable oils, a rich source of renewable resources and existing widely in nature, have the similar structure of diesel that both contain long carbon chain components. Diesel oil is an excellent fuel, which is primarily a mixture of hydrocarbons containing10-22carbon atoms, high heat value of combustion. Vegetable oils are mainly composed of free fatty acids and their corresponding triglycerides. However, they are not suitable for direct combustion in modern diesel engines due to high oxygen content, high viscosity, high cloud point and low stability. Hence natural oils must be upgraded with decarboxylation, decarbonylation or hydrodeoxygenation to obtained diesel-like hydrocarbons.
     In the present dissertation, we investigated the selective deoxygenation of vegetable oils over a series of carbon materials supported molybdenum-based catalysts. Detailed analysis of the physical and chemical properties of catalysts including their preparations, characterizations, performance tests and corresponding reaction mechanisms were given in the thesis. Some conclusions drawn from the work are provided as follows:
     (1) Hydrodeoxygenation and isomerization of maize oil were performed in an autoclave using different carbon materials, such as graphene (rGO), carbon nanotubes (CNTs) graphite (G) and fullerene (C60), as supported molybdenum-based catalysts. Nanostructured molybdenum-based catalysts with different phase compositions were prepared by carbothermal hydrogen reduction (CHR) method at different temperature and characterized by Raman, N2adsorption isotherms, SEM, TEM, XRD, XPS, NH3-TPD and H2-TPD. The sp2hybridized carbon materials (rGO, CNTs, G and C6o) and the sp2and sp3hybridized AC carbon material were selected as supports to compare the catalytic activity of molybdenum-based catalysts. Carbon supports played an important role in participating in the reaction, and the Mo/rGO-700catalyst exhibited the best catalytic activity in the hydrodeoxygenation of maize oil.
     (2) Three kinds of amorphous carbon material structure, order mesoporous carbon, one kind of activated carbon prepared by hydrothermal synthesis and ordinary activated carbon, supported molybdenum-based catalysts were compared the catalytic activity of deoxygenation of maize oil. A preliminary discussion of the structure of the carbon materials in the corresponding molybdenum carbide catalyst prepared for catalytic activity of the deoxygenation reaction was mentioned.
     (3) Molybdenum carbide catalyst with different loading on carbon nanofibers (Mo2C/CNF) were successfully prepared by "carbothermal hydrogen reduction method". The high deoxygenation activity was obtained on model compound and real vegetable oil system in supercritical n-hexane process. Fatty acid esters, fatty acid and olefin molecules were selected as probes to explore the reaction process of the fatty acid esters into alkanes on molybdenum carbide catalyst, and there was no deactivation detected after five consecutive tests. Based on comprehensive analysis to gas and liquid products, the deoxygenation mechanism of fatty acid esters was proposed, the hydrodeoxygenation was the main reaction route.
     (4) With graphite and activated carbon as carbon source, the N-added molybdenum carbide catalysts were synthesized by the "carbothermal hydrogen reduction method" and characterized by XRD, Raman and TEM. Preliminary study of the effects of adding or not adding N element on the formation of molybdenum carbide catalyst was carried out. The corresponding catalytic activity in the hydrodeoxygenation of maize oil were compared, the N-added in the catalysts to some extent in favor to improve the activity of the hydrodeoxygenation of maize oil.
引文
[1]Z. Al-Qodah, Adsorption of dyes using shale oil ash, Water Research,2000, 34(17):4295-4303.
    [2]J. Bock, P. P. McCall, M. L. Robbins, M. Siskin, In situ shale-oil recovery process, U.S. Patent 4458757,1984-7-10.
    [3]G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical reviews,2006,106(9):4044-4098.
    [4]D. L. Klass, Biomass for renewable energy, fuels, and chemicals, Academic press, 1998.
    [5]D. L. Klass, Biomass for renewable energy and fuels, Encyclopedia of energy, 2004,1:193-212.
    [6]P. McKendry, Energy production from biomass (part 1):overview of biomass, Bioresource technology,2002,83(1):37-46.
    [7]G Knothe, Historical perspectives on vegetable oil-based diesel fuels, Inform, 2001,12(11):1103-1107.
    [8]李军,吴平治,李美茹,吴国江,能源植物的研究进展及其发展趋势,自然杂志,2007,29(1):21-25.
    [9]A. Demirbas, Biofuels:Securing the planet's future energy needs, London: Springer-Verlag,2008.
    [10]J. R. Regalbuto, Cellulosic biofuels-got gasoline, Science,2009,325(5942): 822-824.
    [11]B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, G Zacchi, Bio-ethanol-the fuel of tomorrow from the residues of today, Trends in biotechnology, 2006,24(12):549-556.
    [12]G W. Huber, J. A. Dumesic, An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catalysis Today,2006,111 (1):119-132.
    [13]T. M. Mata, A. A. Martins, N. S. Caetano, Microalgae for biodiesel production and other applications:a review, Renewable and Sustainable Energy Reviews,2010, 14(1):217-232.
    [14]Y. Chisti, Biodiesel from microalgae, Biotechnology advances,2007,25(3): 294-306.
    [15]A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Renewable and sustainable energy reviews,2000,4(2):111-133.
    [16]A. W. Schwab, M. O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils, Fuel,1987,66(10):1372-1378.
    [17]Bradshaw G B. New soap process//Soap.1942,18:23-24.
    [18]Augustine L C, Hartmann W U, Ryan D J. Filter element having removable filter media member:U.S. Patent 4,218,324,1980-8-19.
    [19]M. Mittelbach, M. Worgetter, J. Pernkopf, H. Junek, Diesel fuel derived from vegetable oils:preparation and use of rape oil methyl ester, Energy in Agriculture, 1983,2:369-384.
    [20]J. Connemann, J. Fischer, Biodiesel in Europe 1998:biodiesel processing technologies//International Liquid Biofuels Congress, Brazil.1998,15.
    [21]J. V. Gerpen, G. Knothe, The Biodiesel Handbook, Champaign:AOCS press, 2005.
    [22]Y. Li, X. D. Zhang, L. Sun, H.-P. Xu, Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst/ZrO2-TiO2/La3+, Applied Energy,2010,87(1):156-159.
    [23]F. R. Abreu, M. B. Alves, C. Macedo, P. Suarez, New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction, Journal of Molecular Catalysis A:Chemical,2005,227(1):263-267.
    [24]P. Morin, B. Hamad, G Sapaly, M. G Carneiro, P. G Pries de Oliveira, W. A. Gonzalez, E. Andrade Sales, N. Essayem, RochaTransesterification of rapeseed oil with ethanol:I. Catalysis with homogeneous Keggin heteropolyacids, Applied Catalysis A:General,2007,330:69-76.
    [25]K. H. Chung, B. G Park, Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity, Journal of Industrial and Engineering Chemistry,2009, 15(3):388-392.
    [26]Q. Shu, B. Yang, H. Yuan, S. Qing, G Zhu, Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+, Catalysis Communications,2007,8(12):2159-2165.
    [27]T. Danuthai, S. Jongpatiwut, T. Rirksomboon, S. Osuwan, D. E. Resasco, Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst, Applied Catalysis A:General,2009,361(1):99-105.
    [28]E. Akbar, N. Binitha, Z. Yaakob, S. K. Kamarudin, J. Salimon Preparation of Na doped Si02 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil, Green Chemistry,2009,11(11):1862-1866.
    [29]V. Golden, S. Sokolov, V. A. Kondratenko, E. V. Kondratenko, Effect of the preparation method on high-temperature de-N2O performance of Na-CaO catalysts:A mechanistic study, Applied Catalysis B:Environmental.2010,101(1-2):130-136.
    [30]K. Noiroj, P. Intarapong, A. Luengnaruemitchai, S. Jai-In, A comparative study of KOH/AI2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil, Renewable Energy,2009,34(4):1145-1150.
    [31]W. L. Xie, X. M. Huang, Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst, Catalysis Letters,2006,107(1-2):53-59.
    [32]D. M. Alonso, R. Mariscal, M. L. Granados, P. Maireles-Torres, Biodiesel preparation using Li/CaO catalysts:Activation process and homogeneous contribution, Catalysis Today,2009,143(1-2):167-171.
    [33]G. Arzamendi, I. Campo, E. Arguinarena, M. Sanchez, M. Montes, L. M. Gandia, Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts:Comparison with homogeneous NaOH, Chemical Engineering Journal,2007,134(1-3):123-130.
    [34]X. Bo, G. M. Xiao, L. F. Cui, R. P. Wei, L. J. Gao, Transesterification of palm oil with methanol to biodiesel over a KF/AI2O3 heterogeneous base catalyst, Energy & Fuels,2007,21(6):3109-3112.
    [35]N. Boz, O. Sunal, Biodiesel Production from Canola Oil over Zinc Oxide-Supported Catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University,2009,24(3):389-395.
    [36]X. Li, G Lu, Y. Guo, Y. Wang, Z. Zhang, X. Liu, Y. Wang, A novel solid superbase of Eu2O3/AI2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel, Catalysis Communcations,2007,8(12):1969-1972.
    [37]Z. Z. Wen, X. H. Yu, S. T. Tu, J. Y. Yan, Dahlquist E. Biodiesel production from waste cooking oil catalyzed by TiC^-MgO mixed oxides, Bioresource Technology, 2010,101(24):9570-9576.
    [38]S. J. Yoo, H. S. Lee, Veriansyah B,Kim J, Kim JD, Lee YW. Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts, Bioresource Technology,2010,101(22):8686-8689.
    [39]S. Yamanaka, M. Kouzu, K. Kadota, A. Shimosaka, Y. Shirakawa, J. Hidaka, Catalysis by CaO/SiO2 composite particle for biodiesel production, Kagaku Kogaku Ronbun,2007,33(5):483-489.
    [40]Y. Wang, S. Y. Hu, Y. P. Guan, L. B. Wen, H. Y. Han, Preparation of Mesoporous Nanosized KF/CaO-MgO Catalyst and its Application for Biodiesel Production by Transesterification, Catalysis Letters,2009,131(3-4):574-578.
    [41]T. Wan, P. Yu, S. K. Gong, Q. Li, Y. B. Luo, Application of KF/MgO as a heterogeneous catalyst in the production of biodiesel from rapeseed off, Korean Journal of Chemical Engineering,2008,25(5):998-1003.
    [42]M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteoa, R. Moreno-Tost, J. Santamari, J. L. G. Fierro, Biodiesel from sunflower oil by using activated calcium oxide, Applied Catalysis B:Environmental,2007,73(3-4):317-326.
    [43]M. L. Granados, D. M. Alonso, A. C. Alba-Rubio, R. Maxiscal, M. Ojeda, P. Brettes, Transesterification of Triglycerides by CaO:Increase of the Reaction Rate by Biodiesel Addition, Energy & FuelS,2009,23(4):2259-2263.
    [44]C. Ngamcharussrivichai, P. Totarat, K. Bunyakiat, Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil, Applied Catalysis A:General,2008,341(1-2):77-85.
    [45]S. L. Yan, M. Kim, S. O. Salley, S. Ng, Oil transesterification over calcium oxides modified with lanthanum, Applied Catalysis A:General,2009,360(2):163-170.
    [46]A. Kawashima, K. Matsubara, K. Honda, Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology,2008,99(9):3439-3443.
    [47]M. Zabeti, W. M. A. W. Daud, M. K. Aroua, Optimization of the activity of CaO/AbOs catalyst for biodiesel production using response surface methodology, Applied Catalysis A:General,2009,366(1):154-159.
    [48]H. Fukuda, S, Hama, S. Tamalampudi, H. Noda, Whole-cell biocatalysts for biodiesel fuel production, Trends in Biotechnology,2008,26(12):668-673.
    [49]P. M. Nielsen, J. Brask, L. Fjerbaek, Enzymatic biodiesel production:Technical and economical considerations, European Journal of Lipid Science and Technology, 2008,110(8):692-700.
    [50]L. Fjerbaek, K. V. Christensen, B. Norddahl, A review of the current state of biodiesel production using enzymatic transesterification, Biotechnology and bioengineering,2009,102(5):1298-1315.
    [51]W. L. Xie, H. T. Li, Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil, Journal of Molecular Catalysis A: Chemical,2006,255(1-2):1-9.
    [52]W. Du, L. Wang, D. Liu, Improved methanol tolerance during Novozym435-mediated methanolysis of SODD for biodiesel production, Green Chemistry,2007,9(2):173-176.
    [53]L. H. Posorske, G. K. LeFebvre, C. A. Miller, T. T. Hansen, B. L. Glenvig, Process considerations of continuous fat modification with an immobilized lipase, Journal of the American Oil Chemists'Society,1988,65(6):922-926.
    [54]Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, Stepwise ethanolysis of tuna oil using immobilized Candida antarctica lipase, Journal of bioscience and bioengineering,1999,88(6):622-626.
    [55]T. Samukawa, M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, H. Fukuda, Pretreatment of immobilized Candida Antarctica lipase for biodiesel fuel production from plant oil, Journal of bioscience and bioengineering, 2000,90(2):180-183.
    [56]D. Royon, M. Daz, G. Ellenrieder, S. Locatelli, Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent, Bioresource Technology, 2007,98(3):648-653.
    [57]J. W. Chen, W. T. Wu, Regeneration of immobilized Candida Antarctica lipase for transesterification, Journal of bioscience and bioengineering,2003, 95(5):466-469.
    [58]L. Li, W. Du, D. Liu, L. Wang, Z. Li, Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium, Journal of Molecular Catalysis B:Enzymatic,2006,43(1):58-62.
    [59]Y. Watanabe, P. Pinsirodom, T. Nagao, A. Yamauchi, T. Kobayashi, Y. Nishida, Y. Takagi, Y. Shimada, Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase, Journal of Molecular Catalysis B:Enzymatic,2006,44:99-105.
    [60]A. Robles-Medina, P. A. Gonzalez-Moreno, L. Esteban-Cerdan, E. Molina-Grima, Biocatalysis:towards ever greener biodiesel production, Biotechnology advances, 2009,27(4):398-408.
    [61]S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol, Fuel,2001,80(2):225-231.
    [62]A. Demirbas, Biodiesel from vegetable oils via transesterification in supercritical methanol, Energy Conversion and Management,2004,43(17):2349-2356.
    [63]Y. Warabi, D. Kusdiana, S. Saka, Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols, Bioresource Technology,2004,91(3):283-287.
    [64]Y. Warabi, D. Kusdiana, S. Saka, Biodiesel fuel from vegetable oil by various supercritical alcohols, Applied Biochemistry and Biotechnology,2004,113(16): 793-801.
    [65]V. Rathore, G. Madras, Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide, Fuel, 2007,86(17):2650-2659.
    [66]E. U. Franck, R. Deul, Dielectric behavior of methanol and related polar fluids at high pressures and temperatures, Faraday Discuss. Chem. Soc.1978,66,191-198.
    [67]C. Panayiotou, Solubility parameter revisited:an equation-of-state approach for its estimation, Fluid Phase Equilibria,1997,13(1):21-35.
    [68]T. Yamaguchi, C. J.Benmore, A. K. Soper, The structure of subcritical and supercritical methanol by neutron diffraction, empirical potential structure refinement, and spherical harmonic analysis, The Journal of Chemical Physics,2000,112(20): 8976-8987.
    [69]D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource technology,2004,91(3):289-295.
    [70]S. Hawash, N. Kamal, F. Zaher, O. Kenawi, G El Diwani, Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification, Fuel,2009, 88(3):579-582.
    [71]P. Krammer, H. Vogel, Hydrolysis of esters in subcritical and supercritical water, The Journal of Supercritical Fluids,2000,16(3):189-206.
    [72]B. Smith, H. C. Greenwell, A. Whiting, Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels, Energy & Environmental Science,2009,2(3): 262-271.
    [73]R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Thermal Cracking of Canola Oil: Reaction Products in the Presence and Absence of Steam, Energy & Fuels,1996,10 (6):1150-1162.
    [74]K. D. Maher, D. C. Bressler, Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals, Bioresource Technology,2007,98(12):2351-2368.
    [75]J. Dupont, P. A. Z. Suarez, M. R. Meneghetti, S. M. P. Meneghetti, Catalytic production of biodiesel and diesel-like hydrocarbons from triglycerides, Energy & Environmental Science,2009,2(12):1258-1265.
    [76]H. Lappi, R. Alen, Pyrolysis of vegetable oil soaps-Palm, olive, rapeseed and castor oils, Journal of Analytical and Applied Pyrolysis,2011,91(1):.154-158.
    [77]A. L. F. Santos, D. U. Martins, O. K. Iha, R. A. M. Ribeiro, R. L. Quirino, P. A. Z. Suarez, Agro-industrial residues as low-price feedstock for diesel-like fuel production by thermal cracking, Bioresource Technology,2010,101(15):6157-6162.
    [78]Y. P. Wang, L. B. Wu, C. Wang, J. Y. Yu, Z. Y. Yang, Investigating the influence of extractives on the oil yield and alkane production obtained from three kinds of biomass via deoxy-liquefaction, Bioresource Technology,2011,102(14):7190-7195.
    [79]F. Ma, M. A.Hanna, Biodiesel production:a review, Bioresource technology, 1999,70(1):1-15.
    [80]A. Garcia-Gomez, M. P. Bernal, A. Roig, Growth of ornamental plants in two composts prepared from agroindustrial wastes, Bioresource Technology,2002,83(2): 81-87.
    [81]H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel,2007,86(12):1781-1788.
    [82]K. Raveendran, A. Ganesh, K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel,1996,75(8):987-998.
    [83]E. Vonghia, D. G. B. Boocock, S. K. Konar, A. Leung, Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina, Energy & fuels,1995,9(6):1090-1096.
    [84]P. McKendry, Energy production from biomass (part 2):conversion technologies, Bioresource technology,2002,83(1):47-54.
    [85]A. V. Bridgwater, G. V. C. Peacocke, Fast pyrolysis processes for biomass, Renewable and Sustainable Energy Reviews,2000,4(1):1-73.
    [86]D. S. Scott, J. Piskorz, D. Radlein, Liquid Products from the Continuous Flash Pyrolysis of Biomass, Industrial & Engineering Chemistry Process Design and Development,1985,24(3):581-588.
    [87]A. Robson,25 tpd Border Biofuels/Dynamotive Plant in the UK. PyNe Newsletter 11, Aston University, UK, May 2001:1-2
    [88]R. G. Graham, B. A. Freel, M. A. Bergougnou, The production of pyrolytic liquids, gas and char from wood and cellulose by fast pyrolysis//Research in Thermochemical Biomass Conversion. Springer Netherlands,1988:629-641.
    [89]B. M. Wagenaar, R. H. Vanderbosch, J. Carrasco, R. Strenziok, B. van der Aa, Scaling-up of the rotating cone technology for biomass fast pyrolysis[C]//lst World Conference on Biomass for Energy and Industry, Sevilla, Spain.2000:1514-1518.
    [90]S. Czernik, J. Scahill, J. Diebold, The production of liquid fuel by fast pyrolysis of biomass, Journal of solar energy engineering,1995,117(1):2-6.
    [91]G. V. C. Peacocke, A. V. Bridgwater, Ablative fast pyrolysis of biomass for liquids:results and analyses//Bio-Oil Production & Utilization, Proceedings of the 2nd EU-Canada Workshop on Thermal Biomass Processing.1996:35-48.
    [92]D. G Lima, V. C. D. Soares, E. B. Ribeiro, D. A. Carvalho, E. C. V. Cardoso, F. C. Rassi, K. C. Mundim, J. C. Rubim, P. A. Z. Suarez, Diesel-like fuel obtained by pyrolysis of vegetable oils, Journal of Analytical and Applied Pyrolysis,2004,71(2): 987-996.
    [93]A. W. Schwab, G. J. Dykstra, E. Selke, S. C. Sorenson, E. H. Pryde, Diesel fuel from thermal decomposition of soybean oil, Journal of the American Oil Chemists' Society,1988,65(11):1781-1786.
    [94]Y. S. Ooi, R. Zakaria, A. R. Mohamed, S. Bhatia, Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel, Biomass and Bioenergy,2004,27(5): 477-484.
    [95]Y. K. Ong, S. Bhatia, The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils, Energy,2010,35(1):111-119.
    [96]N. Taufiqurrahmi, S. Bhatia, Catalytic cracking of edible and non-edible oils for the production of biofuels, Energy & Environmental Science,2011,4(4):1087-1112.
    [97]A. C. Carmo Jr, L. K. C. de Souza, C. E. F. da Costa, E. Longo, J. R. Zamiana, G. N. da Rocha Filho, Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41, Fuel,2009,88(3):461-468.
    [98]Y. S. Ooi, S. Bhatia, Aluminum-containing SBA-15 as cracking catalyst for the production of biofuel from waste used palm oil, Microporous and mesoporous materials,2007,102(1):310-317.
    [99]E. Buzetzki, K. Sidorova, Z. Cvengrosova, A. Kaszonyi, J. Cvengros, The influence of zeolite catalysts on the products of rapeseed oil cracking, Fuel Processing Technology,2011,92 (8):1623-1631.
    [100]A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Renewable and sustainable energy reviews,2000,4(2):111-133.
    [101]M. Ziejewski, K. R. Kaufman, A. W. Schwab, E. H. Pryde, Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion, Journal of the American Oil Chemists Society,1984,61(10):1620-1626.
    [102]T.Nguyen, L. Do, D. A. Sabatini, Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions, Fuel,2010,89(9):2285-2291.
    [103]T. N. C. Dantas, A. C. Silva, A. A. D. Neto, New microemulsion systems using diesel and vegetable oils, Fuel,2001,80(1):75-81.
    [104]N. Garti, A. Yaghmur, M. E. Leser, V. Clement, H. J. Watzke, Improved Oil Solubilization in Oil/Water Food Grade Microemulsions in the Presence of Polyols and Ethanol, J. Agric. Food Chem.,2001,49:2552-2562.
    [105]M. Ziejewski, K. R. Kaufman, A. W. Schwab, E. H. Pryde, Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion, Journal of the American Oil Chemists Society,1984,61(10):1620-1626.
    [106]Qi D H, Chen H, Lee C F, L. M. Geng, Y. Z. Bian, Experimental studies of a naturally aspirated, di diesel engine fuelled with ethanol-biodiesel-water microemulsions, Energy & Fuels,2009,24(1):652-663.
    [107]S. Nassos, E. Svensson, M. Nilsson, M. Boutonnet, S. Jaras, Microemulsion-prepared Ni catalysts supported on cerium-lanthanum oxide for the selective catalytic oxidation of ammonia in gasified biomass, Applied Catalysis B: Environmental,2006,64(1):96-102.
    [108]E. Santillan-Jimenez, M. Crocker, Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation, Journal of Chemical Technology and Biotechnology,2012,87(8):1041-1050.
    [109]Q. Smejkal, L. Smejkalova, D. Kubicka, Thermodynamic balance in reaction system of total vegetable oil hydrogenation, Chemical Engineering Journal,2009, 146(1):155-160.
    [110]I. Simakova, B. Rozmyslowicz, O. Simakova, P. Maki-Arvela, A. Simakov, D. Murzin, Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels, Topics in Catalysis,2011,54(8-9):460-466.
    [111]P. Maki-Arvela, I. Kubickova, M. Snare, K. Eranen, D. Y. Murzin, Catalytic deoxygenation of fatty acids and their derivatives, Energy & Fuels,2007,21(1): 30-41.
    [112]M. Snare, I. Kubickova, P. Maki-Arvela, K. Eranen, D. Y. Murzin, Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel, Industrial & Engineering Chemistry Research,2006,45(16):5708-5715.
    [113]A. S.Berenblyum, T. A. Podoplelova, R. S. Shamsiev, E. Katsman, V. Danyushevsky, On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina, Petroleum Chemistry, 2011,51(5):336-341.
    [114]A. S. Berenblyum, V. Y. Danyushevsky, E. A. Katsman, T. Podoplelova, V. Flid, Production of engine fuels from inedible vegetable oils and fats, Petroleum Chemistry, 2010,50(4):305-311.
    [115]J. G. Immer, M. J. Kelly, H. H. Lamb, Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids, Applied Catalysis A:General, 2010,375(1):134-139.
    [116]S. Lestari, P. Maki-Arvela, K. Eranen, J. Beltramini, G Q. Max Lu, D. Y. Murzin, Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts, Catalysis letters,2010,134(3-4): 250-257.
    [117]T. Morgan, D. Grubb, E. Santillan-Jimenez, M. Crocker, Conversion of triglycerides to hydrocarbons over supported metal catalysts, Topics in Catalysis, 2010,53(11-12):820-829.
    [118]S. Lestari, J. Beltramini, G. Q. Lu, Preparation and characterization of mesoporous Ni/Zr-laponite for the catalytic deoxygenation of vegetable oils into liquid hydrocarbons//2006 International Conference On Nanoscience and Nanotechnology, Vols 1 and 2. IEEE,2006:159-162.
    [119]J. Han, H. Sun, Y. Ding, H. Lou, X. Zheng, Palladium-catalyzed decarboxylation of higher aliphatic esters:Towards a new protocol to the second generation biodiesel production, Green Chemistry,2010,12(3):463-467.
    [120]R. W. Gosselink, D. R. Stellwagen, J. H. Bitter, Tungsten-Based Catalysts for Selective Deoxygenation, Angewandte Chemie,2013,125(19):5193-5196.
    [121]O. I. Senol, T. R. Viljava, A. O. I. Krause, Hydrodeoxygenation of aliphatic esters on sulphided NiMo/y-AlO2O3 and CoMOo/γ-Al2O3 catalyst:The effect of water, Catalysis Today,2005,106(1-4):186-189.
    [122]G. W. Huber, P. O'Connor, A. Corma, Processing biomass in conventional oil refineries:Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures, Appl. Catal. A,2007,329:120-129.
    [123]R. Wandas, J. Surygala, E. Sliwka, Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars, Fuel,1996,75(6):687-694.
    [124]E. M. Ryymin, M. L. Honkela, T. R. Viljava, A. Q. I. Krause, Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/y-Al2O3, Applied Catalysis A:General,2010,389(1):114-121.
    [125]G Puente, A. Gil, J. J. Pis, P. Grange, Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts, Langmuir,1999,15(18):5800-5806.
    [126]A. Gutierrez, R. Kaila, O. Krause, Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on noble metal catalysts,14th ICC, Seoul, Korea,2008.
    [127]S. Echeandia, P. L. Arias, V. L. Barrio, B. Pawelec, J. L. G. Fierro, Synergy effect in the HDO of phenol over Ni-W catalysts supported on active carbon:Effect of tungsten precursors, Applied Catalysis B:Environmental,2010,101(1):1-12.
    [128]J. Wildschut, F. H. Mahfud, R. H. Venderbosch, H. J. Heeres, Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts, Industrial & Engineering Chemistry Research,2009,48(23):10324-10334.
    [129]B. Yoosuk, D. Tumnantong, P. Prasassarakich, Amorphous unsupported Ni-Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation, Fuel,2012,91(1):246-252.
    [130]E. O. Odebunmi, D. F. Ollis, Catalytic hydrodeoxygenation:II. Interactions between catalytic hydrodeoxygenation of m-cresol and hydrodesulfurization of benzothiophene and dibenzothiophene, Journal of Catalysis,1983,80(1):65-75.
    [131]Y. Yang, A. Gilbert, C. C. Xu, Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO:a model compound study using phenol, Applied Catalysis A:General,2009,360(2):242-249.
    [132]F. E. Massoth, P. Politzer, M. C. Concha, J. S. Murray, J. Jakowski, J. Simons, Catalytic hydrodeoxygenation of methyl-substituted phenols:Correlations of kinetic parameters with molecular properties, The Journal of Physical Chemistry B,2006, 110(29):14283-14291.
    [133]M. M. Ahmad, M. F. R. Nordin, M. T. Azizan, Upgrading of bio-bil into high-value hydrocarbons via hydrodeoxygenation, American Journal of Applied Sciences,2010,7(6).
    [134]Y. Wang, T. He, K. Liu, J. Wu, Y. Fang, From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing:Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis, Bioresource technology,2012,108:280-284.
    [135]P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G Knudsen, A. D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Applied Catalysis A:General, 2011,407(1):1-19.
    [136]Y. Romero, F. Richard, S. Brunet, Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts:Promoting effect and reaction mechanism, Applied Catalysis B:Environmental,2010,98(3):213-223.
    [137]T. Hyeon, M. M. Fang, K. S. Suslick, Nanostructured molybdenum carbide:Sonochemical synthesis and catalytic properties, Journal of the American Chemical Society,1996,118 (23):5492-5493.
    [138]J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, Molybdenum Carbide-Catalyzed Conversion of Renewable Oils into Diesel-like Hydrocarbons, Advanced Synthesis & Catalysis,2011,353(14-15):2577-2583.
    [139]Han J, Duan J, Chen P, H. Lou, X. Zheng, H. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chemistry, 2011,13(9):2561-2568.
    [1]J. Fu, X. Lu and P. E. Savage, Catalytic hydrothermal deoxygenation of palmitic acid, Energy Environment Science,2010,3 (3):311-317.
    [2]H. Olcay, A. V. Subrahmanyam, R. Xing, J. Lajoie, J. A. Dumesic and G. W. Huber, Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams, Energy Environment Science,2013,6:205-216.
    [3]Y. C. Lin, C. L. Li, H. P. Wan, H. T. Lee and C. F. Liu, Catalytic Hydrodeoxygenation of Guaiacol on Rh-Based and Sulfided CoMo and NiMo Catalysts, Energy Fuels,2011,25(3):890-896.
    [4]J. Tsuji and K. Ohno, Organic syntheses by means of noble metal compounds. XXXIV. Carbonylation and decarbonylation reactions catalyzed by palladium, Journal of the American Chemical Society,1968,90(1):94-98.
    [5]K. Murata, Y. Liu, M. Inaba and I. Takahara, Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Pt-Re/H-ZSM-5 Catalyst, Energy Fuels,2010, 24(4):2404-2409.
    [6]L. Chen, Y. Zhu, H. Zheng, C. Zhang, B. Zhang and Y. Li, Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts, Journal of Molecular Catalysis A:Chemical,2011,351:217-227.
    [7]R. B. Levy and M. Boudart, Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis, Science,1973,181(4099):547-549.
    [8]N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang and J. G. Chen, Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts, Angewandte Chemie,2008,120(44):8638-8641.
    [9]T. Hyeon, M. M. Fang, K. S. Suslick, Nanostructured molybdenum carbide:Sonochemical synthesis and catalytic properties, Journal of the American Chemical Society,1996,118 (23):5492-5493.
    [10]M. L. Frauwallner, F. L. Linares, J. L. Romero, C. E. Scott, V. Ali, E. Hernandez, P. P. Almao, Toluene hydrogenation at low temperature using a molybdenum carbide catalyst, Applied Catalysis A:General,2011,394 (1-2):62-70.
    [11]Q. S. Gao, C. X. Zhang, S. H. Xie, W. M. Hua, Y. H. Zhang, N. Ren, H. L. Xu, Y. Tang, Synthesis of nanoporous molybdenum carbide nanowires based on organic-inorganic hybrid nanocomposites with sub-nanometer periodic structures, Chemistry of Materials,2009,21 (23):5560-5562.
    [12]S. J. Peppernick, K. D. D. Gunaratne, A. W. Castleman Jr., Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts, Proceedings of the National Academy of Sciences of the United States of America,2010,107 (3):975-980.
    [13]M. K. Neylon, S. Choi, H. Kwon, K. E. Cuny, L. T. Thompson, Catalytic properties of early transition metal nitrides and carbides:n-butane hydrogenolysis, dehydrogenation and isomerization, Applied Catalysis A:General,1999,183 (2): 253-263.
    [14]J. R. Kitchin, J. K. Norskov, M. A. Barteau, J. G Chen, Trends in the chemical properties of early transition metal carbide surfaces:A density functional study, Catalysis Today,2005,105 (1):66-73.
    [15]J. X. Han, J. Z. Duan, P. Chen, H. Lou, X. M. Zheng, H. P. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chemistry, 2011,13(9):2561-2568.
    [16]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature,2006,442 (7100):282-286.
    [17]A. K. Geim, K. S. Novoselov, The rise of graphene, Nature materials,2007,6 (3): 183-191.
    [18]Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends in biotechnology,2011, 29 (5):205-212.
    [19]A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Reviews of modern physics,2009,81 (1):109.
    [20]M. F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene, Nano Today,2011,6(1):42-60.
    [21]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, science,2004,306(5696):666-669.
    [22]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene, Science,2008,320 (5881):1308-1308.
    [23]G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chemistry of Materials,2010, 22 (18):5306-5313.
    [24]Y. Sun, X. Hu, W. Luo, Y. Huang, Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries, ACS nano,2011,5 (9):7100-7107.
    [25]Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature,2005,438 (7065): 201-204.
    [26]D. Ugarte, A. Chatelain, W. A. de Heer, Nanocapillarity and chemistry in carbon nanotubes, Science,1996,274 (5294):1897-1899.
    [27]R. H. Hurt, M. Monthioux, A. Kane, Toxicology of carbon nanomaterials:status, trends, and perspectives on the special issue, Carbon,2006,44 (6):1028-1033.
    [28]P. Singh, G. Lamanna, C. Menard-Moyon, F. M. Toma, E. Magnano, F. Bondino, M. Prato, S. Verma, A. Bianco, Formation of efficient catalytic silver nanoparticles on carbon nanotubes by adenine functionalization, Angewandte Chemie International Edition,2011,50 (42):9893-9897.
    [29]J. C. Kang, S. L. Zhang, Q. H. Zhang, Y. Wang, Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel, Angewandte Chemie International Edition,2009,121 (14): 2603-2616.
    [30]H. W. Kroto, A. W. Allaf, S. P. Balm, C60:Buckminsterfullerene, Chemical Reviews,1991,91 (6):1213-1235.
    [31]H. W. Kroto, The stability of the fullerenes Cn, with n= 24,28,32,36,50,60 and 70, Nature,1987,329 (6139):529-531.
    [32]W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, C6o:a new form of carbon, Nature,1990,347 (6291),354-358.
    [33]R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel, Conducting films of C6o and C70 by alkali-metal doping, Nature,1991,350 (6316): 320-322.
    [34]R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, Z. Hou, Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes, Carbon,2012, 50 (2):586-596.
    [35]H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, P. C. Eklund, n-type behavior of graphene supported on Si/SiO2 substrates, Acs nano, 2008,2 (10):2037-2044.
    [36]N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G. Chen, Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts, Angewandte Chemie International Edition,2008,120 (44): 8638-8641.
    [37]F. Huang, K. T. Yue, P. Tan, S.-L. Zhang, Temperature dependence of the Raman spectra of carbon nanotubes, Journal of applied physics,1998,84 (7): 4022-4024.
    [38]R. J. Nemanich, S. A. Solin, First-and second-order Raman scattering from finite-size crystals of graphite, Physical Review B,1979,20 (2):392.
    [39]A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical review B,2000,61 (20):14095-14107.
    [40]J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chemistry, 2011,13 (9):2561-2568.
    [41]J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, Molybdenum Carbide - Catalyzed Conversion of Renewable Oils into Diesel - like Hydrocarbons [J]. Advanced Synthesis & Catalysis,2011,353 (14-15):2577-2583.
    [42]S. A. W. Hollak, R. W. Gosselink, D. S. van Es, J. H. Bitter, Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid, ACS Catalysis,2013,3 (12):2837-2844.
    [43]B. Mallesham, P. Sudarsanam, G. Raju, B. M. Reddy, Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis:acetalization of bio-glycerol, Green Chemistry,2013,15 (2):478-489.
    [1]M. Choi, R. Ryoo, Ordered nanoporous polymer-carbon composites, Nature materials,2003,2(7):473-476.
    [2]S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna,O. Terasaki, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, Journal of the American Chemical Society,2000,122 (43):10712-10713.
    [3]R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Advanced Materials,2001,13(9):677-681.
    [4]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon,2006, 44(2):216-224.
    [5]N. Jia, Z. Wang, G. Yang, H. Shen, L. Zhu, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine, Electrochemistry communications,2007,9(2):233-238.
    [6]J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, Molybdenum Carbide-Catalyzed Conversion of Renewable Oils into Diesel-like Hydrocarbons, Advanced Synthesis & Catalysis,2011,353 (14-15):2577-2583.
    [7]J. M. Campelo, F. Lafont, J. M. Marinas, Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst, Applied Catalysis A:General,1998,170 (1):139-144.
    [8]O. V. Kikhtyanin, A. E. Rubanov, A. B. Ayupov, G. V. Echevsky, Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst, Fuel,2010, 89 (10):3085-3092.
    [1]K. P. D. Jong, J. W. Geus, Carbon nanofibers:catalytic synthesis and applications, Catalysis Reviews,2000,42(4):481-510.
    [2]O. S. Kwon, T. Kim, J. S. Lee, S. J. Park, H. W. Park, M. Kang, J. E. Lee, J. Jang and H. Yoon, Fabrication of Graphene Sheets Intercalated with Manganese Oxide/Carbon Nanofibers:Toward High-Capacity Energy Storage, Small,2013,9(2): 248-254.
    [3]C. H. Liang, P. L. Ying, C. Li, Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material, Chemistry of Materials, 2002,14:3148-3151.
    [4]B. Z. Jang and A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites:a review, Journal of Materials Science,2008,43(15):5092-5101.
    [5]M. Yoonessi, Y. Shi, D. A. Scheiman, M. Lebron-Colon, D. M. Tigelaar, R. A. Weiss and M. A. Meador, Graphene Polyimide Nanocomposites; Thermal, Mechanical, and High-Temperature Shape Memory Effect, ACS Nano,2012,6(9): 7644-7655.
    [6]J. X. Han, J. Z. Duan, P. Chen, H. Lou, X. M. Zheng, H. P. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chemistry, 2011,13(9):2561-2568.
    [20]S. H. Zhang, T. Li, B. C. Zhu, Study of supercritical three-phase methanol synthesis with n-hexane at supercritical state, Chemical Engineering Science,2006, 61 (4):1167-1173.
    [21]Z. Li, S. L. Zhang, Y. Fu, Q. X. Guo and L. Liu, Mechanism of Ni-Catalyzed Selective C-O Bond Activation in Cross-Coupling of Aryl Esters, Journal of the American Chemical Society,2009,131(25):8815-8823.
    [1]K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science,2009, 323(5915):760-764.
    [2]Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups, Journal of the American Chemical Society, 2009,131(37):13200-13201.
    [3]S. Peng, K. Cho, Ab initio study of doped carbon nanotube sensors, Nano Letters, 2003,3(4):513-517.
    [4]Z. Chen, D. Higgins, H. Tao, R. S. Hsu, Z. Chen, Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications, The Journal of Physical Chemistry C,2009,113(49):21008-21013.
    [5]Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids, Chemistry of Materials, 2010,22(18):5119-5121.
    [6]L. Qu, Y. Liu, J. B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS nano,2010,4(3):1321-1326.
    [7]Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, Acs Nano,2010,4(4):1790-1798.
    [8]Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry,2010,20(35):7491-7496.
    [9]X. Wang, J. S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction, Chemistry of Materials,2010,22(7):2178-2180.
    [10]R. Liu, D. Wu, X. Feng, K. Mullen, Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction, Angewandte Chemie,2010,122(14):2619-2623.
    [11]C. Bouchy, C. Pham-Huu, B. Heinrich, C. Chaumont, M. J. Ledoux, Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes:A molybdenum oxycarbide, Journal of catalysis,2000,190 (1):92-103.
    [12]M. Boudart and L. D. Ptak, Reactions of neopentane on transition metals, Journal of Catalysis,1970,16 (1):90-96.
    [13]A. Soualah, J. L. Lemberton, L. Pinard, M. Chater, P. Magnoux, K. Moljord, Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts:Effect of the zeolite structure on the product selectivity and on the reaction mechanism[J]. Applied Catalysis A:General,2008,336 (1):23-28.
    [14]A. D. Lucas, J. L. Valverde, P. Sanchez, F. Dorado, M. J. Ramos, Influence of the binder on the n-octane hydroisomerization over palladium-containing zeolite catalysts, Industrial & engineering chemistry research,2004,43 (26):8217-8225.
    [15]A. Galadima, R. P. K. Wells, J. A. Anderson, n-Alkane hydroconversion over carbided molybdena supported on sulfated zirconia, Applied Petrochemical Research, 2012,1 (1-4):35-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700