用户名: 密码: 验证码:
自支撑金刚石衬底上GaN、AIN薄膜ECR-PEMOCVD法生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自支撑金刚石膜基片既具有天然金刚石最高的弹性刚度系数又具有最高声速的优异性能,使之成为声表面波滤波器(SAW)最佳的衬底选择材料,避免了其它基片散热差的问题。压电薄膜/自支撑金刚石膜结构的SAW器件既利用了压电薄膜良好的压电特性和金刚石最高声速的优异性能,又充分利用了二者高导热性和优良耐热性的优点。所以这种结构是制作高频、大功率SAW滤波器的理想选择。
     本研究使用电子回旋共振等离子体增强有机物化学气相沉积(ECR-PEMOCVD)系统在自支撑金刚石厚膜上沉积制备了GaN和A1N压电薄膜,主要通过怎样在白支撑金刚石基片上得到性能优异的压电薄膜这一主题”开展了系统的研究工作。结论如下:
     1、ECR-PEMOCVD系统在自支撑金刚石厚膜基片上沉积制备GaN压电薄膜
     (1)基片温度对薄膜质量有很大的影响,基片温度为400℃时薄膜具有较好的结晶质量,呈高C轴择优取向。此时薄膜表面形貌光滑平整且具有较好的光学和电学特性。
     (2)改变TMGa源流量对薄膜进行了制备及其性能分析,TMGa流量是0.5sccm时薄膜具有较好的质量,而且此时的薄膜具有较高的择优取向和平整光滑的表面形貌。
     (3)改变N2流量,对薄膜进行了沉积制备,N2流量为100sccm时,薄膜具有较好的择优取向以及光滑的表面形貌,此时薄膜的电学性能比较优越。
     (4)缓冲层的改变对薄膜的制备影响较为明显,改变缓冲层的温度对薄膜进行了制备与分析,在温度适中的情形下,薄膜具有择优的生长取向和平整光滑的表面形貌。
     2、ECR-PEMOCVD系统在自支撑金刚石厚膜基片上沉积制备A1N压电薄膜
     (1)改变基片温度对样品薄膜质量影响较为明显。基片温度为600℃时,薄膜具有较高的择优取向和较平整光滑的表面形貌,该条件下的样品满足器件的制备要求。
     (2)N2流量对薄膜的影响较大,N2流量的大小直接影响到反应活性N粒子的多少,N2流量适中的情形下薄膜具有较高的择优取向以及平整的表面形貌。并对其薄膜样品的成分进行了分析,薄膜中N的含量很高,这与N空位有很大的关系。对薄膜进行了电学性能测试,结果表明薄膜样品为高阻抗性。
     实验检测发现改变基片温度、反应源流量以及缓冲层条件对样品的影响很明显。这说明自支撑金刚石厚膜上沉积压电薄膜的工艺要求很严格。实验中已经制备出满足SAW器件的高质量压电薄膜,这对提高SAW器件的频率有很大的作用。
The freestanding thick diamond films combine the highest elastic stiffness coefficient and the excellent performance of maximum speed of sound; it is a reasonable substrate material with the SAW filter, which can avoid the problem of the poor heat than that of other substrates. The structure of piezoelectric film/freestanding thick diamond films can only use the piezoelectric film with excellent piezoelectric properties and freestanding thick diamond films with excellent properties of maximum speed of sound, but also make full use of both high thermal conductivity and excellent heat resistance advantage. Therefore, this structure can be the ideal material for preparing the high-frequency and high-power SAW filter. In this study, the piezoelectric films of high quality with good performance and application requirements were prepared on freestanding diamond thick films by the method of this process, which lays a good foundation for further device fabrication and application.
     In this study, the GaN and A1N films were prepared on the freestanding diamond thick films using by ECR-PEMOCVD system, which mainly through the theme "how to achieve the high quality piezoelectric films with good performance" to carry out the research work.
     The conclusion as following:
     1, The GaN piezoelectric film was prepared on freestanding diamond thick films by ECR-PEMOCVD.
     (1), The deposited temperature plays a important role for the quality of as-grown films, when the deposited temperature is400℃, the as-grown is of the good crystalline quality with the high C-axis oriented growth. The surface morphology of the sample is very smooth, which meets the requirements of the SAW device. Optical and electrical properties of the samples were tested, the results show that the as-grown films have excellent optical and electrical properties.
     (2), The GaN films were prepared with various TMGa flux and the properties of the as-grown films were investigated. When the TMGa flux is0.5sccm, the as-grown film is of the high quality with the high oriented growth and smooth surface morphology.
     (3), The GaN films were prepared with various N2flux and the properties of the as-grown films were investigated. When the N2flux is100sccm, the as-grown film is of the high quality with the high oriented growth and smooth surface morphology. The electrical properties of as-grown films were very excellent.
     (4), The buffer layer plays an important role for the quality of as-grown films, the GaN films were prepared with various buffer layer process and the properties of the as-grown films were investigated. The results show that when the deposition temperature of the buffer layer is proper, the as-grown film is of the high quality with the high oriented growth and smooth surface morphology.
     2, The A1N piezoelectric film was prepared on freestanding diamond thick films by ECR-PEMOCVD.
     (1), The deposited temperature plays a important role for the quality of as-grown A1N films, when the deposition temperature is too high or too low, it is not conductive to deposit the as-grown films. When the deposited temperature is400℃, the as-grown is of the good crystalline quality with the high C-axis oriented growth. The surface morphology of the sample is very smooth, which meets the requirements of the SAW device.
     (2), The N2flux plays a important role for the quality of as-grown A1N films, and the N2flux directly affect the quantity of the reactivity N-particle. When the N2flux is proper, the as-grown films is of the high-quality and high-preferred orientation as well as the smooth surface morphology. And we investigate the composition of the samples, the results show that the N content is high, which is due to the the N vacancies and the Al/N atomic percentage has a large effect on the quality of the as-grown films. We investigate the electrical properties of as-grown films, and the results show that the as-grown films have the high impedance.
     The experimental results show that deposition temperature, reaction source flux as well as buffer layer process are very important for depositing the as-grown films and the process of the as-grown piezoelectric films deposit on freestanding thick diamond films is very strict, which is affect on the quality of as-grown films with a slight change. The high-quality as-grown films have been prepared on the freestanding thick diamond substrate, and the piezoelectric film of high quality has a significant role to improve the frequency of the SAW devices.
引文
[1]Fewster P F, Andrew N L, Foxon C T. Microstructure and composition analysis of group III nitrides by X-ray scattering [J]. J.Cryst.Growth.,2001,230 (3-4):398-404.
    [2]王文彦.玻璃衬底上低温沉积GaN薄膜及其性能分析[D].大连:大连理工大学出版社,硕士论文,2008.
    [3]孙剑.金刚石基片上压电薄膜的制备及其生长特性研究[D].大连:大连理工大学出版社,博士论文,2008.
    [4]C.-Y, HWANG, M.J.SCHVRMAN and W.E.MAYD. Effect of structure defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN [J] Journal of Electric Materials.1997 vol.26, No.3.
    [5]Deborah A, Neumayer and John G.Ekerdt. Grown of Group III Nitrides [J].Chem.Mater.,1996,8:9-25
    [6]G.W.G. van Dreumel, T. Bohnen, J.G. Buijnsters, W.J.P. van Enckevort, J.J. ter Meulen, P.R. Hageman, E. Vlieg. Comparison of GaN and A1N nucleation layers for the oriented growth of GaN on diamond substrates [J]. Diamond and Related Materials.2010,19: 437-440.
    [7]Jun-Phil Jung, Jin-Bock Lee, Jung-Sun Kim, Jin-Seok Park. Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration:role of A1N buffer[J]. Thin Solid Films 447-448 (2004) 605-609.
    [8]Guopeng Hu, Jianzeng Xu, Gregory W. Auner, Joseph Smolinski, Hao Ying. Digital phase detection approach and its application for A1N dual-mode differential surface acoustic wave sensing [J]. Sensors and Actuators B 132 (2008) 272-279.
    [9]Barbara Paci, Amanda Generosi, Valerio Rossi Albertini, Massimiliano Benetti,Domenico Cannat, Fabio Di Pietrantonio, Enrico Verona. A study of highly c-axis oriented A1N films for diamond-based surface acoustic wave devices:Bulk structure and surface morphology [J]. Sensors and Actuators A 137 (2007) 279-286.
    [10]Si-Hong Hoang, Gwiy-Sang Chung. Surface acoustic wave characteristics of A1N thin films grown on a polycrystalline 3C-SiC buffer layer [J]. Microelectronic Engineering 86 (2009)2149-2152.
    [11]徐娜.适用于多层膜高频SAW器件的A1N薄膜制备与表征[D].天津:天津理工大学出版社,硕士论文,2006.
    [12]张明伟.基于高频声表面波滤波器的A1N/金刚石多层膜制备研究[D].天津:天津理工大学出版社,硕士论文,2008.
    [13]Hollman P, Alahelisten A, Olsson M et al. Residual stress, Young's modulus and fracture stress of hot flame deposited diamond[J]. Thin Solid Films.1995,270(1-2):137-142.
    [14]金曾孙.金刚石薄膜的研究进展与展望.薄膜科学与技术[J].1995,8(3):172-175.
    [15]Pickrell D J K, Kline K A, Taylor R E. Thermal ezpansion of polycrystalline diamond produced by chemical vapor deposition[J]. Appl. Phys. Lett.1994,64(8):2353-2355.
    [16]Zhu X W, Aslam D M, Tang Y X et al. The fabrication of all-diamond Packaging Panels with build-in interconnects for wireless integrated Microsy stems [J]. Microelectromechan.Syst.2004,13(3):1-10.
    [17]Gray K J. Effective thermal conductivity of a diamond coated heat spreader[J]. Diam. Rel. Mater.2000,9(2):201-204.
    [18]Sussmann R S, Brandon J R, Scarsbrook G A et al. Properties of bulk Polycrystalline CVD diamond[J]. Diam. Rel. Mater.1994,3(4-6):303-312.
    [19]Sussmann R S, Brandon J R, Coe S E et al. CVD diamond:a new engineering material for thermal, dieleetric and optical applications [J]. Industr Diamond Rev.1998, 58(578):69-77.
    [20]Kagan H. Recent advances in diamond detector development J]. Nuel. Instr. Meth, 2005,541(1-2):221-227.
    [21]李化鹏.高性能声表面波器件AIN/Diamond基片制备及分析[D].天津:天津理工大学出版社,硕士论文,2006.
    [22]吴连法编.声表面波器件及其应用[J].北京:人民邮电出版社:1983.
    [23]赵柏军.声表面波用ZnO薄膜的制备及器件的初步研究[D].吉林:吉林大学出版社,博士论文,2004.
    [24]Lee. T. C, Lee. J. T, Robert. M. A. Surface acoustic wave applications of lithium niobate thin films[J]. Applied Physics Letters.2003,82(2):191-193.
    [25]Seo. S. H., Shin W. C, Park. J. S. A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave(SAW)device applications [J]. Thin Solid Films. 2002,14(1):190-196(7).
    [26]Kitabayashi, Smith. H., P. M. Analysis of SAW propagation in gratings on ZnO/diamond substrates, Ultrasonics, Ferroelectrics and Frequency Control [J]. IEEE Transactions.2001,48(1):249-261.
    [27]Chung. H. K, Sung. J. C. The rapid growth of thin transparent films of diamond[J].Materials Chemistry and Physics.2001,72(2):130-132.
    [28]Ishihara. M, Manabe. T, Kumagai. T, et al., Synthesis and surface acoustic wave property of aluminum nitride thin films fabricated on silicon and diamond substrates using the sputtering method[J]. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 2001,40 (8):5065-506.
    [29]Assouar M B, Benedic F, Elmazria. O, et al., MPACVD diamond films for surface acoustic wavefilters[J]. Diamond and Related Materials.2001,10(3):681-685.
    [30]Lehmann. G, Schreck. M, Hou. L, et al., Dispersion of surface acoustic waves in polycrystalline diamond plates[J]. Diamond and Related Materials.2001,10(3-7):686-692.
    [31]Kitabayashi. H, Smith. P. M. Analysis of SAW propagation in gratings on ZnO/diamond substrates[J]. IEEE Ultrason Ferr,2001,48(1):249-261.
    [32]Assouar. M. B, Elmazria. O, Rioboo. R. J, et al., Modelling of SAW filter based on ZnO/diamond/Si layered structure including velocity dispersion[J]. Applied Surface Science, 2000,164(4):200-204.
    [33]Kim. J. Y, Chung. H. J, Kim. H. J, et al., Surface acoustic wave propagation properties of nitrogenated diamond-like carbon films[J]. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films,2000,18(4):1993-1997.
    [34]Chung. H K, Sung. J C. The rapid growth of thin transparent films of diamond[Jj. Materials Chemistry and Physics.2001,72(2):130-132.
    [35]Lehmann G, Schreck. M, Hou L, et al., Dispersion of surface acoustic waves in polycrystalline diamond plates [J].Diamond and Related Materials,2001,10(3):686-692.
    [36]贾玲春.多层膜声表面波器件LiNbO3?h-BN薄膜的制备及分析[D].天津:天津理工大学出版社,硕士论文,2006.
    [37]Nakahata. H, Kitabayashi. H, Fujii. S, et al., Fabrication of 2.5GHz SAW retiming filter with SiO2/ZnO/IDT/dianmond/Si structure[J]. IEEE.Ultrason.Symp.Proc,1996,285.
    [38]Nakahata. H, Hachigo. A, Itakuta. K, et al., Fabrication of High Frequency SAW Filters from 5 to 10 GHz using SiO2/ZnO/Diamond Structure [J]. IEEE. Ultrason. Symp. Proc, 2000,349-355.
    [39]Hachigo. A, Nakahata. H, Itakuta. K., et al., lOGHz Narrow Band SAW Filters using Diamond[J]. IEEE. Ultrason. Symp. Proc,1999,325-329.
    [40]Hi Ki Lam, Ji Yan Dai, Helen Lai-Wai. C-oriented LiNbO3 Films on Polycrystalline Diamond Substrate for High Frequency Surface Acoustic Wave Devices[J].Jpn.J.Appl.Phys.,Part 2004,243:L706.
    [41]Mortet. V, Nesladek. M, Haen. J. D, et al., Study of AIN/Diamond surface acoustic waves devices for high frequency applications.Diamond and Related Materials.2003,12:723.
    [42]Benedic. F, Assouar. M. B, Mohasseb,. F, et al., Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride [J].Diamond and Related Materials,2004,13:347-353.
    [43]陈菁菁.高频金刚石多层薄膜结构声表面波滤波器的设计和研制[D].北京:清华大学,2004.
    [44]Assouar M. B. Benedic F. Elmazria O et al. MPACVD Diamond Films for Surface Acoustic Wave Filters[J]. Diam. Rel. Mater.2001,10:681-685.
    [45]Bi B, Huang W S, Asmussen J et al. Surface Acoustic Waves on Nanocrystalline Diamond[J]. Diam. Rel. Mater.2002,11:677-680.
    [46]Chen J J, Zeng F, Li D M et al. Deposition of High-quality Zinc Oxide Thin Films on Diamond Substrates for High-frequency Surface Acoustic Wave Filter Applications [J]. Thin Solid Films.2005,485:257-261.
    [47]Seo S H, Shin W C, Park J S. a Novel Method of Fabricating ZnO/diamond/Si Multilayers for Surface Acoustic Wave (SAW) Device Applications [J]. Thin Solid Films. 2002,416:190-196.
    [48]Shih W C, Wang M J, Lin I N. Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates [J]. Diam. Rel. Mater.2008, In Press, Corrected Proof.
    [49]El Hakiki M, Elmazria O, Assouar M B et al. ZnO/AlN/diamond Layered Structure for SAW Devices Combining High Velocity and High Electromechanical Coupling Coefficient[J]. Diam. Rel. Mater.2005,14:1175-1178.
    [50]2007年版中国声表面波(SAW)器件市场竞争研究报告[R].慧典市场研究报告网(http://www.hdcmr.com).
    [51]张洪宾.微波ECR等离子体技术及制备GaN薄膜研[D].华南师范大学,硕士论文,2009.
    [52]Seong-Eun Park, Dae-Jin Kim, Shi-gwan Woo et al [J]. Cryst Growth 2002 242 383-388.
    [53]秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长[D].大连:大连理工大学,2004.
    [54]Jin Z S, Jiang Z G, Bai Y Z et al. Synthesis of Thick Diamond Film by Direct Current Hot-Cathode Plasma Chemical Vapor Deposition[J].Chin. Phys. Lett.2002, 19:1374-1376.
    [55]Bai Yi Z, Jiang Zhi Gang, Wang Chun Lei et al. Effects of Alcohol Addition on the Deposition of Diamond Thick Films by dc Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett.1998,15:228-229.
    [56]Bai Y Z, Jin Z S, Lv X Y et al. Influence of Cathode Temperature on Gas Discharge and Growth of Diamond Films in DC-PCVD Processing[J]. Diam. Rel. Mater.2005, 14:1494.1497.
    [57]金曾孙,姜志刚,白亦真等.直流热阴极PCVD法制备金刚石厚膜[J].新型炭材料.2002,17(2):9-12.
    [58]Bai Y Z, Jin Z S, Lv X Y et al. High Rate Growth of Thick Diamond Films by High-current Hot-cathode PCVD[J]. Cryst. Growth.2005,280:539-544.
    [59]白亦真,金曾孙,姜志刚等.热阴极辉光放电对金刚石膜沉积的影响[J].材料研究学报,2003,17(5):537-540.
    [60]Nakahata H, Higaki K, Hachigo A et al. High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure[J]. Jpn. J. Appl. Phys.1994,33:324-328.
    [61]Nakahata H, Hachigo A, Fujii S et al. Equivalent Circuit Parameters of Surface-Acoustic-Wave Interdigital Transducers for ZnO/Diamond/Si and SiO2/ZnO/Diamond Structures[J].Jpn. J. Appl. Phys.2002,41:3489-3493.
    [62]Nakahata H, Fujii S, Higaki K et al. Diamond-based surface acoustic wave devices[J]. Semiconductor Science and Technology.2003,18:1238-1242.
    [63]Le Brizoual L, Lamara, Sarry F et al. Characterization of ZnO/diamond SAW devices elaborated on the smooth nucleation side of MPACVD diamond[J]. phs. stat. sol. (a). 2002,202(11):2217-2223.
    [64]H.Tampo, H.Asahi, Y.Imanishi, M.Hiroki,K. Ohnishi,K. Yamada,K. Asami.S.Gonda, Growth of high-quality polycrystallineGaN on glass substrate by gas source molecular beam epitaxy[J].Journal of Crystal Growth 227-228 (2001) 442-446.
    [65]Seong-Eun Park, Won Seok Han, Hyung Gyoo Lee, Byungsung O, Effect of native defects on electrical and optical properties of undoped polycrystalline GaN[J].Journal of Crystal Growth 253 (2003) 107-111.
    [66]Seong-Eun Park, Sung-Mook Lim, Byungsung O, Characterization of polycrystalline GaN grown on silica glass substrates[J].Journal of Crystal Growth 250 (2003) 349-353.
    [67]M. Hiroki, H. Asahi, H. Tampo, K. Asami, S. Gonda, Improved properties of polycrystalline GaN grownon silica glass substrate[J]. Journal of Crystal Growth 209 (2000) 387.
    [68]Yuichi Sato, Atsushi Kurosaki, Susumu Sato, Low-temperature growth of GaN and InxGa1-xN films on glass substrates [J]. Journal of Crystal Growth 189/190 (1998) 42.
    [69]H. Asahi, K. Iwata, H. Tampo, R. Kuroiwa, M. Hiroki, K. Asami, S. Nakamura, S. Gonda, Very strong photoluminescence emission from GaN grown on amorphous silica substrate by gas source MBE[J]. Journal of Crystal Growth 201/202 (1999) 371.
    [70]Xu Yin, Gu Biao, Qin Fuwen, Li Xiaona and Wang San sheng, Investigation of GaN Growth D irectly on Si (001) by ECR Plasma Enhanced MOCVD[J].CHINESE JOU RNAL OF SEMICONDU CTORS,23(2002) 12.
    [71]严莉,陈晓阳,何世堂等,GaN的声表面波特性研究[J].发光学报,24(2002)2.
    [72]C.-Y,HWANG, M.J.SCHURMAN and W.E.MAYD JOURNAL OF Electronic[J]. Materials 1997,26,3.
    [73]Akasaki,I. Amano,H. Koide,M. Manabe,K[J]. Physica B 1993,185,428.
    [74]Akasaki,I. Amano,H. Koide,M. Manabe,K[J]. J. Cryst.Growth 1993,128,379.
    [75]V iswanath A K, Sh in E J, L ee J I, et al. M agnesium accep to relevels in GaN studied by photo luminscence[J]. J App 1 Phys,1998,83:2272.
    [76]Reshch ikovM A, Yi G C,W essels BW. Behavior of 2.8 and 3.2eV photolum inescence bands in M g2doped GaN at different temperatures and excitation densities [J]. Phys Rev B,1999,59(20):13176.
    [77]Yao Dongm in, Xin Yong, Wang Li, et al. Rutherfor dback scattering and channeling, double crystal X2ray diffraction and pho to lum inescence of GaN[J]. Chinese Journal of Semiconductors,2000,21 (5):437.
    [78]Kaufmann U, KunzerM,M aierM, et al. N ature of the 2.8eV photolum inescence band in Mg doped GaN[J]. App 1 Phys Lett,1998,72:1326.
    [79]Kaufmann U, Sch lo tter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN:M g layers[J]. Phys Rev B,2000,62 (16):10867.
    [80]邵嘉平,郭文平,胡卉,郝智彪,孙长征,罗毅,GaN基绿光LED材料蓝带发光对器件特性的影响[J].半导体学报,25(2004)11.
    [81]Ogino T. Mechanism of yellow luminescence in GaN [J]. Jpn. J. Appl. Phys., 1980,19:2395.
    [82]Polyakov A Y. On the origin of electrically active defects in AlGaN alloy grown by organometallic vapor phase epitaxy[J]. J. Appl. Phys.,1996,80:6349.
    [83]Niebuhr R. Basic studies of gallium nitride growth on sapphire by metalorganic chemical vapor deposition and optical properties of deposited layers[J]. J. Electron. Mater., 1995,24:1531.
    [84]Zhang R. Photoluminescence of carbon in situ doped GaN grown by halide vapor phase rpitaxy[J]. Appl. Phys. Lett.,1998,72:1 611.
    [85]Huang H Y. Photoluminescence and photoluminescence excitation studies of as grown and P implanted GaN:On the nature of yellow luminescence [J]. Appl. Phys. Lett., 2002,80:3349.
    [86]Shalish I. Yellow luminescence and related deep levels in unintentionally doped GaN films [J]. Phys. Rev. B,1999,59:9748.
    [87]Li G. Nature and elimination of yellow band luminescence and donor acceptor emission of undoped GaN[J]. Appl. Phys. Lett.,1999,74:2821.
    [88]Reynolds D C, Look D C, Jogai B et al.. Source of the yellow luminescence band in GaN grown by gas source molecular beam epitaxy [J]. Solid S tate Commun.,1998,106 (10):701-704.
    [89]Neugebauer J, van de Walle C G. Gallium vacancies and the yellow luminescence in GaN[J]. A ppl. Phys. Lett.,1996,69 (4):503-505.
    [90]Glaser E R, Kennedy T A, Doverspike K et al.. Optically detected magnetic resonance of GaN films grown by organometallic chemical vapor deposition[J]. Phys. Rew. (B),1995,51 (19):13326-13336.
    [91]Xu H Z, Bell A, Wang Z G et al.. Competition between band gap and yellow luminescence in undoped GaN grown by MOVPE on sapphire substrate[J]. J. Crystal Growth,2001,222:96-103.
    [92]Li Shuti, Wang Li, Xin Yong et al.. Blue luminescence in unintentionally doped GaN grown by MOCVD[J]. Chin. J. L uminescence,2000,21 (1):29-32.
    [93]Li Xin, Peng Linfeng, Huang Qiwen et al. Studies of blue emission of n type GaN[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2002,41 (1):105-106.
    [94]Schubert E F, Goepfert I D, Redwing JM. Evidence of compensating centers as origin of yellow luminescence in GaN[J]. A ppl. Phys. Lett.,1997,71 (22):3224-3226.
    [95]Schon O, Schineller B, Heuken M et al.. Comparison of hydrogen and nitrogen as carrier gas for MOVPE growth of GaN[J]. J. Crystal Growth,1998,189/190:335-339.
    [96]Chichibu S F, Torii K, Deguchi T et al.. Photoreflectance spectra of excitonic ploaritons in GaN substrate prepared by lateral epitaxial overgrowth[J]. A ppl. Phys. Lett., 2000,76 (12):1576-1578.
    [97]Ji H, Kuball M, Burke R A, et al. Vibrational and optical properties of GaN nanowires synthesized by Ni-assisted catalytic growth[J]. Nanotechnology, 2007,18(44):445704.
    [98]Korotkov R Y, Reshchikov M A, Wessels B W. Acceptors in undoped GaN studied by transient photoluminescence[J]. Phys. B,2003,325:1.
    [99]王文彦,秦福文,吴爱民,宋世巍,刘瑞贤,姜辛,徐茵,顾彪,氮气流量对玻璃衬底上低温沉积GaN薄膜结晶性的影响[J].半导体学报,29(2008)12.
    [100]B. M. Ataev, Ya. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. Sh.Makhmudov, n-ZnO/p-GaN/a-Al2O3 heteroj unction as a promising blue light emitting system[J]. Journal of Optoelectronics and Advanced Materials Vol.5, No.4, December 2003, p.899-902.
    [101]Seung-Ho Hwang, Tae-Hoon Chung, Byung-Teak Lee, Study on the interfacial layer in ZnO/GaN heterostructure light-emitting diode [J]. Materials Science and Engineering B,157(2009)32-35.
    [102]S. J. Jiao, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, Ultraviolet electroluminescence of ZnO based heteroj unction light emitting diode[J]. phys. stat. sol. (c) 3, No.4,972-975 (2006).
    [103]Jingchang Sun, QiujuFeng, JimingBian, DongqiYu, MengkeLi, ChengrenLi, HongweiLiang, Ultraviolet electroluminescence from ZnO-based light-emitting diode with p-ZnO:N/n-GaN:Si heteroj unction structure[J]. Journal of Luminescence 131 (2011) 825-828.
    [104]ZhuangD,Edgar JH, Strojek B, et al, Defect-selectiveEthing of Bulk A1N Single Crystals in Molten KOH/NaOH EutecticAlloy[J]. Journalof CrystalGrowth,2004,262:89-94.
    [105]SegalA S, Karpov SYu., MakarovYuN, eta.l On Mechanisms of Sublimation Growth of A1N Bulk Crystals [J].J.Cryst.Growth,2000,211:68-72.
    [106]ShiY, Xie Z Y, Liu L H, et a.l Influence of Buffer Layer and 6H-SiC Substrate Polarity on the Nucleation ofAIN Grown by the Sublimation Sandwich Technique [J] Journal of CrystalGrowth,2001,233:177.
    [107]ShiY, Liu B, Liu L, et a.l InitialNucleation Study andNew Technique forSublimationGrowth ofAIN on SiC Substrate[J].Phys. Stat. Sol. (a),2001,188:757.
    [108]FurushoTomoak,i Ohshima Satoru, Nishino Shigehiro. Effect of Tantalum in Sublimation Growth of Aluminum Nitride [J].Materials Science Forum Vols.,2003,433-436: 975-978.
    [109]Rojo, Slack et a.l Report on the Growth of Bulk Aluminum Nitride and Subsequent Substrate Preparation [J] Journal of Crystal Growth,2001,231:317.
    [110]BalkasCM, SitarZ, Zheleva T, et a.l Sublimation Growth and Characterization of Bulk Aluminum Nitride Single Crystal[J] J.Cryst.Growth,1997,179:363.
    [111]Andreev A D,O'Reilly E P.Theoretical study of the electronic structure of self-organized GaN/AIN QDs[J].Nanotechnology,2000,11:256.
    [112]Lu Yanwu,Cai Lin,Liang Shuang.Strained and piezoelectric characteristics of nitride quantum dots[J].Chin Phys Lett,2006,23(4):956.
    [113]张凯,顾豪爽,李位勇,胡光,胡明哲,A1N薄膜体声波谐振器的制备与性能分析[J].压电与声光,29(2007)1.
    [114]HORWITZ S, MILTON C. Application of film bulk acoustic resonators[C]. Albuquerque, NM, USA:Mi crowave Symposium Digest,1992, IEEE MTT-S International, 1992:165-168.
    [115]许小红,武海顺.压电薄膜的制备、结构与应用[M].北京:科学出版社,2002:111-122.
    [116]KIM H H, JU B K, LEE Y H, et al. A noble suspended type thin film resonator (STFR) using the SOI technology[J]. Sensors and Actuators A,2001,89 (3):255-258.
    [117]Richard C, Ruby, Paul Bradley(SM), Allen Chien. Thin film bulk wave acoustic resonators(FBAR) for wireless applications[J].IEEE Ultrasonics sysmposium,2001: 813-821.
    [118]DuboisM A, MuraltP. Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications[J].ApplPhys Lett,1999,74:3032-3038.
    [119]M.B. Assouar, R.J. Jimenez Rioboo, O. Elmazria, M. Vila, Study of effect of deposition temperature of A1N films on SAW velocity using Brillouin spectroscopy[J].Diamond & Related Materials 16 (2007) 1417-1420.
    [120]M. Clement, L. Vergara, J. Sangrador, E. Iborra, A. Sanz-Hervas, SAW characteristics of A1N films sputtered on silicon substrates [J]. Ultrasonics 42 (2004) 403-407.
    [121]Jun-Phil Jung, Jin-Bock Lee, Jung-Sun Kim, Jin-Seok Park, Fabrication and of high frequency SAW device with IDT/ZnO/AlN/Si configuration:role of A1N buffer[J]. Thin Solid Films 447-448 (2004) 605-609
    [122]Guopeng Hu, Jianzeng Xu, Gregory W. Auner, Joseph Smolinski, Hao Ying, Digital phase detection approach and its application for A1N dual-mode differential surface acoustic wave sensing[J]. Sensors and Actuators B 132 (2008) 272-279.
    [123]Barbara Paci, Amanda Generosi, Valerio Rossi Albertini, Massimiliano Benetti, Domenico Cannat'a, Fabio Di Pietrantonio, Enrico Verona, A study of highly c-axis oriented A1N films for diamond-based surface acoustic wave devices:Bulk structure and surface morphology [J]. Sensors and Actuators A 137 (2007) 279-286.
    [124]V. Yantchev, J. Enlund, J. Biurstrom, I. Katardjiev, Design of high frequency piezoelectric resonators utilizing laterally propagating fast modes in thin aluminum nitride (A1N) films[J].Ultrasonics 45 (2006) 208-212.
    [125]Si-Hong Hoang, Gwiy-Sang Chung, Surface acoustic wave characteristics of A1N thin films grown on a polycrystalline 3C-SiC buffer layer[J]. Microelectronic Engineering 86 (2009)2149-2152.
    [126]A.E. Gorodetsky, R.Kh. Zalavutdinov, A.P. Zakharov, W.L. Hsu b, B.V. Spitsyn a,L.L. Bouilov, V.P. Stoyan, A1N films grown on diamond and silicon carbide[J]. Diamond and Related Materials,8(1999) 1267-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700