用户名: 密码: 验证码:
时域边界积分方程及其快速算法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时域积分方程(TDIE)方法在计算瞬态、宽带电磁问题中表现出特别的优势,现已成为计算电磁学领域的研究热点之一。然而TDIE的数值解法之一——时间步进算法(MOT)在实现中会面临两方面的问题:数值解的后期振荡和较高的计算量与存储量,为了促进TDIE在工程实践中的广泛应用,论文主要围绕MOT的这两方面问题展开研究。
     论文首先研究了求解任意线、面导体目标的MOT算法,建立了时域电场积分方程(TDEFIE)、时域磁场积分方程(TDMFIE)和时域混合场积分方程(TDCFIE)的MOT矩阵线性方程组,比较了三种TDIE在计算一般电磁目标瞬态特性时的稳定性和精度问题,研究了TDCFIE抑制因目标内谐振而引起的MOT后期振荡的能力,并通过数值算例确定了TDCFIE中比例系数的安全取值范围。论文建立了微分形式TDEFIE求解任意细线结构的MOT矩阵方程组,提出了一种精确计算细线阻抗矩阵元素的半数值半解析方法,并对半径渐变的细线结构、分支结构、对数周期结构进行了精确的建模和仿真。论文针对TDMFIE中立体角的通用近似处理方法,引入了一种更加精确的等效立体角,改进了TDMFIE在求解具有尖锐棱边电小尺寸目标的数值精度。
     为了降低MOT算法的高计算量和存储量,论文重点研究了时域积分方程MOT的加速算法。首先论文提出了一种基于电流的物理光学(PO)耦合TDIE的混合算法,通过将目标表面分成PO区与IE区,实现了TDIE精确计算与PO高效计算的有机结合,极大地降低了经典MOT算法的计算量和存储量。其次,基于窄脉冲信号与目标作用的物理机理,通过分析目标表面电流的瞬态分布并引入时域PO电流,论文实现了一种能够显著减少MOT算法计算量的近似方法。论文还深入研究了一种高精度、高效率的TDIE加速算法——时域平面波算法(PWTD)的理论基础、数值实现的关键技术,以及两层、多层PWTD加速MOT的实现方案、程序流程以及数值性能。综合上述研究,最后论文提出了一种PWTD加速的PO-TDIE混合算法,该算法能够进一步提高PO-TDIE算法的计算效率。
     为了进一步提高TDIE的计算效率、降低存储需求,论文探索了大型稀疏矩阵压缩存储技术在MOT中的应用问题,实践证明采用按行/列、按坐标压缩存储阻抗矩阵,能够显著降低对计算机的内存需求;作为TDIE数值计算的一个必需环节,论文还研究了迭代算法结合预条件技术在求解大型稀疏矩阵线性方程组中的效率和精度问题。
Time domain integral equation (TDIE), providing an appealing avenue for analyzing transient and broadband electromagnetics problems, has been of considerable interest in the computational electromagnetic (CEM) community. Unfortunately, marching-on-in-time (MOT)-based TDIE solvers have been suffered from numerically late-time oscillation and high computational complexities and large memory requirements. The purpose of this thesis is to develop a stable and fast TDIE solver for their applications to practical, real-world problems.
     Derivations of MOT matrix equations for time domain EFIE, MFIE and CFIE to obtain the transient responses from arbitrarily shaped wire and surface conducting objects are presented firstly in this thesis. The stability and precision of this three TDIEs are studied, when applied to transient analysis from general EM problems. The validity of TDCFIE to eliminate the late-time oscillation for the frequency components corresponding to the internal resonance of the structure is identified, and the effective parameter of linear combination is confirmed by numerical examples. A half-numerical and half-analytical method is proposed for the accurate computation of resistance matrix elements, when the differential form of TDEFIE is applied to transient analysis of wire structure. And the exact modeling and simulation for the wire structure with stepped-radius, wire junction and log-period structure are presented in this thesis. A more accurate equivalent solid angle value in TDMFIE is introduced to correcte the general assumption of solid angle, which allows the accurate analysis of electrically small sharp-edged objects as TDEFIE does.
     Significant efforts have been expended on the development of fast algorithms of MOT-based TDIE solvers for reducing the high computation complexities and large memory requirements in classical MOT. Firstly, a novel current-based hybrid method of PO coupled TDIE is proposed for analysis of large bodies with significant features that are not electrically large. Dividing the structure into PO region and IE region, the proposed method employs the accuracy of TDIE and the efficiency of PO completely, that dramatically reduces the high computation complexities and memory requirements in classical MOT. Secondly, an approximate technique is implemented to cut down the computational complexity of MOT, according to the distribution of transient current generated during the object is elluminated by a short pulse. As a fast TDIE solver with high accuracy and efficiency, plane wave time domain (PWTD) algorithm is studied deeply in this thesis. The implementations of two-level and multilevel PWTD-enhanced MOT schemes are described and the numerical efficiency is presented. Furthermore, a PWTD-enhanced PO-TDIE hybrid scheme is proposed, which can improve the computational efficiency of aforementioned hybrid method.
     Compressed storage technique for large sparse matrix is applied in fast TDIE solver for the purpose of further decreasing memory requirements. The precision and efficiency of iterative method, along with preconditioner, are explored in solving the large sparse matrix linear equation which is an indispensable part of the TDIE solver.
引文
[1]J.A. Stratton著,方能航译,电磁理论[M],科学出版社, 1992
    
    [2] Harrington R F. Filed computation by moment method [M]. Marlabar: FL:Krieger,1982.
    
    [3] Yee K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media [J]. IEEE Trans. Antennas propagat., 1966, 14: 302-307.
    
    [4] Martin H C, Carey G F. Introduction to finite element analysis:Theory and application [M]. New York: McGraw Hill, 1973.
    [5] Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape [J].IEEE Trans. Antennas Propagat., 1991, 39 (1): 56-61.
    
    [6] Walker S P. Developments in time domain integral-equation modeling at imperial colllege [J]. IEEE Ant. Prop. Mag., 1997, 39: 7-19.
    
    [7] Rao S M. Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling. [D], Univ. Mississippi 1980(8).
    
    [8] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape [J]. IEEE Trans. Antennas and Propagation, 1982,30(3):409-418.
    
    [9] Rao S M. Time domain electromagnetics[M]. Academic press. 1999
    
    [10] Ergin A. Arif, Shanker B., Michielssen E. The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena[J]. IEEE Antennas and Propagation Magazine, Vol.41 (4): 39-52, 1999.
    
    [11] Walker S P. Developments in time domain integral equation modeling at imperial college[J]. IEEE Trans. Antennas and Propagation Magazine, 1997, 39(1):7-19.
    
    [12] Walker S P. Scattering analysis via time domain integral equations: methods to reduce the scaling of cost with frequency[J]. IEEE Trans. Antennas and Propagation Magazine, 1997, 39(5): 13-20.
    
    [13] Dodson S J, Walker S P, Bluck M J. Costs and cost scaling in time domain integral equation analysis of electromagnetic scattering[J]. IEEE Trans. Antennas and Propagation Magazine, 1998, 40(4): 12-21.
    
    [14] Bluck M J, Walker S P, Popock M D. The extension of time-domain integral equation analysis to scattering from imperfectly conducting bodies [J]. IEEE Trans. Antennas Propagat., 2001, 49: 875-879.
    
    [15] Walker S P, Leung C Y. Parallel computation of integral equation methods for three dimensional transient wave propagation [J]. Commun. Numer. Methods Eng., 1995,11:515-524.
    
    [16] Walker S P, Leung C Y. Parallel computation of time domain integral equation analyses of electromagnetic scattering and rcs [J]. IEEE Trans. Antennas propagat.,1997,45:614-619.
    
    [17] Aygun K, Shanker B, Ergin A A, et al. A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems [J]. IEEE Trans. Electromagn. Compat, 2002,44(1): 152-164.
    
    [18] Shanker B, Ergin A A, Lu M Y, et al. Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm [J].IEEE Trans. Antennas Propagat, 2003, 51 (3): 628-641.
    
    [19] Michielssen E, chew W C, Jin J M, et al. Fast time domain integral equation solvers for large-scale electromagnetic analysis [M], 2005.
    
    [20] Chen N W, Shanker B, Michielssen E. Integral-equation-based analysis of transient scattering from periodic perfectly conducting structures [J]. IEE proceedings-Microwaves, Antennas and Propagation, 2003,150 (2): 120-124.
    
    [21] Ergin A A, Shanker B, Michielssen E. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators [J]. J. Comp. Phys., 1998, 146:157-180.
    
    [22] Weile D S, Shanker B, Michielssen E. An accurate scheme for the numerical solution of the time domain electric field integral equation [A]. In: IEEE AP-S Symp. [C]. Boston, MA: 2001. 516-519.
    [23] Shanker B, Ergin A A, Aygun K, et al. Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm [J]. IEEE Trans.Antennas Propagat., 2000, 48: 510-523.
    
    [24] Chen N W, Lu M Y, Jiang P L, et al. A time-marching scheme for analyzing transient scattering from nonplanar doubly periodic structures [A]. In: IEEE AP-S Symp. [C].Monterey, CA: 2004. 4535-4538.
    
    [25] Ergin A A, Shanker B, Michielssen E. Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm [J]. Journal of the Acoustical Society of America, 2000, 107: 1168-1178.
    
    [26] Shanker B, Ergin A A, Michielssen E. Plane wave time domain acceleration of exact radiation boundary conditions in FDTD analysis of electromagnetic phenomena [M].Toronto, Canada, 1999.
    
    [27] Yegin K, Shanker B, Michielssen E. Construction of fast 3d FDTD boundary kernels using 1d spectral schemes [M]. Boston, 2001.
    [28] Shanker B, Ergin A A, Michielssen E. The multilevel plane wave time domain algorithm for the fast analysis of transient scattering phenomena [A]. In: IEEE International Symposium on Antennas and Propagation Digest [C]. Orlando, FL: 1999.1342-1345.
    [29] Shanker B, Ergin A A, Michielssen E. A plane wave time domain mot scheme for analyzing scattering from dielectric structures [M]. Toronto, Canada, 1999.
    [30] Liu N, Lu M, Shanker B, et al. The parallel plane wave time domain algorithm-accelerated marching on in time solvers for large-scale electromagnetic scattering problems [M], 2004.
    
    [31] 文舸一,电磁理论的新进展[M],国防工业出版社,北京, 1999
    
    [32] Lu M, Wang J, Ergin A A, et al. Diagonal translation operators for two-dimensional transient wave fields[J].Journal of Computational Physics,1999,158:161-185.
    [33]Lu M,Ergin A A,Michielssen E.Fast evaluation of transient fields in the presence of two half spaces using a plane wave time domain algorithm[A].In:USNC/URSI National Radio Science Meeting Digest[C].Salt Lake City,UT:2000.166.
    [34]Lu M,Shanker B,Ergin A A,et al.Novel 2d transient erie,mile,and cfie solvers based on the multilevel plane wave time domain algorithm[A].In:IEEE International Symposium on Antennas and Propagation Digest[C].Salt Lake City,UT:2000.737-740.
    [35]Michielssen E,Boag A.A multilevel matrix decomposition algorithm for analyzing scattering from large structures[J].IEEE Transactions on Antennas and Propagation,1996,44:1086-1093.
    [36]Gres N,Shanker B,Ergin A A,et al.Fast analysis of transient scattering from dielectric inhomogeneities using the volume integral equation[A].In:IEEE International Symposium on Antennas and Propagation Digest[C].Salt Lake City,UT:2000.745-748.
    [37]Gres N,Ergin A A,Shanker B,et al.Volume integral equation based analysis of transient electromagnetic scattering from three dimensional inhomogeneous dielectric objects[J].Radio Science,2001,36:379-386.
    [38]Ergin A A,Shanker B,Michielssen E.The plane wave time domain algorithm for the fast analysis of transient wave phenomena[J].IEEE Antennas and Propagation Magazine,1999,41:39-52.
    [39]Shanker B,Ergin A A,Michielssen E.Analysis of transient scattering from multiregion bodies using the plane wave time domain algorithm[A].In:USNC/URSI National Radio Science Meeting Digest[C].Salt Lake City,UT:2000.178.
    [40]王秉中,计算电磁学[M],科学出版社,北京,2002
    [41]盛新庆,计算电磁学要论[M],科学出版社,北京,2004
    [42]吕英华,计算电磁学的数值方法[M],清华大学出版社,北京,2006
    [43]王长清,现代计算电磁学基础[M],北京大学出版社,北京,2005
    [44]W.J.R.Hoefer.The transmission-line-matrix method:theory and applications[J].IEEE Trans.Microwave Theory Tech.,1985,33(10):882-893.
    [45]M.Krumpholz,L.Katehi.MRTD:new time-domain schemes based on multiresolution analysis[J].IEEE Trans.Microwave Theory Tech.,1996,44(4):555-571.
    [46]Q.Liu.The pseudospectral time-domain method:a new algorithm for solutions of maxwell's equations[C].IEEE Antennas Propag.Syrup.,1997,(1):122-125.
    [47]Z.Z.Chen,S.P.Luo.Generalization of the finite-difference-based time-domain methods using the method of moments[J].IEEE Antennas Propag.,2006,54(9):2515-2524.
    [48]M.Benzi.Preconditioning techniques for large linear lystems:a survey,Journal of Computational Physics,2002,Vol.182:418-477.
    [491 Knab J J.Interpolation of band-limited functions using the approximate prolate series[J].IEEE Trans.Information Theory,1979,25(6):717-720.
    [50]鲁述,电磁场边值问题解析方法[M],武汉大学出版社,武汉,2005
    [51]盛剑霓,电磁场与波分析中半解析法的理论方法与应用[M],科学出版社,2006
    [52]汪茂光,几何绕射理论[M],西安电子科技大学出版社,1994
    [53]傅君眉,冯恩信,高等电磁理论[M],西安交通大学出版社,2000
    [54]毛钧杰,何建国,电磁场理论[M],国防科技大学出版社,1998
    [55]E.H.Newman,D.M.Pozar.Electromagnetic modeling of composite wire and surface geometries[J].IEEE Trans.Antennas and Propagation,1978,26(6):784-789
    [56]周东明,时域积分方程快速算法及其应用研究[D],长沙:国防科技大学,2006
    [57]蔡明娟,时域积分方程在分析介质问题中的算法研究与应用[D],长沙:国防科技大学,2006
    [58]王生水,时域积分方程及其并行算法的研究与应用[D],长沙:国防科技大学,2007
    [59]董健,边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D],长沙:国防科技大学,2006
    [60]Vechinski D A,Rao S M.A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape.IEEE Trans.Antennas and Propagation,1992,40(6):661-665.
    [61]Sadigh A,Arvas E.Treating instabilities in marching-on-in-time method from a different perspective.IEEE Trans.Antennas and Propagation,1993,41(12):1695-1702.
    [62]Rynne B P,Smith P D.Stability of time marching algorithoms for the electric field integral equations.J.Electromagn.Waves Applicat.,1990,12(4):1181-1205
    [63]Davies P J.A stability analysis of a time marching scheme for the general surface electric field integral equation.Appl.Numer.Math.,1998,27(1):35-57
    [64]Manara G,Monorchio A,Reggiannini R.A space-time discretization criterion for a stable time-marching solution of the electric field integral equation.IEEE Trans.Antennas and Propagation,1997,45(3):527-532
    [65]Shanker B,Erigin A A,Aygun K,Michielssen E.Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation.IEEE Trans.Antennas and Propagation,2000,48(7):1064-1074.
    [66]Jung B H,Sarkar T K.Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects.Microw.Opt.Technol.Lett.,2002,34(4):289-296.
    [67]Widan R A,Pisharody G,Weile D,Shanker B,Michielssen E.An accurate scheme for the solution of the time-domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation.IEEE Trans.Antennas and Propagation,2004,52(11):2973-2983.
    [68]赵延文,聂在平,徐建华,武胜波.精确稳定求解时域电场积分方程的一种新方法[J].电子学报,2006,34(6):1104-1108.
    [69] Dodson S J, Walker S P, Bluck M J. Implicitness and stability of time domain integral equation scattering analysis [J]. Applied Computational Electromagnetics Society Journal, 1998, 13:291-301.
    
    [70] Jung B H, Chung Y S, Sarkar T K. Time-domain efie, mfie, and cfie formulations using laguerre polynomials as temporal basis functions for theanalysis of transient scattering from arbitrary shaped conducting structures [J]. Prog. Electromagn. Res.,2003, 39: 1-45.
    
    [71] Hu J-L, Chan C H, Xu Y. A new temporal basis function for the time-domain integral equation method [J]. IEEE Microwave Wireless Comp. Lett., 2001, 11: 465-466.
    
    [72] Hu J-L, Chan C H. An improved temporal basis function for the time domain electric field integral equation method [J]. Electron. Lett., 1999, 35: 883-885.
    
    [73] Rao S M, Sarkar T K. Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral equation technique[J]. Microw.Opt. Technol. Lett., 1998, 17(l):66-69.
    
    [74] G. Vecchi. Loop-star decomposition of basis functions in the discretization of the EFIE[J]. IEEE Antennas Propag., 1999, 47(2):
    
    [75] J. S. Zhao, W. C. Chew. Integral equation solution of maxwell's equation from zero frequency to microwave frequency[J]. IEEE Antennas Propag., 2000,48(10):1635-1645.
    
    [76] D. J. Taylor. Accurate and efficient numerical integration of weakly singular integrals in Galerkin EFIE solutions[J]. IEEE Trans. Antennas Propag., 2003, 51(7): 1630-1637
    
    [77] H. X. Zhou, W. Hong, G. Hua. An accurate approach for the calcaulation of MoM matrix elements[J]. IEEE Trans. Antennas Propag., 2006, 54(4): 1185-1191.
    
    [78] C. Y. Abdulkadir, A. Arif Ergin. Exact evalution of retarded-time potential integrals for the RWG bases[J]. IEEE Trans. Antennas Propag., 2006, 54(5): 1496-1502.
    
    [79] J. F. Lee, R. Lee, R. J. Burkholder. Loop star basis functions and a robust preconditioner for EFIE scattering problems [J]. IEEE Trans. Antennas Propag., 2003,51(8): 1855-1863.
    
    [80] V. I. Okhmatovski, J. D. Morsey, A. C. Cangellaris. Loop-tree implementation of the adaptive integral method(AIM) for numerically-stable, broadband, fast electromagnetic modeling [J]. IEEE Trans. Antennas Propag., 2004, 52(8):2130-2140.
    
    [81] Chen N W, Aygiin K, Michielssen E. Transient analysis of a canted sector antenna with the modeling of fine feed features [A]. In: Proc. IEEE. Int. Symp. on Antennas and Propagation [C]. Boston: 2001. 384-387.
    
    [82] Aygiin K, Shanker B, Michielssen E. Analysis of non-linear elements and circuitry using plane wave time domain enhanced mot solvers [A]. In: Proceedings of the International Conference on Electromagnetics and Advanced Applications (ICEAA)[C]. Torino, Italy: 1999
    
    [83] Aygiin K. Gres N, Shanker B, et al. Time domain integral equation analysis of hybrid inhomogeneous dielectric and conducting surface wire structures [A]. In: USNC/URSI National Radio Science Meeting Digest [C]. Salt Lake City, UT: 2000. 176.
    
    [84] Aygun K, Shanker B, Michielssen E. Low frequency plane wave time domain kernel [A]. In: Proceedings of International Conference on Electromagnetics and Advanced Applications [C]. Torino, Italy: 2001. 869-872.
    
    [85] Aygiin K, Fisher S E, Ergin A A, et al. Transient analysis of multielement wire antennas mounted on arbitrarily shaped perfectly conducting bodies [J]. Radio Science,1999,34:781-796.
    [86] Aygiin K, Shanker B, Ergin A A, et al. Analysis of shielding enclosures using the multilevel plane wave time domain algorithm [A]. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility [C]. Seattle, WA: 1999.690-693.
    [87] Lu M, Yegin K, Michielssen E. Fast time domain integral equation solvers for analyzing two-dimensional scattering phenomena;part i temporal acceleration [J].Electromagnetics, 2004, 24 (6): 425-449.
    [88] Lu M, Michielssen E. Fast time domain integral equation solvers for analyzing two-dimensional scattering phenomena;part ii full pwtd acceleration [J].Electromagnetics, 2004, 24 (6): 451-470.
    [89] Ergin A A, Plane Wave Time Domain algorithms for efficient analysis of three-dimensional transient wave phenomena [D], USA, UIUC, 2000.
    [90] Shanker B, Mingyu L, Ergin A A, Michielssen. Plane-wave time-domain accelerated radiation boundary kernels for FDTD analysis of 3-D electromagnetic phenomena,IEEE Trans. Antennas and Propagation, 2005,53(ll):3704-3716.
    
    [91] Heyman E. Time-dependent plane-wave spectrum representations for radiation from volume source distributions [J]. J. Math. Phys., 1996, 37 (2): 658-681.
    
    [92] Devaney A J, Sherman G C. Plane-wave representations for scalar wave fields [J].SIAM Review, 1973, 15 (4): 764-786
    [93] Darve E. The fast multipole method: numerical implemention [J], Journal of Computational Physics, 2000(160): 195-240.
    
    [94] Jiming S, Caicheng L, Wengcho Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas and Propagation, 1997,45(10): 1488-1493.
    
    [95] Jiang P L, Michielssen E. Temporal acceleration of time domain integral equation solvers for electromagnetic scattering from objects residing in lossy media,Microwave and Optical Technology Letters, vol.44, no.3, pp.223-230, 2005.
    
    [96] Jiao D, Ergin A A, Shanker B, et al. A fast time-domain finite element-boundary integral method for three-dimensional electromagnetic scattering analysis [M]. Urbana:University of Illinois, 2000.
    
    [97] G. Kobidze, J. Gao, B. Shanker, E. Michielssen. A fast time domain integral equation based scheme for analyzing scattering from dispersive objects[J]. IEEE Trans.Antennas Propag., 2005, 53(3): 1215-1226.
    [98] K. Aygun, B. C. Fischer, J. Meng, B. Shanker, and E. Michielssen, A fast hybrid field-circuit simulator for transient analysis of microwave circuits[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, pp. 573-583.
    
    [99] A. E. Yilmaz, H. M. Jin, and E. Michielssen, A TDIE-based asynchronous electromagnetic-circuit simulator[J]. IEEE Microwave and Wireless Components Letters, 2006, vol. 16,pp. 122-124.
    
    [100] A. E. Yilmaz, D. S.Weile, J. M. Jin, and E. Michielssen, A fast Fourier transform accelerated marching-on-in-time algorithm (MOT-FFT) for electromagnetic analysis [J]. Electromagn., vol. 21, pp. 181-197, 2001.
    [101] A. E. Yilmaz, D. S. Weile, J. M. Jin, and E. Michielssen, A hierarchical FFT algorithm for the fast analysis of transient electromagnetic scattering phenomena [J].IEEE Trans. Antennas Propagat., vol. 50, pp. 971-982, July 2002.
    [102] A. E. Yilmaz, S. Q. Li, J. M. Jin, and E. Michielssen, A parallel framework for FFT-accelerated time-marching algorithms [J]. in Proc. USNC/URSI National Radio Sci. Meet., 2002, p. 319.
    [103] J. L. Hu, C. H. Chan, and Y. Xu, A fast solution of time domain integral equation using fast Fourier transformation [J]. Microwave Opt. Tech. Lett., vol. 25. no. 3, pp.172-175,2000.
    [104] A. E. Yilmaz, J. M. Jin, and E. Michielssen. Time domain adaptive integral method for the combined field integral equation [J]. in Proc. IEEE Antennas Propagat S. Int.Symp., vol. 3, 2003, pp. 543-546.
    [105] A. E. Yilmaz, J. M. Jin, and E. Michielssen. Time domain adaptive integral method for surface integral equations [J]. IEEE Trans. Antennas Propagat., vol. 52(10), pp.2692-2708, 2004.
    
    [106] G. Pisharody, D. S. Weile. Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation. IEEE Trans. Antennas Propagat., vol.53(6): 2089-2098, 2005.
    
    [107] G. Alleon. Sparse preconditioners for dense linear systems from electromagnetic applications[D]. Institute National Polytechnique de Toulouse, 2002.
    
    [108] Y. Saad. Iterative methods for sparse linear systems[M]. Boston, MA: PWS-Kent,1996
    
    [109] J. K. Reid, The Use of Conjugate Gradients for Systems of Equations Possessing 'Property A', SIAM J. Numerical Analysis, 1972, Vol.9: 325-332.
    [110] Bennett C L. A technique for computing approximate impulse response for conducting bodies [D]. Doctor. Lafayette, Indiana: Purdue Univ., 1968.
    [111] Friedman M B, Shaw R. Diffraction of pulses by cylindrical obstacles of arbitrary cross section[J]. J. Appl. Mech, 1962, 29:40-46.
    
    [112] Sergry N. Makarov. Antenna and EM modeling with Matlab. New York: John Weily& Sons, 2002.
    
    [113] C. A. Balanis, Antenna theory, analysis and design, 2nd Edition. New York: John Weily & Sons, 1997.
    [114] M F Costa. Electromagnetic radiation and scattering from a system of conducting bodies interconnected by wires [D]. Ph.D dissertation, Syracuse University, 1983.
    
    [115] Vechinski D A, Rao S M, Sarker T K. Transient scattering from three-dimensional arbitrarily shaped dielectric bodies[J]. J. of the Optical Society of America A,1994(11): 1458-1470.
    [116] Sarker T K, Lee W, Rao S M. Analysis of transient scattering from composite arbitrarily shaped complex structures[J]. IEEE Trans. Antenna and Propagation,Vol.48(10):1625-1634, 2000.
    
    [117] Rao S M, Sarker T K. Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodies[J]. IEEE Trans. Antenna and Propagation, Vol.50(12):1831-1837, 2002.
    
    [118] Pocock M D, Bluck M J, Walker S P. Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equation[J]. IEEE Trans. Antenna and Propagation, Vol.46(8):1212-1219,1998.
    
    [119] Bluck M J, Walker S P. Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems[J]. IEEE Trans. Antenna and Propagation,Vol.45(5):894-901, 1997.
    
    [120] Miroslav D, Branislav M N. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatters[J]. IEEE Trans. Antenna and Propagation, Vol.52(8):2118-2129, 2004.
    
    [121] Champagne N J, Williams J T, Wilton D R. The use of curved segments for numerically modeling thin wire antennas and scatterers[J]. IEEE Trans. Antenna and Propagation, Vol.40(6):682-689, 1992.
    
    [122] Jensen M A, Rahmat-Samii Y. Electromagnetic characteristics of superquadric wire loop antennas[J]. IEEE Trans. Antenna and Propagation, Vol.42(2):264-269, 1997.
    
    [123] Khamas S K, Cook G G, Waldron R J. Moment-method analysis of printed circular wire-loop antenna using curved piecewise sinusoidal subdomain basis and test functions[J]. IEEE Trans. Antenna and Propagation, Vol.44(9):1303-1305, 1996.
    
    [124] Khamas S K, Cook G G. Moment-method analysis of printed wire spirals using curved piecewise sinusoidal subdomain basis and test functions[J]. IEEE Trans.Antenna and Propagation, Vol.45(6):1016-1022, 1997.
    
    [125] Beurden M C, Tijhuis A G. Analysis and regularization of the thin-wire integral equation with reduced kernel[J]. IEEE Trans. Antenna and Propagation,Vol.55(1):120-129, 2007.
    
    [126] Ji Z, Sarker T K, Jung B H, Chung Y S, etl. A stable solution of time domain electric field integral equation for thin wire antennas using the Laguerre polynomials[J].IEEE Trans. Antenna and Propagation, Vol.52(10):2641-2649, 2004.
    
    [127] Zhou Z X, Tyo J S. An adaptive time domain integral equation method for transient analysis of wire scatterer[J]. IEEE Antennas and Wireless Propagation Letters,Vol.4:147-150,2005.
    [128] Rao S M, Sarkar T K, Dianat S. A novel technique to the solution of transient electromagnetic scattering from thin wires[J]. IEEE Trans. Antenna and Propagation,Vol.34(5):630-634, 1986.
    
    [129] Bost F, Nicolas L, Rojas G. A time domain integral formulation for the scattering by thin wires[J]. IEEE Trans. Magn., Vol.36(7):868-871, 2000.
    
    [130] Rogers S D, Butler C M. An efficient curved-wire integral equation solution technique[J]. IEEE Trans. Antenna and Propagation, Vol.49(1):70-79, 2001.
    
    [131] Chung Y S, Sarkar T K, Jung B H, et al. Solution of time domain electric field integral equation using the Laguerre polynomials[J]. IEEE Trans. Antenna and Propagation, Vol.52(9):2319-2328, 2004.
    
    [132] Jung B H, Sarkar T K, Chung Y S, et al. Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions[J]. IEEE Trans. Antenna and Propagation,Vol.52(9):2329-2340, 2004.
    
    [133] Heldring A, Rius J M. Wire modeling in FIESTA[R]. IST-2001-33055, 2002.
    
    [134] Hodges R E, Rahmat-Samii Y. The evaluation of MFIE integrals with the use of vector triangle basis functions[J]. Microwave and Optical Technology Letters,Vol.14(1):9-14,1997.
    
    [135] Ergul O, Gurel L. Investigation of the inaccurary of the MFIE discretized with the RWG basis functions[C]. in Proc. IEEE AP-S Int. Symp., Monterey, CA, Jun.2004:3393-3396.
    
    [136] Ergul O, Gurel L. Improved the accurary of the MFIE with the choice of basis functions[C]. in Proc. IEEE AP-S Int. Symp., Monterey, CA, Jun. 2004:3389-3392.
    
    [137] Ergul O, Gurel L. Solid-angle factor in the magnetic field integral equation[J].Microwave Opt. Technol. Lett., Vol.45(5):452-456, 2005.
    
    [138] Ergul O, Gurel L. Improved testing of the magnetic field integral equation[J]. IEEE Microwave Wireless Comp. Lett., Vol.15(10):615-617, 2005.
    
    [139] Ergul O, Gurel L. Linear-linear basis functions for MLFMA solutions of magnetic field and combined field integral equations[J]. IEEE Trans. Antennas Propag.,Vol.55(4):1103-1110, 2007.
    
    [140] Ergul O, Gurel L. The use of curl-conforming basis functions for the magnetic field integral equation[J]. IEEE Trans. Antennas Propag., Vol.54(7):1917-1926, 2006.
    [141] Gurel L, Ergul O. Singularity of the magnetic field integral equation and its extraction[J]. IEEE Antennas Wireless Propag. Lett., Vol.4:229-232, 2005.
    [142] Rius J M, Ubeda E, Parron J. On the testing of the magnetic field integral equation with RWG basis functions in method of moments[J]. IEEE Trans. Antennas Propag.,Vol.49(11):1550-1553, 2001.
    
    [143] Ubeda E, Rius J M. Novel monopolar MFIE MoM-discretization for the scattering analysis of small objects[J]. IEEE Trans. Antennas Propag., Vol.54(1):50-57, 2006.
    [144] Ubeda E, Rius J M. MFIE MoM-formulation with curl-conforming basis functions and accurate kernel integration in the analysis of perfectly conducting sharp-edged objects[J]. Microwave Opt. Technol. Lett., Vol.46(4):354-358, 2005.
    
    [145] U.Jakobus, F.J.C. Meyer. A hybrid physical optics/method of moments numerical technique: theory, investigation and application[J]. IEEE Trans.Antennas and Propagation, 1996, 282-287
    
    [146] Ulrich Jakobus, Friedrich M. Landstorfer.Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape[J].IEEE Trans.Antennas and Propagation, 1995,43(2): 162-169
    
    [147] Ulrich Jakobus, Friedrich M. Landstorfer. Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges[J]. IEEE Trans.Antennas and Propagation, 1995,43(10):1123-1129
    
    [148] Miroslav Djordjevic, Branislav M. Notaros. Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conduncting surfaces[J]. IEEE Trans. Antennas and Propagation,2005,53(2):800-813
    [149] Richard E. Hodges, Yahya Rahmat-Samii. Theory of physical optics hybrid method[C]. In Proc. Joint IEEE Antennas and Prop. Soc. and URSI Radio Science Meeting, 1994: 1374-1377
    [150] S.P. Walker, Markku J. Vartiainen. Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis[J].IEEE Trans.Antennas and Propagation, 1998,46(3):318-324
    
    [151] Kobidze G, Shanker B, Michielssen E. Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects[C], IEEE Antennas and Propagation Society International Symposium, 2003, vol.3: 547-550
    
    [152] Bucci O. M., Franceschetti G. On the spatial bandwidth of scattered fields [J]. IEEE Trans. Antennas and Propagation, 1987, 35:1445-1455
    [153] Bucci O. M., Gennarelli C, Savarese C. Optimal interpolation of radiated fields over a sphere[J]. IEEE Trans. Antennas and Propagation, 1991,39( ):1633-1643
    [154] Jakob-Chien R., Alpert B. K. A fast spherical filter with uniform resolution [J]. J.Computat. Phys., 1997, 136: 580-584
    
    [155] http://www.fftw.org
    
    [156] L. N. Medgyesi-Mitschang, J. M. Putnam. Hybrid formulation for arbitrary 3-D bodies [C]. in 10~(th) Annu. Rev. of Progress in Applied computational electromagnetics,ACES Conf., Monterey, CA, Mar. 1994, Vol. II, pp. 267-274
    
    [157] http://math.nist.gov/iml++/
    [158] http://www.osl.iu.edu/research/itl
    [159] http://math.nist.gov/sparselib++/
    [160] http://osl.iu.edu/research/mtl/
    
    [161]S. Gedney, U. Navsariwala. An unconditionally stable finite element time domain solution of the vector wave equation [J]. IEEE Microwave Guided Wave Lett., 1995(5):332-334
    [162]P.Bonnet,X.Ferrieres,F.Issac,etl.Numerical modeling of scattering problems using a time domain finite volume method[J].J.Electromag.Waves Appl.,1997(11):1165-1189
    [163]胡俊,复杂目标矢量电磁散射的高效方法—陕速多极子方法及其应用[D],成都:电子科技大学,2000
    [164]《数学手册》编写组,数学手册[M],高等教育出版社,北京,1979
    [165]万继响,张玉,梁昌洪.任意导体与线天线连接问题的MoM分析[J].电波科学学报,2003,18(5):523-528
    [166]弓晓东,复杂目标电磁散射精确建模的高阶快速多极子方法[M],成都:电子科技大学,2003
    [167]邹光先,集群环境下基于MPI的并行多层快速多极子方法研究[M],成都:电子科技大学,2004
    [168]赵华鹏,基于曲三角贴片离散的多层快速多极子方法并行化研究[M],成都:电子科技大学,2007
    [169]王浩刚,电大尺寸含腔体复杂目标矢量电磁散射一体化精确建模与高效算法研究[D],成都:电子科技大学,2001
    [170]胡浩,半空间电磁散射及其高效快速算法研究[M],成都:电子科技大学,2007
    [171]姚海英,介质以及涂敷介质结构电磁散射特性的基础研究——积分方程法及其快速求解[D],成都:电子科技大学,2002
    [172]徐晶,缝隙电磁散射的算法研究[M],成都:电子科技大学,2007
    [173]万继响,多层微带结构的MoM及其快速算法研究[D],西安:西安电子科技大学,2004
    [174]项铁铭,机载平台天线电磁兼容性研究[D],西安:西安电子科技大学,2004
    [175]李凌鹏,并行计算在电磁学中的几个应用[M],南京:南京理工大学,2007
    [176]樊振宏,电磁散射分析中的快速方法[D],南京:南京理工大学,2006
    [177]丁大志,复杂电磁问题的快速分析和软件实现[D],南京:南京理工大学,2006
    [178]李清波,三维复杂目标的电磁散射特性研究[M],南京:南京理工大学,2007
    [179]陆卫兵,复杂电磁问题的快速算法研究和软件实现[D],南京:东南大学,2005
    [180]丁振宇,基于边界积分方程和遗传算法的电磁成像问题研究[D],南京:东南大学,2002
    [181]殷晓星,散射问题的快速算法及其在城市电波传播模型中的应用[D],南京:东南大学,2001
    [182]牛臻弋,复杂移动平台环境中天线辐射问题的快速算法研究[D],南京:东南大学,2006
    [183]张旸,快速求解宽带电磁辐射与散射问题的阻抗矩阵插值技术研究[M],南京:东南大学,2005
    [184]潘小敏,计算电磁学中的并行技术及其应用[D],北京:中国科学院电子学研究所,2006
    [185]胡俊;王晓峰:聂在平:肖运辉,三维目标电磁散射的自适应积分方法[J],电波科学学报,2007.4
    [186]翟会清,复杂电磁系统中的混合及快速算法研究及其应用[D],西安:西安电子科技大学,2004
    [187]赵青,三维矢量散射的时域积分方程解及时频互推技术[M],成都:电子科技大学,2004
    [188]武胜波,三维目标电磁散射的时域积分方程方法[M],成都:电子科技大学,2005
    [189]李金艳,时域平面波算法研究[M],成都:电子科技大学,2007
    [190]朱金松,时域矩量法及其在辐射和散射问题中的应用[M],西安:西安电子科技大学,2005
    [191]秦三团,电磁散射的时域积分方程法研究[M],西安:西安电子科技大学,2005
    [192]王海彬,TDIE/FDTD混合法及其在时域电磁场分析中的应用[D],西安:西安电子科技大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700