用户名: 密码: 验证码:
黑龙江省桑树氮肥运筹及光合调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省地处我国的高寒地区,主要栽培在工矿废弃荒地、山地、田间地头以及贫瘠土壤。国家“东桑西移,南蚕北移”工程及有关优惠政策的实施,加快了北方寒冷地区蚕桑业的快速发展。桑树栽培由田问地头转移到大田栽培。黑龙江省是我国最适宜发展蚕桑生产的地区之一,桑蚕业已成为黑龙江省西部干旱、半干旱地区脱贫致富的支柱产业,尤其是桑树品种“龙桑一号”的培育出世更加速了该地区桑蚕产业的迅速发展。但是,在实际生产中,为了获得较高的桑树叶片产量,一些蚕农未能根据土壤养分状况和桑树需肥规律而无限制地加大氮肥的施用量,这不但不能提高桑树的产叶量,反而加大了投入成本,污染环境,致使养蚕质量下降。桑树是以叶片为收获对象的作物,其栽培的主要目的是获得较高的叶片产量,而氮肥是非常重要的因素。为此,本论文从黑龙江省桑树栽培过程中的氮肥运筹出发,通过多年(2009—2012)多点(哈尔滨、阿城、佳木斯)的试验研究,在确定主栽桑树品种的氮素用量范围的基础上,探讨桑树对氮素形态(硝态氮和铵态氮)的利用,通过大田试验和水培试验相结合的方法,从物质生产的基础一光合作用的光反应和暗反应之间的协同作用角度,深入分析桑树对氮素的响应特性。结果如下:
     1.2009-2012年在大田条件下研究了不同供氮(纯氮)水平(0kg·hm-2、48.3kg·hm-2、96.6、144.9kg·hm-2、193.2kg·hm-2和241.5kg·hm-2)和(0kg·hm-2,13.8kg·hm-2,27.6kg·hm-2,41.4kg·hm-2,55.2kg·hm-2,69kg·hm-2)分别对“龙桑一号”和“青龙”桑叶片产量及其生理特性的影响。结果表明:当“龙桑一号”施氮量为0~193.2kg·hm-2时和“青龙”桑施氮量为0~55.2kg·hm-2,桑树单株枝条数、单枝叶片数、单叶面积、单叶质量和单株产叶量随着供氮水平的增加而增加,而当施氮量分别达到241.5kg·hm-2和69kg·hm-2时,桑树单叶面积、叶片质量和单株产叶量反而降低;施氮量在0~144.9kg·hm-2和0~41.4kg·hm-2范围内,桑树叶片中的全氮(N)和全磷(P)含量随着施氮量的增加而提高,而当施氮量超过144.9kg·hm-2和41.4kg·hm-2时,两利桑树叶片中的全氮和全磷含量随着施氮量的增加却降低,这说明施氮量过高反而降低了桑树对N和P的吸收;随着供氮水平的增加,桑树叶片中的叶绿素含量、可溶性蛋白和可溶性糖含量随着施氮量的增加而增加。从氮肥对桑树产叶量及其生理特性的影响情况来看,桑树“龙桑一号”和“青龙”桑田间的最佳施氮量分别为144.9~193.2k·-hm-2和41.4~55.2kg·hm-2。四年大田试验中氮肥与桑树产叶量(Y)的偏最小二乘回归模型如下:
     y=1552.3484111+2.702975x1+58.083982x2+9.429218x3-0.000561x1*x1-0.672614x2*x2-0.017726x3*x3-0.036371x1*x2-0.005904x1*x3-0.109191x2*x3
     y=1450.0240821+2.983592x1+54.401789x2+9.645707x3-0.001892x1*x1-0.579893x2*x2-0.018230x3*x3-0.032356x1*x2-0.005737x1*x3-0.102818x2*x3
     y=1490.3531551+2.752968x1+51.050728x2+8.862974x3-0.001686x1*x1-0.544203x2*x2-0.016403x3*x3-0.030354x1*x2-0.005270x1*x3-0.094480x2*x3
     y=608.0876801+4.590733x1+37.395394x2+5.491631x3-0.003846x1*x1-0.483353x2*x2-0.010424x3*x3-0.070032x1*x2-0.010284x1*x3-0.070982x2*x3
     2.通过水培方式研究了等氮条件下铵态氮和硝态氮两种形态氮源及其配比对青龙桑幼苗生长和光合特性的影响。结果表明,桑树幼苗在单一硝态氮或单一铵态氮条件下,植株高度、叶片数、叶片面积和根系长度均低于铵态氮和硝态氮配合施用下,桑树叶片和根系生物量的变化也呈现类似趋势。铵态氮和硝态氮摩尔浓度比例为50:50和25:75时桑树幼苗生长和生物量最高,而当铵态氮和硝态氮比例为25:75时桑树净光合速率(Pn)、气孔导度(Gs)和水分利用效率(WUE)高于其它处理,单一硝态氮或单一铵态氮处理降低了桑树表观量子效率(AQE),提高了桑树叶片的光补偿点(LCP)。以上说明桑树是一种偏硝性的植物,以铵态氮和硝态氮比例为50:50~25:75之间最适合。
     3.不同氮素形态营养相比较,NH4+和NO3-配比处理的桑树叶片的叶绿素含量(Chl)、光合速率(Pn),NO3-处理次之,NH4+处理较低。各氮素处理的气孔导度与对照相比差异较小。氮素营养使叶片胞间CO2浓度(Ci)降低。与NH4+相比,N03-提高了叶片的光呼吸速率、光呼吸速率与光合速率比值。NH4+和NO3-配比处理叶片光合速率的提高与其较高的Rubisco活力、光合电子传递活性的改善有关。
     4.硝态氮和铵态氮作为氮素的两种形态,有着不同的生理生化代谢途径,植物在以硝态氮为氮源的情况下生长良好,而在铵态氮为氮源的情况下则出现“铵盐毒害”现象,被称为“喜硝植物”;也有植物对铵态氮有较高的适应性,即使以铵态氮作为唯一氮源也基本不影响其生长状态,被称为“喜铵植物”。为了说明桑树是那一种类型,从两种氮素形态对光合电子流分配的影响角度来探明不同氮素形态对桑树生理生化产生不同影响的机理及硝酸盐代谢在耗散过剩光能中的光保护作用机制。
     1)以铵态氮或高比例的铵态氮作为氮源时,桑树生长受到明显抑制,表现在:地上部和根部生物量显著下降,其中根部受到的抑制更加明显。与硝态氮相比,铵态氮导致桑树净光合速率(Pn)显著降低,其直接原因可能是非气孔因素。
     2)铵态氮培养下桑树PSⅡ总电子流JF(PSⅡ、用于碳还原的电子流J0(PCR)和用于光呼吸的电子流Jc(PCO)均显著低于硝态氮培养的植株。铵态氮培养下的桑树ΦPSⅡ显著降低,且伴随着qP的显著下降,Fv'/Fm'基本不变,说明铵态氮引起的光合电子流降低的原因是开放光系统Ⅱ(PSⅡ)反应中心数量的减少。此外,铵态氮导致桑树PSⅡ总电子流下降,客观上需要其他形式光能耗散途径的增强,以保护光系统免于光抑制的破坏。
     5.通过不同抗逆能力的桑树品种“龙桑一号”(抗逆能力弱)与“青龙”桑(抗逆能力强)叶片的光合电子传递及激发能利用分配对氮素响应的结果表明,施氮可提高不同品种桑树叶片天线色素吸收光能的能力,虽然氮素不能改变激发能在光合碳还原(PCR)和光合碳氧化(PCO)之间的分配比例,但可提高PSⅡ总电子传递速率(JF)和Pn。氮素对叶片PSⅡ反应中心活性有影响,而不同抗性品种之间亦有差别,说明施氮可改善桑树叶片热耗散和光化学反应对激发能的竞争关系,从而增强光合机构的自我保护能力。
     综上所述,从氮素和氮素形态调控桑树生长机理方面出发,以桑树叶片光合电子传递和吸收光能分配特性为线索,揭示了氮素,尤其是氮素形态在桑树体内代谢过程中需要的还原力(NADPH或NADH)的来源,阐明了硝态氮还原为铵态氮需要的还原力大部分来自于光合电子传递链(PSⅠ侧),但是,铵态氮在植物根部同化为氨基酸,其还原力主要来自呼吸作用,从而探明在光能过剩的情况下光合链电子受体库有效消耗了部分过剩激发能,减轻了光抑制对光系统的破坏,并解释了长期以来人们一直争议的硝酸盐还原对光破坏防御机制的贡献,有助于我们进一步理解植物的光破坏防御机制。
Heilongjiang Province is located in the alpine region of our country, the main cultivated in the mining waste wasteland, mountains, the fields, and poor soil. Much more national preferential policies had been to speed up the development of sericulture industry in northern cold regions. Mulberry cultivation farms to transfer to field cultivation. Heilongjiang Province is one of the most suitable for the development of sericulture production areas in China, silkworm has become the pillar industries in the western arid, semi-arid areas of Heilongjiang Province, especially the cultivation of mulberry varieties "Long Sang NO.1" born accelerate the region the rapid development of the silkworm industry. However, in the actual production, in order to obtain a higher yield of mulberry leaves, some silkworm breeder fails to soil nutrient status and mulberry Fertilizer Demand Rule of unlimited increase the amount of nitrogen fertilizer, which will not only fail to improve the mulberry leaf yield, but increased input costs, environmental pollution, resulting in the decline in the quality of sericulture. Leaves of mulberry are harvested object crop cultivation its main purpose is to obtain high yield blade, while nitrogen is a very important factor. To this end, the departure from Nitrogen Fertilizer in Heilongjiang Province mulberry cultivation process, through the years (2009-2012) multi-point (Harbin, Cheng, Jiamusi) test in determining the nitrogen amount in the range of the main cultivated varieties of mulberry based on the use of mulberry nitrogen forms (nitrate and ammonium nitrogen) through field trials and hydroponics method of combining production from the material-the light reactions of photosynthesis and dark reaction between synergy angle, in-depth analysis of the response characteristics of the mulberry nitrogen. The results are as follows:
     1. In order to research the best appropriate N application levels of "Longsang No.1" and "qinglong", and support a optimum guide for mulberry peasant, this study was carried out to investigate the effects of different N application levels (0,48.3,96.6,144.9,193.2and241.5kg·hm-2pure nitrogen) and (0kg·hm-2,13.8kg·hm-2,27.6kg·hm-2,41.4kg·hm-2,55.2kg·hm-2,69kg·hm-2) on growth and physiological characteristics of mulberry grown in the field using mulberry variety Longsang No.l and "qinglong" as experimental material. The results showed that leaf number, branch number, leaf area, leaf weight and leaf yield per plant increased with nitrogen application levels in0~193.2and kg·hm-20~55.2kg·hm-2, while the nitrogen application levels in241.5kg·hm-2and69kg·hm-2, the leaf area, leaf weight and leaf yield per plant reduced. Total nitrogen and total phosphorus contents in leaves of mulberry increased with nitrogen application levels in0~144.9kg·hm-2and41.4kg·hm-2, but over nitrogen application levels of that the trend is opposite, the indicating that higher nitrogen can be reduce the absorption of N and P. Chlorophyll, soluble protein contents and soluble sugar contents in leaves of mulberry increased with nitrogen application levels increased. In sum, by the N application levels on the growth and physiological characteristics of mulberry, the best N application levels in the field of "Long sang NO.1" and "qinglong" is144.9~241.5kg·hm-2and41.4~55.2kg·hm-2respectively. Nitrogen fertilizer and mulberry leaf yield amount (Y) in a four-year field experiment partial least squares regression model are as follows:
     y=1552.3484111+2.702975x1+58.083982x2+9.429218x3-0.000561x1*x1-0.672614x2*x2-0.017726x3*x3-0.036371x*x2-0.005904x1*x3-0.109191x2*x3
     y=1450.0240821+2.983592x1+54.401789x2+9.645707x3-0.001892x1*x1-0.579893x2*x2-0.018230x3*x3-0.032356x1*x2-0.005737x1*x3-0.102818x2*x3
     y=1490.3531551+2.752968x1+51.050728x2+8.862974x3-0.001686x1*x1-0.544203x2*x2-0.016403x3*x3-0.030354x1*x2-0.005270x1*x3-0.094480x2*x3
     y=608.0876801+4.590733x1+37.395394x2+5.491631x3-0.003846x1*x1-0.483353x2*x2-0.010424x3*x3-0.070032x1*x2-0.010284x1*x3-0.070982x2*x3
     2. The effects of different proportions of nitrate and ammonium nitrogen applied to mulberry (Morus alba L.) on plant growth and photosynthetic characteristics of mulberry seedlings cultured in hydroponics were investigated under the same nitrogen amount using forage mulberry variety "Qinglong" as experimental material. Plant height, leaf number, leaf area and root length of mulberry seedlings grown in hydroponics of single ammonium or nitrate nitrogen source were lower than that of proportion solution of ammonium and nitrate nitrogen, leaf and root biomass of mulberry seedlings grown in hydroponics was similar trends. Plant growth and biomass in mulberry seedlings were highest while the proportions of nitrate and ammonium nitrogen were50:50and25:75. Net photosynthetic rate (Pn), stomatal conductance (Gs) and water use efficiency (WUE) in leaves of mulberry seedlings cultured in25:75proportion solution of ammonium and nitrate nitrogen were higher than that of other proportion treatments. Single ammonium or nitrate nitrogen source improved the apparent quantum efficiency (AQE) and decreased light compensation point (LCP) in leaves of mulberry seedlings. It concluded that forage mulberry varieties "Qinglong" prefer nitrate nitrogen, and the proportions of nitrate and ammonium nitrogen adapted mulberry growth were between50:50and25:75.
     3. In three different nitrogen treatments, the chlorophyll content (Chl), photosynthetic
     Rate (Pn), RuBPcase initial activity, RuBPcase content, mesophyll conductance (gm), carbonic Anhydrase (CA) activity, PS1activity and PS1activity of leaves were the highest in the mixture treatment of NH4++NO3-, then were in the NO3-treatment and the lowest were in NH4+treatment. No evident differences were found in RuBPcase specific activity among treatments. There was little difference on stomatol conductance (Gs) between different treatments and CK. Nitrogen nutritions decreased the intercellular CO2concentration (Ci). There were similarly Changing trends between gm, CA activity and photosynthetic rate (Pn) in different treatments, Which showed the conductivity of CO2in liquid part of mesophyll cell having probably important Influence on photosynthesis of leaves. Compared to NH4+treatment, NO3-treatment increased the photorespiration rate, the ratio of photorespiration rate to photosynthetic rate and nitrate reduetase (NR) activity in wheat leaves. The increase of photosynthetic rate in mixture treatment NH4++NO3-was mainly correlated to the higher Rubisco activity, higher photosynthetic electron conductivity and the improvement of CO2conductivity in liquid phase of mesophall cell.
     4. Nitrogen plays an important role throughout the whole life of all living organisms. Nitrate and ammonium are the major forms of nitrogen available to plants. Though both forms can be utilized, great differences in plant growth are found among various plants. Since1950s many research efforts have been directed toward unraveling the causes and mechanisms of NH4+toxicity as well as the relationship of nitrate and photoprotection in plants, while present knowledge is far from complete. It is kown that most of the energy for nitrate assimilation in a cell derives from photosynthesis. Recently, nitrate reduction has been suggested to be involved in the photo protection mechanism. However, our present understanding of this role of nitrate is poor. This research focuses on the difference in allocation. The results are as follows:
     1) The effects of different nitrogen forms on biomass and gas exchange of mulberry and rice were studied. Ammonium significantly decreased both shoot biomass and root biomass of mulberry, especially root biomass. Photosynthetie rate (Pn) of mulberry under ammonium condition was also significantly lower than those under nitrate condition while stomatal conductance and intracellular CO2concentration were higher. Thus, decreased Pn could be attributed to stomatal limitation. In comparison, there were no significant differences in biomass and gas exchange between rice cultured under nitrate or ammonium condition.
     2) The effects of different nitrogen forms on photosynthetic electron allocation and nitrate reduetase activity were investigated in mulberry and rice plants. When cultured with ammonium as nitrogen source, mulberry plants had lower JF(PS Ⅱ)), Jo(PCR), JC(PCO. The effects of different nitrogen forms on chlorophyll fluorescence and xanthophyll cycle activity were studied in mulberry and rice plants. There was no significant difference in either chlorophyll fluorescence or xanthophyll cycle activity between nitrate and ammonium feed rice plants.
     5. The responses of photosynthetic electron transport and excitation energy distribution in winter wheat leaves at the jointing stage to nitrogen levels were studied in the field experiment, both leaf gas exchange parameter and chlorophyll fluorescence were measured. The light energy absorbed by antenna pigment of both cultivars increased with the treatment of nitrogen. Although nitrogen could not obviously change the distribution proportion of photosynthetic carbon reduction and photosynthetic carbon oxidation, nitrogen could increase JF of PSII and photosynthetic rate. Nitrogen could affect PSII activities of both cultivars, and there were significant differences between the two cultivars. Nitrogen application improved the competition between heat dissipation and photo-chemic reaction and enhanced the self-protection ability of photosynthetic apparatus.
     In summary, the regulation mechanism of growth of mulberry trees from nitrogen and nitrogen forms, the mulberry leaf photosynthetic electron transport and absorption of light energy distribution characteristics for clues to reveal the nitrogen, especially of nitrogen forms in Mulberry metabolism processsource of reducing power (NADPH or NADH) to clarify the reducing power of nitrate reduction to ammonium nitrogen needs from the photosynthetic electron transport chain (PS I side), but the ammonium nitrogen assimilation into amino acids in plant roots, reducing power mainly from respiration, which proved effective consumption of energy excess the photosynthetic chain electron acceptor library part of the excess excitation energy, thereby reducing the destruction of photoinhibition of photosystem and explain long beencontroversial reduction of nitrate to the contribution of the optical destruction defense mechanism, to help us further understand plant Photoprotective Mechanisms.
引文
[1]Haynes, R.J.1986b. Uptake and assimilation of mineral nitrogen by plants. In Mineral nutrition in the plant-soil system Ed. R.J. Haynes. Academic Press, Inc., New York, pp.303-378.
    [2]Taiz, L. and E. Zeiger 2002. Plant physiology. Sinauer Associates, Inc., Sunderland, MA.690 p.
    [3]Blumenthal, J.M., D.D. Baltensperger, K.G. Cassman, S.C. Mason and A.D. Pavlista 2001. The importance and effect of nitrogen on crop quality and health. In Nitrogen in the environment:sources, problems, and management Eds. R.F. Follett and J.L. Hatfield. Elsevier Sciences, Amsterdam, the Netherlands, pp.45-63.
    [4]Pate, J.S.1973. Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biology & Biochemistry.5:109-119.
    [5]Pate, J.S. and D.B. Layzell 1990. Energetics and biological costs of nitrogen assimilation. In The biochemistry of plants:A comprehensive treatise Eds. B.J. Miflin and P.J. Lea.
    [6]Hageman, R.H.1980. Effect of form of nitrogen on plant growth. In Nitrification inhibitors-Potentials and limitations Eds. J.J. Meisinger, GW. Randall and M.L. Vitosh. ASA and SSSA, Madison, WI, pp.47-62.
    [7]朱兆良.关于土壤氮素研究中的几个问题.土壤学进展,1989,17(2):1-9.
    [8]FAO. FAO year book. Fertilizer,2002
    [9][高恩元.2010年化肥需求分析.中国化工信息中心,化肥工业发展调研报告,1996-2010R.1996.41-50
    [10]沈善敏.氮肥在中国农业发展中的贡献和农业中氮的损失.土壤学报,2003,19(增刊):12-25
    [11]朱兆良.我国氮肥的适用现状、存在问题和对策.李庆逵,朱兆良,于天仁主编.中国持续农业发展中的肥料问题.南昌:江西科技出版社,1998.38-51
    [12]马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况.磷肥与复肥,2000,15(3):65-67
    [13][马红梅,秦俊梅,李兆君,等.玉米专用型腐殖酸长效尿素肥效研究[J].中国生态农业学报,2009,17(4):651-655.
    [14]Bijlsma RJ, Lambers H. A dynamic whole-plant model ofintegrated metabolism of nitrogen and carbon.2. balanced growth drievn by C fluxes and regulated by signals from C and N substrate.Plant and Soil,2000,220:71-78
    [15]Mattos D Jr, Graetz DA, Alva AK. Biomass distribution and nitrogen-15 partitioning in citrus trees on a sandy entisol [J].Soil Sci.Ameri.J.,2003,67:555-563
    [16]Lamberss H, Szaniawski RK, De Visser R. Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values, and their significance [J]. Physio.Plantarum,1983,58:557-563
    [17]Foyer C, Ferrario-Mery S, Noctor G.2001. Interactions between carbon and nitrogen metabolism. In:Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. Berlin:Springer-Verlag,237-254.
    [18]Evans JR.1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology 70,1605 1608.
    [19]Sage RF, Pearcy RW, Seemann JR.1987. The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 84,954-958.
    [20]Lawlor DW, Lemaire G, Gastal F.2001. Nitrogen, plant growth and crop yield. In: Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. Berlin:Springer-Verlag,343-367.
    [21]Lawlor DW, Boyle FA, Keys AJ, Kendall AC, Young AT.1988. Nitrate nutrition and temperature effects on wheat:a synthesis of plant growth and nitrogen uptake in relation to metabolic and physiological processes. Journal of Experimental Botany 39,329-343.
    [22]Lawlor DW, Kontturi M, Young AT.1989. Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxylase activity and nitrogen supply. Journal of Experimental Botany 40,43-52.
    [23]Austin RB, Ford MA, Morgan CL, Yeoman D.1993. Old and modern wheat cultivars compared on the Broadbalk wheat experiment. European Journal of Egronomy 2, 141-147.
    [24]Kuti'k J, Na'tr L, Demmers-Derks HH, Lawlor DW.1995. Chloroplast ultrastructure of sugar beet (Beta vulgaris L.) cultivated in normal and elevated CO2 concentrations with two contrasted nitrogen supplies. Journal of Experimental Botany 46,1797-1802.
    [25]Ma"chler F, Oberson A, Grub A, No"sberger J.1998. Regulation of photosynthesis in nitrogen-deficient wheat seedlings. Plant Physiology 87,46-49.
    [26]Evans JR, Terashima I.1987. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Australian Journal of Plant Physiology 14,59-68.
    [27]Evans JR, von Caemmerer S.2000. Would C4 rice produce more biomass than C3 rice? In:Sheehy JE, Mitchell PL, Hardy B, eds. Redesigning rice photosynthesis to increase yield. Amsterdam:Elsevier Science bv,53-71.
    [28]Engels C, Marschner H.1995. Plant uptake and utilization of nitrogen. In:Bacon PE, ed. Nitrogen fertilization in the environment. New York:Marcel Dekker, Inc.,41-81.
    [29]Macduff JH, Hopper MJ, Wild A, Trim FE.1987. Comparison of the effects of root temperature on nitrate and ammonium nutrition of oilseed rape (Brassica napus L.) in flowingsolution culture. I. Growth and uptake of nitrogen. Journal of Experimental Botany 38, 1104-1120.
    [30]Macduff JH, Jarvis SC, Larsson C-M, Oscarson P.1993. Plant growth in relation to the supply and uptake of NO3-:a comparison between relative addition rate and external concentration as driving variables. Journal of Experimental Botany 44,1475-1484.
    [31]Solomonson LP,Barber MJ.1990.Assimilatory nitrate reductase:Functional properties and regulation. Annu Rev Plant PhysiolPlant Mol Biol,41:225-253.
    [32]Song J-M(宋建民),Tian J-C(田纪春),Zhao S-J(赵世杰)1998. Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation.Plant Physiol Commun(植物生理学通讯),34(3):230-238(in Chinese).
    [33]Serraj R,Vadez V,Denison FR,et al.1999.Involvement of ureides in nitrogen fixation inhibition in soybean.Plant Physiol,119:289-296.
    [34]Vadez V,Sinclair TR,Purcell LC.2000.Manganese application alleviates the water deficit-induced decline N2fixation.Plant Cell Environ,23:497-505.
    [35]Robinson DG,Hob B,Hinz G,et al.1995.One vacuole or two vacuoles:Do protein storage vacuoles arise de novo during pea cotyledon development? J Plant Physiol, 145:654-664.
    [36]Salpeter M,Farquhar MG.1981.High resolution autoradiographic analysis of the secretory pathway in mammotrophs of the rat anterior pituitary. J Cell Biol,91:240-266.
    [37]Neeru M,Sawhney SK,Veena S.1998.Frricyanide restores nitrate reductase activity in leaf extracts of water stressed wheat seedling.J Plant Physiol,52(4):577-579.
    [38]Xi Y-Q(蒽玉琴),Zhang J-W(张金文),Niu J-Y(牛俊义)1996.Effects of 6-Benzylaminopurine,moisture and temperature on NRA in spring wheat.J Gansu Agric Univ(甘肃农业大学学报),31(3):268-272(in Chinese).
    [39]Elrilli IR,Holmes JJ,Weger HG,et al.1988.RuBp limitation of photosynthetic carbon fixation during NH3assimilation,interactions between photosynthesis respiration and ammonium assimilation in N-limited green algae.Plant Physiol,87:395-401.
    [40]Foyer CH,Notor G,Lelandais M,et al.1994.Short-term effects of nitrate,nitrite and ammonium assimilation and amino biosynthesis in maize.Planta,192:211-220.
    [41]Zhang L-G(张林刚),Deng X-P(邓西平)2000.Advances in studies on physiology and biochemistry of wheat drought resistance. Agric Res Arid Areas(干旱地区农业研究),18(3):87-92(in Chinese).
    [42]Srivali B,Renu KC.1998.Drought-induced enhancement of protease activity during monocarpic senescence in wheat.Current Sci,75 (11):1174-1176.
    [43]Chen L-S(陈立松),Liu X-H(刘星辉)1999.Effects of water stresson nitrogen and nucleic acid metabolisms inLitchi (Litchichinensis Sonn) leaves and their relations to Drought-resistance.Acta Phytophysiol Sin(植物生理学报),25(1):49-56(in Chinese).
    [44]Taniguchi M,Kobe M,Sugiyama T.1995.Aspartate aminotransferase isoenzyme inPanicum miliaceumL.,and NAD-malic enzyme-type C4plant:Comparison of enzymatic properties, primary structure,and expression patterns.Arch Biochem Biophys,318:295-326.
    [45]Zhang H(张慧),Wang P-H(汪沛洪)1991.A trace study of protein synthesis and degradation in wheat leaves during osmotic stress.Acta Phytophysiol Sin(植物生理学报),17(3):259-266(in Chinese).
    [46]Zhou S-M(周苏玫),Wang C-Y(张重义),Zhang Z-Y(工晨阳),et al.2001. Effect of waterlogging on the growth and nutrient metabolism of the root system of winter wheatActa Agron Sin(作物学报),27(5):673-679(in Chinese).
    [47]Sinclair TR,Pinter PJ,Kimball BAJr,et al.2000.Leaf nitrogen concentration of wheat subjected to elevated CO2and either water or N deficits.Agric Ecosys Environ,79:53-60.
    [48]Li F-S(李伏生),Kang S-Z(康绍忠),Zhang F-C(张富仓)2002. Effect of CO2and temperature increment on crop physiology and ecology.Chin JAppl Ecol(应用生态学报),13(9):1169-1173(inChinese).
    [49]Luo Y,Field CB,Mooey HA.1994.Predicting responses of photosynthesis and root fraction to elevated CO2:Interactions among carbon,nitrogen,and growth.Plant Cell Environ,17:1195-1204.
    [50]Sun G-S(孙谷畴),Zhao P(赵平),Zeng X-P(曾小平),et al.2001.Influence of UV-B radiation on photosynthesis and nitrogen utilization of paradisiaca grown in different nitrogen sources.Acta Phytoecol Sin(植物生态学报),25(3):317-324(in Chinese).
    [51]Qi Z-M(齐泽民),Zhong Z-C(钟章成),Deng J(邓君)2001. The effects of simulated acid rain on nitrogen metabolism of Eucommia ulmoidesleaves.Acta Phytoecol Sin(植物生态学报),25(5):544-548(in Chinese).
    [52]Nelson T, Dengler N.1997. Leaf vascular pattern formation. The Plant Cell 9,1121-1125.
    [53]Monteith JL.1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society, London B281,277-294.
    [54]陆景陵.植物营养学(上册)[M].北京:中国农业大学出版社,2003
    [55]林振武,陈敬祥.硝酸还原酶作为作物育种的生化指标的研究[J].河北农业大学学报,1987.10(3):104-108
    [56]Ambalavanan J. Absorption of Nitrogen, Oxygen and Argon on Na-CeX Zeolites Kluwer Academic Publishers, Manufactured in The Netherlands Absorption [J].Physiologia Plantarum,2002.8:271-278
    [57]Lamberss H, Szaniawski RK, De Visser R. Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values, and their significance [J].Physio.Plantarum,1983,58:557-563
    [58]Raven JR, Smith FA. Nitrogen assimilation and transport in vascular land plants in relation to intracellular PH regulation [J]. ExperimentalBotany,2002,58:769-792
    [59]Edwards G,Walker DA. C3,C4:Metabolism, Cellular and Environmental, Regulation of Photosynthesis [J].Biochem. BiophysicalActa.,2000,985:466-487
    [60]Bouma TJ,Janseen HJA, de Koch MJ,et al. Respiration energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its affectt [J].Physiologia Plantarum,1994,92:585-594
    [61]Angus JF.1995. Modeling N fertilization requirements for crops and pastures. In: Bacon PE, ed. Nitrogen fertilization in the environment. New York:Marcel Dekker, Inc.,109-127.
    [62]Addiscott TM, Whitmore AP, Powlson DS.1991. Farming, fertilizers and the nitrate problem. Wallingford:CAB International.
    [63]Ter Steege MW, Stulen I, Mary B.2001. Nitrogen in the environment. In:Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. Berlin:Springer-Verlag,379-397.
    [64]工建科,任淑文,王东风,等.黑龙江省桑树种质资源考察.蚕业科学,2004,30(1):73-75.
    [65]中国农业科学院蚕业研究所.中国桑树栽培学(M).北京:农业出版社,1994.6-10.
    [66]董世林.黑龙江省植物志.第四卷(M).哈尔滨:东北林业大学出版社,1992.174-179.
    [67]韩世玉.桑树资源概况及其多元化利用.贵州农业科学,2006,34(3):118-120.
    [68]戴玉伟,朱弘,杜宏志,等.论桑树资源经济价值和生态功能.防护林科技,2009(1):78-80.
    [69]何雪梅,廖森泰,刘吉平.桑树资源综合利用进展及开发对策.蚕业科学,2005,31(3):4-7.
    [70]黄东亮,奔占,何国英.桑树的氮素营养.广西蚕业,2000(1):21-24.
    [71]季晓波,季荣,江玲玲.桑树配方施肥技术.上海农业科技.2005(1):100.
    [72]金允昌,夏娟萍,张志良.施用镁肥对桑叶产量和叶质的影响.蚕桑通报,1999,30(1):35-37.
    [73]袁庆武.桑树叶面施肥的技术要点.江苏蚕业,2004(4):34-35.
    [74]Chichester F W. Effects of increased fertilizer rates on nitrogen content of runoff and percolate from monoliff lysimeters. J Environ Qual,1997, (6):211-217.
    [75]庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡.土壤,997,(2):80-83.
    [76]周鸣铮.美国测土施肥科学的进展.国外农学土壤肥料.1986,6:15-35.
    [77]王家玉.稻田土壤中氮素淋失的研究.土壤学报.1996,33(1):28-35.
    [78]Watts C A, Fowler S M, Wilman D. Nitrogen leaching losses from irrigated orchardgrass on sandysoil. J Environ Qual,1991,20(2):355.
    [78]Gutezeit B. Yield and nitrate content of carrots (Daucus carota L.) as affected by nitrogen supply. Acta Horticulturae,1999,506:87-98.
    [79]鲁剑巍,熊建平,陈防,等.施肥对桑叶品质的影响.蚕业科学,2004,30(4):417-420.
    [80]蒋瑜,张怀志.平衡施肥技术在桑树上的应用.土壤肥料,2004(5):33-35.
    [81]王波,戴漩颖,丁悦,等.不同施肥配比对桑产量和质量的影响.江苏蚕业,2001(1):13-15.
    [82]廖深谋.新植桑园地膜覆盖技术.广西蚕业,1999,36(2):28-29.
    [83]沈增学,翁荣林,谈建中,等.关于桑树对氮素吸收利用的研究:Ⅲ氮肥增施时期和用量与叶质的关系.江苏蚕业.1987,(1):23-27.
    [84]Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric Sci China,2002,1(7):776-785.
    [85]RAJANNA. The influence of N-source and supplies level to mulberry leaf ourput. Indian Agriculture Research,1994(4):28.
    [86]赵卫国,吴惠就,刘利.种茧育桑园专用复合肥的研究.蚕业科学,2000,26(1):48-50.
    [87]周晨曦,何茂顶,柴秀萍.推广桑园专用复合肥对提高蚕种产量与质量的效果.江苏蚕业,1993(3):34-35.
    [88]李洪胜,李玉厚,席甲英,等.桑树专用复配肥的研究.山东农业科学,1992(4):47-48.
    [89]沈国新,蒋松荣,孙树生,等.桑树专用有机复合肥的研究与开发.蚕桑通报,1992,23(2):22-25.
    [90]马丽霞,赵德志,左树清,等.桑树叶面喷施有机鳌合多效液施肥肥效比较试验报告.蚕学通讯,1995(1):6-11.
    [91]周鸣铮.中国测土施肥.土壤通报.1987,1:25-32.
    [92]中国农业年鉴.中国农业年鉴编辑委员会.北京:中国农业出版社,1984-1994.
    [93]戴玉伟,朱弘,杜宏志,等.论桑树资源经济价值和生态功能[J].防护林科技,2009(1):78-80.
    [94]王波,戴漩颍,丁悦.不同施肥配比对桑产量和质量的影响[J].江苏蚕业,2001(1):13-15.
    [95]蒋瑜,张怀志.钾素在我国果树优质增产中的作用[J].果树科学,2000,17(4):309-313.
    [96]郭文奇.单位面积桑园条数条长和施肥量与产叶量的关系[J].蚕桑通报,2001,31(3):31-33.
    [97]汪丽红,柳庆霞,朱义龙.氮磷钾硼配合施用对桑树的增产效果[J].安徽农学通报,2000,6(6):49.
    [98]韩世玉,杨红冬.春不同施肥量对桑树春季生产性能的影响研究[J].广西蚕业, 2001,38(1):15-19.
    [99]徐成美,魏晓军,沈增学.桑园模式施肥区域试验与应用[J].中国蚕业,2002,23(4):27-29.
    [100]李巧,王波,翁荣生.生物有机复合肥对桑树生长发育的影响[J].中国蚕业,2003,24(1):21-22.
    [101]鲁剑巍,熊建平,陈防.施肥对桑叶品质的影响[J].蚕业科学,2004,30(4):417-420.
    [102]马军,徐万仁.宁夏灌区丰产桑园施肥技术研究[J].蚕桑通报,2000,31(1):15-17.
    [103]哀庆武.桑树叶面施肥的技术要点[J].江苏蚕业,2004(4):34-35.
    [104]贾仲伟,王波.桑园土壤肥力测定及配方施肥的初步研究[J].江苏蚕业,2000(4):52-54.
    [105]黄东亮,奔占,何国英.桑树的氮素营养[J].广西蚕业,2000(1):21-24.
    [106]季晓波,季荣,江玲玲.桑树配方施肥技术[J].上海农业科技.2005(1):100.
    [107]赵子斌,胡家乐,胡幸为.沙壤土桑园合理施肥问题初探[J].北方蚕业,2000(1):15-16.
    [108]董廷文.沙壤质桑园土壤养分含量分析与肥培管理建议[J].北方蚕业,2002(3):24-28.
    [109]马军,徐万仁.宁夏灌区丰产桑园施肥技术研究[J].蚕桑通报,2000,31(1):15-17
    [110]沈永根.浅谈桑园施肥中的几个问题[J].中国蚕业,2001,22(2):35-36.
    [111]赵卫国,吴惠就,刘利.种茧育桑园专用复合肥的研究[J].蚕业科学,2000,26(1):48-50.
    [112]哀庆武.桑树叶面施肥的技术要点[J].江苏蚕业,2004(4):34-35.
    [113]顾泓,娄烽,朱荣海.不同产茧水平桑园施肥现状及土壤肥力的调查[J].蚕桑通报,2003(3):43-45.
    [114]胡顺德,赵祥营,王玉梅,等.谈谈桑园增施有机肥的好处.北方蚕业,2000(4):19.
    [115]陈敏刚,金佩华,鲁兴萌,等.蚕桑生态系统服务功能价值的初步评价[J].蚕业科学,2005(3):316-320.
    [116]韩世玉.桑树的生态价值及其在贵州“东桑西移”中的生态栽培[J].贵州农业科学,2007,35(5):140-142.
    [117]韩世玉.桑树资源概况及其多元化利用[J].贵州农业科学,2006,34(3):118-120
    [118]王建科,任淑文,王东风,等.黑龙江省桑树种质资源考察.蚕业科学,2004,30(1):73-75.
    [119]黄鹏,董玉山,王献龙.大石早生李氮磷钾配方施肥试验.经济林研究,2003,21(1):59-60.
    [120]刘广平.栗树果实发育过程中氮、磷、钾含量变化的研究.经济林研究,2005,23(1):50-51.
    [121]汪健,王松峰,毕庆文,等.氮磷钾用量对烤烟红花大金元产质量的影响[J].中国烟草科学,2009,30(5):19-23.
    [122]陈义强,刘国顺,习红昂,等.烟草栽培中土壤适宜含水率及施肥模型[J].农业工程学报,2009,25(2):42-49.
    [123]Thomas Katterer, Henrik Eckersten, Olof Andren, et al. Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes:application of a crop growth model[J]. Ecological Modelling,1997,102:301-314.
    [124]Sheehy J E, Gastal F, Mitchell P L, et al. A nitrogen-led model of grass growth[J]. Annals of Botany,1996,77:165-177.
    [125]Tabourel-Tayot Florence, Francois Gastal. MecaNiCAL, a supply-demand model of carbon and nitrogen partitioning applied to defoliated grass[J]. European Journal of Agronomy, 1998,9:223-241.
    [126]Yoko Osone, Masaki Tateno. Applicability and limitation of optimal biomass allocation models:a test of two species from fertile and infertile habitats[J]. Annals of Botany,2005,95:1211-1220.
    [127]Agren I Goran, Franklin Oskar. Root:shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany,2003,92:795-800.
    [128]McConnughay K D M, Coleman J S. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients[J]. Ecology,1999,80 (8):2581-2593.
    [129]Dingkuhn Michael. Modelling concepts for the phenotypic plasticity of dry matter and nitrogen partitioning in rice[J]. Agricultural Systems,1996,52:383-397.
    [130]Paponov I A, Posepanov O G, Lebediskai S, et al. Growth and biomass allocation, with nitrogen availability, of nearisogenic pea lines with differing foliage structure[J]. Annals of Botany,2000,85:563-569.
    [131]Grechi I, Vivin Ph, Hilbert G, et al. Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine[J]. Environmental and Experimental Botany,2007,59:139-149.
    [132]孟亚利,曹卫星,柳新伟.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [133]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003:64-68.
    [134]Marcelis L F M. Effect of fruit growth, temperature and irradiance on biomass allocation to the vegetative parts of cucumber [J]. Netherlands Journal of Agricultural Science, 1994,42:1387-1392.
    [135]徐国彬,罗卫红,陈发棣等.温度和辐射对一品红发育及主要品质指标的影响[J].园艺学报,2006,33(1):168-171.
    [136]Goudriaan J, Van Laar H H. Modelling potential crop growth processes[D]. The Netherlands:Kluwer Academic Publishers,1994:10-11.
    [137]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [138]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001:92-93.
    [139]艾希珍,张振贤,何启伟等.日光温室不同黄瓜叶位叶片光合作用研究[J].中国农业科学,2002,35(15):1519-1524.
    [140]焦雯珺,闵庆文,林煜等.植物氮素营养诊断的进展与展望[J].中国农学通报,2006,22(12):351-355.
    [141]Papadopoulos I. Nitrogen fertigation of greenhouse-grown cucumber[J]. Plant and Soil,1986,93:87-93.
    [142]李永秀.温室黄瓜生长发育模拟模型的研究[D].南京:南京农业大学,2005.
    [143]Terry L Kastens, John P Schmidt, Kevin C Dhuyvetter. Yield models implied by traditional fertilizerrecommendations and a framework for including nontraditional information[J]. Soil Sci Soc Am J,2003,67:351-364.
    [144]施建平,鲁如坤,时正元,等Logistic回归模型在红壤地区早稻推荐施肥中的应用[J].土壤学报,2002,39(6):853-862.
    [145]夏建国,李静,巩发永,吴德勇.茶叶高产优化施肥的模拟研究[J].茶叶科学,2005,25(3):165-171.
    [146]危常州,候振安,雷味雯,朱和明,张福锁,鲍柏杨,郭深,王桂花.不同地理尺度下综合施肥模型的建模与验证[J].植物营养与肥料学报,2005,11(1):13-20.
    [147]李萍萍,胡永光,赵玉国,尹学举,毛罕平.增施CO2气肥对温室结球莴苣光合作用影响的综合模型研究[J].农业工程学报,2001,17(3):75-79.
    [148]马成林,吴才聪,张书慧,等.基于数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2004,20(2):152-155.
    [149]杨宇姝,王福林,许晓强.基于神经网络的模糊土壤平衡施肥模型系统的研究[J].农机化研究,2007,10:49-50.
    [150]Tan Weixing, Gary D Hogan. Dry weight and N partitioning in relation to substrate N supply, internal N status and developmental stage in Jack Pine (Pinus banksiana Lamb.) seedlings:implications for modeling[J]. Annals of Botany,1998,81:195-201.
    [151]Scott K Gleeson. Optimization of tissue nitrogen and root-shoot allocation[J]. Annals of Botany,1993,71:23-31.
    [152]Kim Tae Hwan, Youn Tae Chun. Root zone temperature effects on nitrate assimilation and xylem transport in hydroponically grown cucumber plants[J]. Acta Horticulturae.2002,588:59-62.
    [153]裴孝伯,张福墁,王柳.不同光温环境对日光温室黄瓜氮磷钾吸收分配的影响[J].中国农业科学,2002,35(12):1510-1513.
    [154]Vahid Roohi. Seasonal changes of mineral nutrients in leaves of two Irovnian Almond cultivars[J]. Acta Horticulturae,2002,591:15-319.
    [155]Hikosaka K (2004). Interspecific difference in the photosynthesis-nitrogen relationship:patterns, physiological causes, and ecological importance. J Plant Res,117: 481-494.
    [156]Shangguan ZP, Shao MA, Dyckmans J (2000). Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol,56:46-51.
    [157]Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004). Response of Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen availability and temperature.New Phytol,162:377-386.
    [158]Demmig-Adams B, Adams IIIWW, Barker DH, Logan BA, Verhoeven AS, Bowling DR (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant,98:253-264.
    [159]林植芳,彭长连(2000).4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应.植物生理学报,26(5):387-392.
    [160]Logan BA, Demmig-Adams B, Adams IIIWW, Grace SC (1998). Antioxidants and xanthopyll cycle dependent energy dissipation in Cucurbita pepo L. and Vinca major acclimated to four growth PPFDs in the field. J Exp Bot,49 (328):1869-1879.
    [161]陈屏昭,王磊,代勋,刘忠荣,蒋彬,樊钦平(2005).缺磷强光下脐橙的过剩能量耗散机制.应用生态学报,16(6):1061-1066.
    [162]魏爱丽,工志敏,陈斌,翟志席,张英华(2004).土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响.作物学报,30(5):487-490.
    [163]林植芳,彭长连(2000).4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应.植物生理学报,26(5):387-392.
    [164]关义新,林葆,凌碧莹(2000).光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,6(2):152-158.
    [165]Filella I, Llusia J, Pinol J, Penuelas J (1998). Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacialentiscus and Quercusilex saplings in severe drought and high temperature conditions. Environ Exp Bot,39:213-220.
    [166]Laisk A, Loreto F (1996). Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence.Plant Physiol,110:903-912.
    [167]林植芳,彭长连,林桂珠(2005).光氧化条件下碳代谢中间产物与光合电子传递对PSⅡ光化学活性的调节作用.热带与亚热带植物学报,13(5):1-7.
    [168]Epron D, Godard D, Cornic G, Genty B (1995). Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvation L. and Castanea sativa Mill). Plant Cell Environ,18:43-51.
    [169]Gonzalez-More MB, Loureiro-Beldarrin I, Estavillo JM, Dunabeitia MK, Munoz-Rueda A, Gonzalez-Murua C (2003). Effect of photorespiratory C2 acid on CO2 assimilation, PSII photochemistry and the xanthophylls cycle in maize. Photosynth Res,78:161-173.
    [170]Sayed OH (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynth Res,41 (3):321-330.
    [171]张岁岐,山仑(2003).土壤干旱条件下氮素营养对玉米内源激素含量影响.应用生态学报,14(9):1503-1506.
    [172]上官周平,李世清编著(2004).旱地作物氮素营养生理生态.北京:科学出版社.
    [173]山仑,陈培元主编(1998).旱地农业的生理生态基础.北京:科学出版社.
    [174]Hu Y B, Sun G Y, Wang X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J]. Plant Physiology,2007,164:959-968.
    [175]Epron D, Godard D, Cornic G, Genty B (1995). Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell & Environment,18,43-51.
    [176]Sharkey TD, Bernacchi C, Farquhar GD, Singsaas EL (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment,30,1035-1040.
    [177]Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta,149,78-90.
    [178]Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,990,87-92.
    [179]Braun G., Malkin S. Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrance[J]. Biochimica et Biophysica Acta,1990,1017:79-90.
    [180]Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004,82:73-81.
    [181]Guo E H,Hu D,Tian C Y,Hu Y,Wang C Y,Yu Y Y. Study on the effects of soil nitrogen and moisture on plant photosynthetic physiological ecology. Journal of Anhui Agriculture Sciences,2008,36(26):11211-11213.
    [182]Nicodemus M A, Salifu F K, Jacobs D F. Growth nutrition and photosynthetic response of black walnut to varying nitrogen sources and rates. Journal of Plant Nutrition,2008,31(11):1917-1936.
    [183]尹丽,胡庭兴,刘永安,谢财永,冯毅,颜震,李银华,王永杰.施氮量对麻疯树幼苗生长及叶片光合特性的影响.生态学报,2011,31(17):4977-4984.
    [184]Guo S L, Yan X F, Bai B, Yu S.Effects of nitrogen supply on photosynthesis in larch seedlings.Acta Ecologica Sinica,2005,25(6):1291-1298.
    [185]Nakaji T, Fukami M, Dokiya Y, Lzuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica andPinus densiflora seedlings.Trees,2001,15(8):453-461.
    [186]Chen L, Zeng J, Xu D P, Zhao Z G, Guo J J, Lin K Q, Sha E. Effects of exponential nitrogen loading on growth and foliar nutrient status ofBetula alnoides Seedlings. Scientia Silvae Sinicae,2010,46(5):35-40.
    [187]Salifu K F,Timmer V R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research,2003,33(7):1287-1294.
    [188]ZHANG L M(张雷明),SHANGGUAN ZH P(上官周平),et al.Effects of long term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat[J].Chinese Journal of Applied Ecology(应用生态报),2003,14(5):695-698(n Chinese)
    [189]ZHANG L M(张雷明),SHANGGUAN ZH P(上官周平),et al.Effects of long term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat[J].Chinese Journal of Applied Ecology(应用生态学报),2003,14(5):695-698(in Chinese)
    [190]Zhao P,Sun G C,Peng S L. Ecophysiological research on nitrogen nutrition of plant. Ecologic Science,1998,17(2):37-42.
    [191]Cao C L,Li S X,Miao F. The Research situation about effects of nitrogen on certain physiological and biochemical process in plants. Journal of Northwest SciTech University of Agriculture and Forest(Natural Science Edition),1999,27(4):96-101.
    [192]王奇峰.氮磷对欧美107杨增产作用机制研究[D].北京:北京林业大学,2007.
    [193]徐济春,林钊沐,罗微等.矿质营养对光合作用影响的研究进展[J].安徽农学通报,2007,13(7):23-25.
    [194]Demmig-Adams B, Adams W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiology Plant,1996,98:253-264.
    [195]Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes [J]. Photosynth Research,2004, 79:209-218.
    [196]Hendrickson L, Britta Forster, Pogson B J, et al. A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II [J]. Photosynthesis Research,2005,84:43-49.
    [197]Flexas J, Medrano H. Energy dissipation in C3 plants under drought [J]. Functional Plant Biology,2002,29,1209-1215.
    [198]Lee H Y, Hong Y N, Chow W S. Photoinactivation of photosystem II complexes and photoprotection by nonfunctional neighbours in Capsicum annuum L. leaves [J]. Planta, 2001,212,332-342.
    [199]Genty B, Briantais J M, Baker N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,1989,990:87-92.
    [200]Bilger W, Schreiber U, Bock M. Determination of the quantum efficiency of PS II and of non-photochemical quenching of chlorophyll fluorescence in the field [J]. Oecologia, 1995,102:425-432.
    [201]Lavaud J, Kroth PG. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle [J]. Plant and Cell Physiology,2006,47,1010-1016.
    [202]Hendrickson L, Britta Forster, Pogson B J, et al. A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II [J]. Photosynthesis Research,2005,84:43-49.
    [203]Flexas J, Medrano H. Energy dissipation in C3 plants under drought [J]. Functional Plant Biology,2002,29,1209-1215.
    [204]Flexas J, Bota J, Loreto F, Comic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology,2004,6: 269-279
    [205]Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment,2005,28:834-849.
    [206]肖凯,张树华,邹定辉,张荣铣.不同形态氮素营养对小麦光合特性的影响.作物学报,2000,26:53-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700