用户名: 密码: 验证码:
蚕丝蛋白对无机物矿化的调控及其复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化机理的研究以及以此为基础的材料的仿生制备是目前生物学家和材料学家们所非常关注的问题。经过近半个世纪的世界各地科研工作者的辛勤工作,人们终于对生物体中完美而精妙的矿物质合成有了初步的了解,对参与其中的大分子的认识也有了大概的轮廓,对这些高性能材料的模拟常识和设计具有新型功能性的聚合物/陶瓷复合物成为了研究热点。
     动物的丝蛋白,与骨组织中的胶原蛋白一样,都是为人们所关注的重要的结构性蛋白质,虽然它并没有直接被自然界安排在生物矿物的构架之中,但贝类珍珠质中与之极其相似的蛋白质成分的存在使得丝蛋白成为体外模拟生物矿化模板的重要选择,而蚕丝中丝蛋白规整的取向排列结构又使人们考虑到其代替胶原蛋白合成骨替代材料的可能性。同时,由于丝蛋白在生物医药方面的应用研究非常广泛,因此,考察丝蛋白材料在特定溶液环境中的矿化诱导能力是具有指导意义的,如何调控材料的结构,能使得作为软组织工程材料的丝蛋白尽可能的避免诱导矿化,而作为硬组织替代材料的丝蛋白尽可能的促进矿化,是这方面研究中要解决的重要问题。
     在本论文的研究中,我们选用来源广泛的蚕丝蛋白及其再生溶液和材料,以溶液调控的方法为基础,结合蛋白质的结构特性以及在外界环境影响下的自组装性能,对碳酸钙、磷酸钙盐的溶液结晶过程进行了调控,并在此基础上进行了以丝蛋白材料为有机组分,碳酸钙、二氧化硅等作为无机组分的生物杂化材料的制备和性能研究。另外,我们也对蚕丝以及取向丝蛋白膜和取向壳聚糖膜中的有序结构对矿物沉积的影响做出了深入的讨论。
     首先,为了制备和研究二氧化硅/丝蛋白复合材料,我们尝试将水溶性的二氧化硅水分散体系即硅溶胶与高浓度丝蛋白水溶液进行不同配比的混合,经过自然条件下缓慢干燥成型并探究二氧化硅纳米粒子与蚕丝蛋白连续材料之间的作用以及两者共存对复合材料性能的影响。研究发现:对于由浇铸成型的再生丝蛋白/硅溶胶复合材料,纳米级的二氧化硅聚集体能够稳定均匀地分布在作为连续相的丝蛋白中。丝蛋白的β-折叠结构以及二氧化硅微粒的阻碍,使得复合材料中分子链段间的相对运动减弱,其动态力学性能得以改善。
     在对碳酸钙和磷酸钙盐的研究中,我们借鉴了贝类生物珍珠质中类丝蛋白的存在状态和介入方式,将蚕丝蛋白以无定形的溶液状态介入矿物质的结晶过程。采用再生丝蛋白作为可溶性添加物,加入碳酸钙饱和溶液体系,获得了新型的具有特殊形貌和晶型特征的丝蛋白/碳酸钙复合微粒,通过对外界条件的调控,能够分别获得两种具有不同形貌特征的尺寸均匀的微粒产物,微粒表面和切片的扫描电镜结果显示其中长径比约为2:1,长径约为2微米的米粒状微粒具有空心结构,晶型为方解石,而直径约为1微米的球状微粒则是实心结构,为方解石与球文石的混合体。两种微粒中都含有约15%丝蛋白成分,而且丝蛋白分散在碳酸钙微晶之间,介入了微晶的聚集。同时,两种杂化颗粒在母液中的熟化研究表明丝蛋白对文石的生成具有一定程度上的诱导作用。我们通过对溶液初始pH值,结晶温度,丝蛋白浓度以及丝蛋白分子量等影响因素的调控,成功实现了对两种杂化颗粒形成的控制。根据对实验结果的分析,提出了米粒状和球状碳酸钙/丝蛋白杂化微粒的形成机理假设。我们认为:钙离子与丝蛋白分子中带负电的集团之间的作用力导致无定型碳酸钙粒子与丝蛋白的吸附,而此时丝蛋白分子链在溶液中的状态将成为最终产物形成的决定性因素。当丝蛋白在外界条件影响下在溶液中形成具有部分方向性的自组装体时,能够调控碳酸钙的聚集从而形成具有空心结构并且各向异性的米粒状杂化微粒;而当丝蛋白在溶液中的状态是较为舒展的单分子链时,则产生各向同性的球状杂化微粒。另外,对再生丝蛋白对磷酸钙盐结晶的调控作用进行了初步探索,获得了丝蛋白能够加速和促进透钙磷石晶型转变的初步结论。
     在丝蛋白溶液调控矿化的基础上,我们使用蚕丝以及再生丝蛋白膜作为矿物质结晶的固体基质,对碳酸钙在基质表面的结晶生长行为进行了深入的讨论,其主旨在于探讨固体基质中分子链的取向性对矿物质生长方向的引导和模板作用。在含有丝蛋白溶液的碳酸钙过饱和溶液中,通过浸泡处理的方法,在脱胶丝表面获得了具有明显取向性,平行排列的碳酸钙结晶聚集体。通过对矿化时间和溶液pH环境的调控,能够成功的控制矿物质的沉积速度和沉积量,并得到完整碳酸钙包覆的蚕丝样品。为探讨蚕丝表面有序结构与矿物质生长方向之间的联系,我们选用溴化锂溶液对脱胶丝进行处理破坏其表面结构,之后得到的碳酸钙结晶层没有明显的取向性。不仅如此,取向排列的碳酸钙晶体呈较为罕见的文石晶型,而未完全取向排列的碳酸钙晶体则呈方解石和文石的混合晶型。我们认为:溶液中游离的蛋白质分子束与丝表面的有序部分,由于结构相似性和β-折叠结构的诱导成核作用,具有很强的吸附倾向。而这些吸附在丝表面的游离分子,则充当了碳酸钙粒子与丝基质之间的媒介,从而使得蚕丝中有序结构的模板效应得以体现,引导碳酸钙的取向沉积。预先单轴取向的再生丝蛋白膜表面,在丝蛋白溶液存在情况下,同样生成取向排列的碳酸钙结晶,从而对上述机理提供了有力的支持。
     另外,我们利用丝蛋白对碳酸钙结晶的调控作用而加强丝蛋白与矿物质之间的结合力,制备了具有规整形貌的丝蛋白/碳酸钙复合多孔支架。经过对复合多孔材料进行了形貌,晶型和组成表征,对碳酸钙的不同形貌与晶型的形成原因进行了深入的讨论并对制得的材料做了初步的力学性能探索研究。
     最后,我们对碳酸钙在壳聚糖/丝蛋白仿生体系中结晶机制的初步探索。其主要目的在于尝试以壳聚糖/丝蛋白体系模拟贝壳珍珠质中几丁质/类丝蛋白体系,着重考察壳聚糖有序结构对碳酸钙结晶的影响以及丝蛋白作为调控剂在体系中起到的媒介作用。实验发现,丝蛋白能够调控具有规整形貌的碳酸钙层在壳聚糖表面的生长。而具有取向结构的壳聚糖膜能够诱导碳酸钙(104)晶面的选择性吸附。
Biological organisms regularly produce bimolecular-inorganic hybrid materials such as bone,teeth,diatoms and shells,which all tend to have much superior mechanical properties over synthetic material hybrids.During the past few decades, Studies on biomineralization,as well as the organic/inorganic composite materials based on the principles of biomineralization,have attracted considerable interest of researchers.
     Natural animal silks,mainly from silkworms,have been in practically used by man for centuries mainly because of its unique luster,fineness,and mechanical properties.In recent years,extensive studies have been carried on the application of silk fibroin(SF) for non-textile uses.Although not chosen by the nature to involve into the biominerals as collagen,silk fibroin has surprisingly comparability with the silk-like protein in the organic template of nacre.That is why silk fibroin is considered as potential template in biomineralization.In addition,the biomedical application of silk as well as the regenerated silk fibroin materials made it important to control the mineral-regulating ability of silk fibroin.
     In the present work,we examined the morphology and crystallographic polymorph formation process of calcium carbonate and calcium phosphate in the presence of dissolved silk fibroin;note that the conformation of regenerated silk fibroin(RSF) can be controlled via the solvent environment.Based on the interaction of SF and minerals,SF/silica composite material and SF/calcium carbonate hybrid scaffold were prepared and characterized.Moreover,template effect of degummed silk and uniaxially deformed SF film and chitosan form on the deposition of calcium carbonate was deeply investigated.
     At first,In order to probe if there is interaction between silk protein and silica, and further more,whether the interaction can improve the mechanical properties of composite materials,the structure and property of the silk fibroin/silica composite material were studied.The results revealed the good compatibility of silk fibroin and silica in the composite system.Comparing to the pure silk fibroin material,the composite material showed better dynamic mechanical property in the range of 15℃to 55℃.Due to both the hydrogen bond and electrostatic interaction between SiO_2 and silk fibroin,the silica particles' interfusion among the chains of protein had a motive-impeding influence on the protein chains.This influence together with the stableβ-sheet conformation of silk fibroin matrices led the avoidance of modulus dissipation of the material.
     Mollusk shell is one of the best studied of all calcium carbonate biominerals.Its silk-like binder-matrix protein plays pivotal role during the formation of aragonite crystals in the nacre sheets.In the second part of our work,we provide novel experimental insights into the interaction of mineral and protein using a model system of reconstituted Bombyx mori silk fibroin solutions as templates for the crystallization of calcium carbonate(CaCO_3).We observed that inherent(self-assembling) aggregation process of silk fibroin molecules affected both of the morphology and crystallographic polymorph of CaCO_3 aggregates.This combination fostered the growth of a novel,rice-grain shaped protein/mineral hybrid with hollow structure with an aragonite polymorph formed after ripening.These observations suggest new hypotheses about the role of silk-like protein in the natural biomineralization process, but it also may serve to shed light on the formation process of those ersatz hybrids regulated by artificially selected structural proteins.
     Based on the SF solution-mediate mineralization,we investigated the crystallization of calcium carbonate on degummed silks and RSF films which were used as the solid substrate.By dipping in the supersaturated solution of calcium carbonate containing silk fibroin,clusters of parallel arranged calcium carbonatecrystals with obvious orientation were obtained on the surface of silk fibre after degumming.Silk samples completely covered by calcium carbonate deposition were prepared,and the amount and speed of the deposition can be controlled by the time of mineralization and the pH value of the solution.Influence of the oriented structures of the silk surface on the tropism of the mineral growth was studied by treating the silk fibre after degumming with lithium bromide solution to destroy the surface structure.No obvious orientation was found in the obtained calcium carbonate crystals on the treated silks.The results inspired the strong interaction between the oriented silk surface and the dissociative fibroin chains in the solution,which arose from the similar structure and the nucleation induced byβ-sheet structure.Afterwards, oriented deposition of calcium carbonate was obtained while calcium carbonate particles absorbed on the dissociative fibroin moulding by the oriented silk substrate. This mechanism can also be strongly supported by the similar oriented calcium carbonate crystals obtained on the surface of uniaxial deformed regenerated silk fibroin film in present of RSF solution.
     Moreover,silk fibroin/calcium carbonate composite scaffold was synthesized assisted by the strong combination between silk fibroin and mineral.After the characterization of the morphology,polymorph and component of the porous composites,the mechanisms of the different appearance and crystallization of the calcium carbonate were further discussed and some of the mechanical properties of the products we obtained were investigated.
     At last,we did some pilot research about the mechanism of crystallization of the calcium carbonate in chitosan/silk fibroin bionic system.Our work mainly focused on the influence of oriented chitosan structure on the crystallization of calcium carbonate and the effects of silk fibroin as intermediate in the system.We found that the growth of calcium carbonate layer with regular structure could be controlled by silk fibroin and the selective adsorption of calcium carbonate(104) crystal plane could be induced by oriented chitosan film.
引文
1. Shao, Z.Z. and F. Vollrath, Materials: Surprising strength of silkworm silk. Nature, 2002. 418(6899): p. 741-741.
    
    2. Jin, H.J. and D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature, 2003. 424(6952): p. 1057-1061.
    
    3. Lazo, N.D. and D.T. Downing, Crystalline regions of Bombyx mori silk fibroin may exhibit beta-turn and beta-helix conformations. Macromolecules, 1999. 32(14): p. 4700-4705.
    
    4. Yamane, T., et al., Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk II in relation to fiber formation mechanism of Bombyx mori silk fibroin. Macromolecules, 2003. 36(18): p. 6766-6772.
    
    5. Altman, G.H., et al., Silk-based biomaterials. Biomaterials, 2003. 24(3): p. 401-416.
    
    6. Liu, Y., et al., Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen-peroxide utilizing methylene-blue as electron shuttle. Analytica Chimica Acta, 1995. 316(1): p. 65-72.
    
    7. Inouye, K., et al., Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. Journal of Biochemical and Biophysical Methods, 1998. 37(3): p. 159-164.
    
    8. Li, C., et al., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006. 27(16): p. 3115-3124.
    
    9. Yeo, J.H., et al., Simple preparation and characteristics of silk fibroin microsphere. European Polymer Journal, 2003. 39(6): p. 1195-1199.
    
    10. Ohgo, K., et al., Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR Spectroscopy. Journal of the American Chemical Society, 2008. 130(12): p. 4182-4186.
    
    11. Zhou, L., et al., Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm, Bombyx Mori. Journal of Physical Chemistry B, 2005. 109(35): p. 16937-16945.
    
    12. Chen, X., et al., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007. 68(1): p. 223-231.
    
    13. Hakimi, O., et al., Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B-Engineering, 2007. 38(3): p. 324-337.
    
    14. Akai, H., The Structure and Ultrastructure of the Silk Gland. Experientia, 1983. 39(5): p. 443-449.
    
    15. Baker, D., A surprising simplicity to protein folding. Nature, 2000. 405(6782): p. 39-42.
    
    16. Komatsu, K., Polymeric Materials Encyclopedia, 1996: p. 7711-7721.
    17. Magoshi, J., Y. Magoshi, and S. Nakamura, Mechanism of Fiber Formation of Silkworm, in Silk Polymers: Materials Science and Biotechnology. 1994. p. 292-310.
    
    18. Thiel, B.L., D.D. Kunkel, and C. Viney, Physical and Chemical Microstructure of Spider Dragline - a Study by Analytical Transmission Electron-Microscopy. Biopolymers, 1994. 34(8): p. 1089-1097.
    
    19. Chen, X., Z.Z. Shao, and L. Zhou. 2005: PRC.
    
    
    20. Chen, X., et al., Conformation Transition of Silk Protein Membranes Monitored by Time-resolved FTIR Spectroscopy: Conformation Transition Behavior of Regenerated Silk Fibroin Membranes in Alcohol Solution at High Concentration. Acta Chimica Sinica, 2003. 61(5): p. 625-629.
    
    21. ExPASy, Expert Protein Analysis System: p. P05790;P07856.
    
    22. Tanaka, K., et al., Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1999. 1432(1): p. 92-103.
    
    23. Tanaka, K., S. Inoue, and S. Mizuno, Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochemistry and Molecular Biology, 1999. 29(3): p. 269-276.
    
    24. Mita, K., S. Ichimura, and T. James, Highly repetitive structure and its organization of the silk fibroin gene. Journal of Molecular Evolution, 1994. 38(6): p. 583-592.
    
    25. Chevillard, M., P. Couble, and J.C. Prudhomme, Complete Nucleotide-Sequence of the Gene Encoding the Bombyx- Mori Silk Protein-P25 and Predicted Amino-Acid-Sequence of the Protein. Nucleic Acids Research, 1986. 14(15): p. 6341-6342.
    
    26. Zhou, C.-Z., et al., Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research, 2000. 28(12): p. 2413-2419.
    
    27. Zhou, C.Z., et al., Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins-Structure Function and Genetics, 2001. 44(2): p. 119-122.
    
    28. Lotz, B. and F.C. Cesari, The chemical structure and the crystalline structures of Bombyx mori. Biochimie, 1979. 61: p. 205-214.
    
    29. Manning, R.F. and L.P. Gage, Journal of Biological Chemistry 1978. 253: p. 2044.
    
    30. Ohshoma, Y. and Y. Suzuki, Proceeding National Acadamic Science of USA, 1977. 74(5363).
    
    31. Shen, Y, M.A. Johnson, and D.C. Martin, Microstructural Characterization of Bombyx mori Silk Fibers. Macromolecules, 1998. 31(25): p. 8857-8864.
    
    32. Asakura, T. and T. Murakami, Nmr of Silk Fibroin .4. Temperature-Induced and Urea-Induced Helix-Coil Transitions of the -(Ala)N-Sequence in Philosamia- Cynthia-Ricini Silk Fibroin Protein Monitored by C-13 Nmr- Spectroscopy. Macromolecules, 1985. 18(12): p. 2614-2619.
    
    33. Matsumoto, A., et al., Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B, 2006. 110(43): p. 21630-21638.
    
    34. Chen, X., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001. 89(1): p. 25-34.
    
    35. Yao, J.M., Y. Nakazawa, and T. Asakura, Structures of Bombyx moriand Samia cynthia ricini Silk Fibroins Studied with Solid-State NMR. Biomacromolecules, 2004. 5: p. 680-688.
    
    36. Zhou, L., et al., Metal element contents in silk gland and silk fiber of Bombyx mori silkworm. Acta Chimica Sinica, 2005. 63(15): p. 1379-1382.
    
    37. Zhou, W., et al., Effect of Fe and Mn on the conformation transition of Bombyx mori silk fibroin. Acta Chimica Sinica, 2007. 65: p. 2197-2201.
    
    38. Zong, X., et al., Effect of pH and copper (II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry, 2004. 43: p. 11932-11941.
    
    39. Rossle, M., et al., Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers, 2004. 74(4): p. 316-327.
    
    40. Kaplan, D.L., et al., Silk Polymers: Materials Science and Biotechnology. Vol. Symposium Series 544. 1994, Washington: ACS Books. 1-370.
    
    41. Hossain, K.S., et al., Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Biomacromolecules, 2003. 4(2): p. 350-359.
    
    42. Termonia, Y., Molecular Modeling of Spider Silk Elasticity. Macromolecules, 1994. 27(25): p. 7378-7381.
    
    43. Heslot, H., Artificial fibrous proteins: a review. Biochimie, 1998. 80(1): p. 19-31.
    
    44. Marsh, R.E., R.B. Corey, and P. L, Structure of Tussah silk fibroin. Acta Crystallographica, 1955. 8: p. 710-715.
    
    45. Warwicker, J., Comparative studies of fibroins II. The crystal structures of various fibroins. Journal of Molecular Biology, 1960. 2: p. 350-362.
    
    46. Valluzzi, R., et al., Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules, 1996. 29(27): p. 8606-8614.
    
    47. Valluzzi, R. and S.P. Gido, The crystal structure of Bombyx mori silk fibroin at the air- water interface. Biopolymers, 1997. 42(6): p. 705-717.
    
    48. Valluzzi, R., et al., Orientation of silk III at the air-water interface. International Journal of Biological Macromolecules, 1999. 24(2-3): p. 237-242.
    
    49. Asakura, T., et al., 13C solid-state NMR study of structural heterogeneity in peptides containing both polyalanine and repeated GGA sequences as a local structural model of nephila clavipes dragline silk (spidroin 1). Macromolecules, 2005. 38(8): p. 3356-3363.
    
    50. Asakura, T. and J. Yao, 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Science, 2002. 11(11): p. 2706-2713.
    
    51. Sonoyama, M. and T. Nakano, Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FTIR spectroscopy combined with digital signal processing. Applied Spectroscopy, 2000. 54(7): p. 968-973.
    
    52. Sonoyama, M., et al., Dynamic FT-IR spectroscopic studies of silk fibroin films. Applied Spectroscopy, 1997. 51(4): p. 545-547.
    
    53. Monti, P., et al., Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. Journal of Raman Spectroscopy, 2001. 32(2): p. 103-107.
    
    54. Monti, P., et al., Raman spectroscopic studies of silk fibroin from bombyx mori. Journal of Raman Spectroscopy, 1998. 29(4): p. 297-304.
    
    55. Demura, M., et al., Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society, 1998. 120(6): p. 1300-1308.
    
    56. Lowenstam, H.A., Minerals formed by organisms Science (Washington, D. C, 1883-), 1981. 211: p. 1126-1131.
    
    57. Wada, K., On the arrangement of aragonite crystals in the inner layer of the nacre. Bull.Jap.Soc.Sci. Fish, 1959. 25: p. 342-345.
    
    58. Weiner, S., Y. Talmon, and W. Traub, Electron-Diffraction Of Mollusk Shell Organic Matrices And Their Relationship To The Mineral Phase. International Journal Of Biological Macromolecules, 1983. 5(6): p. 325-328.
    
    59. Addadi, L. and S. Weiner, Control And Design Principles In Biological Mineralization. Angewandte Chemie-International Edition In English, 1992. 31(2): p. 153-169.
    60. Fincham, A.G., J. Moradian-Oldak, and J.P. Simmer, The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 1999. 126(3): p. 270-299.
    
    61. Hunter, G.K., Interfacial aspects of biomineralization. Current Opinion in Solid State & Materials Science, 1996. 1(3): p. 430-435.
    
    62. 陈斌等,中华泌尿外科杂志,2000.21(10):p.598.
    
    63. Lowenstam, H.A., Biogeochemistry of hard tissues, theirdepth and possible pressure relationships. Barobiology and the experimental biology of the deep sea, ed. R.W. Brauer. 1973, NC: University of North Carolina: Chapel Hill.
    
    64. Degens, E.T., Molecular mechanisms on carbonate, phosphate and silica deposition in the living cell. Topics Curr. Chem., ed. F.L. boschke. 1976, Berlin, Heidelberg, New York: Springer.
    
    65. Bevelander, G, Abalone: Gross and Fine structrue. 1988, Pacific Grove, CA: the boxwood press.
    
    66. Fritz, M. and D.E. Morse, The formation of highly organized biogenic polymer/ceramic composite materials: the high-performance microaluminate of molluscan nacre. Current Opinion in Colloid & Interface Science, 1998. 3(1): p. 55-62.
    
    67. Meenakshi, V.R., et al., The influence of substrate on calcification patterns in molluscan shell. Calcified Tissue Research, 1974. 15: p. 31-44.
    
    68. Meenakshi, V.R., P.L. Blackwelder, and K.M. Wilbur, An ultrastructural study of shell regeneration in Mytilus edulis (mollusca: bivalvia). J. Zool. Lond., 1973. 171: p. 475-484.
    
    69. Zaremba, C.M., et al., Critical transitions in the biofabrication of abalone shells and flat pearls. Chemistry of Materials, 1996. 8(3): p. 679-690.
    
    70. Fritz, M., et al., Flat Pearls from Biofabrication of Organized Composites on Inorganic Substrates. Nature, 1994. 371(6492): p. 49-51.
    
    71. Cui, F.Z., Y. Li, and J. Ge, Self-assembly of mineralized collagen composites. Materials Science & Engineering R-Reports, 2007. 57(1-6): p. 1-27.
    
    72. Wang, X.M., et al., Hierarchical structural comparisons of bones from wild-type and liliput(dtc232) gene-mutated Zebrafish. Journal of Structural Biology, 2004. 145(3): p. 236-245.
    
    73. Saito, T, et al., In vitro apatite induction by phosphophoryn immobilized on modified collagen fibrils. Journal of Bone and Mineral Research, 2000. 15(8): p. 1615-1619.
    
    74. Simpson, T.L. and B.E. Volcani, Silicon and siliceous structures in biological systems. 1981, Berlin: Springer-Verlag.
    
    75. Kroger, N., C. Bergsdorf, and M. Sumper, A New Calcium-Binding Glycoprotein Family Constitutes a Major Diatom Cell-Wall Component. Embo Journal, 1994. 13(19): p. 4676-4683.
    
    76. Kroger, N., et al., Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. European Journal of Biochemistry, 1997. 250(1): p. 99-105.
    
    77. Kroger, N., R. Deutzmann, and M. Sumper, Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 1999. 286(5442): p. 1129-1132.
    
    78. Letellier, S.R., et al., Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers. Biochimica Et Biophysica Acta-General Subjects, 1998. 1380(1): p. 31-45.
    
    79. Mann, S., Molecular Recognition In Biomineralization. Nature, 1988. 332(6160): p. 119-124.
    
    80. Sheng, X.X., M.D. Ward, and J.A. Wesson, Adhesion between molecules and calcium oxalate crystals: Critical interactions in kidney stone formation. Journal of the American Chemical Society, 2003. 125(10): p. 2854-2855.
    
    81. Hardikar, V.V. and E. Matijevic, Influence of ionic and nonionic dextrans on the formation of calcium hydroxide and calcium carbonate particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 186(1-2): p. 23-31.
    
    82. Shen, F.H., Q.L. Feng, and CM. Wang, The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth, 2002. 242(1-2): p. 239-244.
    
    83. Feng, Q.L., et al., Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell. Journal of Crystal Growth, 2000. 216(1-4): p. 459-465.
    
    84. Raz, S., S. Weiner, and L. Addadi, Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Advanced Materials, 2000. 12(1): p. 38-+.
    
    85. Falini, G, et al., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996. 271(5245): p. 67-69.
    
    86. Tong, H., et al., Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials, 2004. 25(17): p. 3923-3929.
    
    87. Mann, S., Biomineralization Principles and Concepts in Biogenic Materials. 2001, New York: Chemistry Oxford University Press.
    
    88. Sugawara, A. and T. Kato, Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chemical Communications, 2000(6): p. 487-488.
    
    89. Raz, S., et al., The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization. Advanced Functional Materials, 2003. 13(6): p. 480-486.
    
    90. Meldrum, F.C. and S.T. Hyde, Morphological influence of magnesium and organic additives on the precipitation of calcite. Journal of Crystal Growth, 2001. 231(4): p. 544-558.
    
    91. Levi-Kalisman, Y., et al., Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy. Advanced Functional Materials, 2002. 12(1): p. 43-48.
    
    92. Yang, L., et al., Control synthesis of aragonite calcium carbonate with glucan as the template. Chemical Journal of Chinese Universities-Chinese, 2004. 25(8): p. 1403-1406.
    
    93. Yang, L., et al., Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization. Journal of Inorganic Biochemistry, 2003. 97(4): p. 377-383.
    
    94. Manoli, F. and E. Dalas, Calcium carbonate crystallization in the presence of glutamic acid. Journal of Crystal Growth, 2001. 222(1-2): p. 293-297.
    
    95. Gower, L.A. and D.A. Tirrell, Calcium carbonate films and helices grown in solutions of poly(aspartate). Journal of Crystal Growth, 1998. 191(1-2): p. 153-160.
    
    96. Gower, L.B. and D.J. Odom, Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. Journal of Crystal Growth, 2000. 210(4): p. 719-734.
    
    97. Yu, S.H., et al., Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes. Crystal Growth & Design, 2004. 4(1): p. 33-37.
    
    98. Falini, G, et al., Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. Journal of the Chemical Society-Dalton Transactions, 2000(21): p. 3983-3987.
    
    99. Falini, G, Crystallization of calcium carbonates in biologically inspired collagenous matrices. International Journal of Inorganic Materials, 2000. 2(5): p. 455-461.
    
    100. DeOliveira, D.B. and R.A. Laursen, Control of calcite crystal morphology by a peptide designed to bind to a specific surface. Journal of the American Chemical Society, 1997. 119(44): p. 10627-10631.
    
    101. Bigi, A., et al., Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization. Angewandte Chemie-International Edition, 2002. 41(12):p.2163-2166.
    102.Yu,S.H.,et al.,Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions.Nano Letters,2003.3(3):p.379-382.
    103.Wegner,G.,et al.,Polymers designed to control nucleation and growth of inorganic crystals from aqueous media.Macromolecular Symposia,2001.175:p.349-355.
    104.Gao,Y.X.,et al.,Block-copolymer-controlled growth of CaCO3 microrings.Journal of Physical Chemistry B,2006.110(13):p.6432-6436.
    105.Naka,K.,Effect of dendrimers on the crystallization of calcium carbonate in aqueous solution,in Dendrimers V:Functional and Hyperbranched Building Blocks,Photophysical Properties,Applications in Materials and Life Sciences.2003.p.141-158.
    106.Hosoda,N.,A.Sugawara,and T.Kato,Template effect of crystalline poly(vinyl alcohol)for selective formation of aragonite and vaterite CaCO3 thin films.Macromolecules,2003.36(17):p.6449-6452.
    107.Li,M.,H.Colfen,and S.Mann,Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures.Journal of Materials Chemistry,2004.14(14):p.2269-2276.
    108.冯庆玲,崔福斋,and张伟,纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报,2002.24(2):p.124-128.
    109.Weiner,S.and W.Traub,X-Ray-Diffraction Study Of The Insoluble Organic Matrix Of Mollusk Shells.Febs Letters,1980.111(2):p.311-316.
    110.Weiner,S.and W.Traub,Macromolecules In Mollusk Shells And Their Functions In Biomineralization.Philosophical Transactions Of The Royal Society Of London Series B-Biological Sciences,1984.304(1121):p.425-&.
    111.Levi-Kalisman,Y.,et al.,Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM.Journal Of Structural Biology,2001.135(1):p.8-17.
    112.Pereira-Mouries,L.,et al.,Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima.European Journal Of Biochemistry,2002.269(20):p.4994-5003.
    113.Ito.,M.,et al.,J.Biomed.Mater.Res.,1999.45:p.204-208.
    114.Yamaguchi,I.,et al.,J.Biomed.Mater.Res.,2001.55:p.20-27.
    115.Chang,M.C.,et al.,Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent.Journal of Materials Science Letters,2001.20(13): p. 1199-1201.
    
    116. Doi, Y., et al., Sintered carbonate apatites as bioresorbable bone substitutes. Journal of Biomedical Materials Research, 1998. 39(4): p. 603-610.
    
    117. Furuzono, T., et al., Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. Journal of Biomedical Materials Research, 2000. 50(3): p. 344-352.
    
    118. Nemoto, R., et al., Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechanochemical route. Journal Of Sol-Gel Science And Technology, 2001. 21(1-2): p. 7-12.
    
    119. Wang, L., R. Nemoto, and M. Senna, Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. Journal Of Nanoparticle Research, 2002. 4(6): p. 535-540.
    
    120. Wang, L., R. Nemoto, and M. Senna, Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite. Journal Of Materials Science-Materials In Medicine, 2004. 15(3): p. 261-265.
    
    121. Wang, L., R. Nemoto, and M. Senna, Three-dimensional porous network structure developed in hydroxyapatite-based nanocomposites containing enzyme pretreated silk fibroin. Journal Of Nanoparticle Research, 2004. 6(1): p. 91-98.
    
    122. Nemoto, R., et al., Increasing the crystallinity of hydroxyapatite nanoparticles in composites containing bioaffinitive organic polymers by mechanical stressing. Journal Of The American Ceramic Society, 2004. 87(6): p. 1014-1017.
    
    123. Wang, L., R. Nemoto, and M. Senna, Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. Journal Of The European Ceramic Society, 2004. 24(9): p. 2707-2715.
    
    124. Nemoto, R., et al., Preferential alignment of hydroxyapatite crystallites in nanocomposites with chemically disintegrated silk fibroin. Journal Of Nanoparticle Research, 2004. 6(2-3): p. 259-265.
    
    125. Furuhata, K., et al., J. Seric. Sci Jpn., 1994. 63: p. 315-322.
    
    126. Kong, X.D., et al., Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal Of Crystal Growth, 2004. 270(1-2): p. 197-202.
    
    127. Kokubo, T., et al., Solutions Able to Reproduce Invivo Surface-Structure Changes in Bioactive Glass-Ceramic a-W3. Journal of Biomedical Materials Research, 1990. 24(6): p. 721-734.
    
    128. Kokubo, T., et al., Ca, P-Rich Layer Formed on High-Strength Bioactive Glass-Ceramic a-W. Journal of Biomedical Materials Research, 1990. 24(3): p. 331-343.
    
    129. Tamada, Y., et al., Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. Journal Of Biomaterials Science-Polymer Edition, 1999. 10(7): p. 787-793.
    
    130. Takeuchi, A., et al., Apatite deposition on silk sericin in a solution mimicking extracellular fluid: Effects of fabrication process of sericin film, in Bioceramics 16. 2004.p. 403-406.
    
    131. Takeuchi, A., et al., Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. Journal Of Biomedical Materials Research Part A, 2003. 65A(2): p. 283-289.
    
    132. Furuzono, T., A. Kishida, and J. Tanaka, Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(gamma-methacryloxypropyl trimethoxysilane)-grafted silk fibroin fibers through chemical bonding. Journal Of Materials Science-Materials In Medicine, 2004. 15(1): p. 19-23.
    
    133. Korematsu, A., et al., Nano-scaled hydroxyapatite/polymer composite - III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers. Journal Of Materials Science-Materials In Medicine, 2005. 16(1): p. 67-71.
    
    134. Korematsu, A., et al., Nano-scaled hydroxyapatite/polymer composite - II. Coating of sintered hydroxyapatite particles on poly(2-(o-[l '-methylpropylideneamino] carboxyamino) ethyl methacrylate)-grafted silk fibroin fibers through covalent linkage. Journal Of Materials Science, 2004. 39(9): p. 3221-3225.
    
    135. Li, C.M., et al., Silk apatite composites from electrospun fibers. Journal Of Materials Research, 2005. 20(12): p. 3374-3384.
    
    136. Li, C.M., et al., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006. 27(16): p. 3115-3124.
    
    137. Meinel, L., et al., Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals Of Biomedical Engineering, 2004. 32(1): p. 112-122.
    
    138. Meinel, L., et al., Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal Of Biomedical Materials Research Part A, 2004. 71A(1): p. 25-34.
    
    139. Meinel, L., et al., The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005. 26(2): p. 147-155.
    140. Huang, L.M., et al., Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003. 13(4): p. 666-668.
    
    141. Xu, Q., et al., Novel and simple synthesis of hollow porous silica fibers with hierarchical structure using silk as template. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006. 127(2-3): p. 212-217.
    
    142. Foo, C.W.P., et al., Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(25): p. 9428-9433.
    1.Qian,J.,et al.,Characteristics of regenerated silk fibroin membrane in its application to the immobilization of glucose-oxidase and preparation of a p-benzoquinone mediating sensor for glucose.Fresenius Journal of Analytical Chemistry,1996.354(2):p.173-178.
    2.He,S.J.,R.Valluzzi,and S.P.Gido,Silk I structure in Bombyx mori silk foams.International Journal of Biological Macromolecules,1999.24(2-3):p.187-195.
    3.Liu,Y.,et al.,蚕丝蛋白的结构和性能.Chinese polymer bulletin(高分子通报),1998.3:p.17-23.
    4.Ayub,Z.H.,M.Arai,and K.Hirabayashi,Quantitative Structural-Analysis and Physical-Properties of Silk Fibroin Hydrogels.Polymer,1994.35(10):p.2197-2200.
    5.Thiel,B.L.,K.B.Guess,and C.Viney,Non-periodic lattice crystals in the hierarchical microstructure of spider(major ampullate) silk.Biopolymers,1997.41(7):p.703-719.
    6.Magoshi,J.,Y.Magoshi,and S.Nakamura,Mechanism of Fiber Formation of Silkworm,in Silk Polymers:Materials Science and Biotechnology.1994.p.292-310.
    7.Valluzzi,R.and S.P.Gido,The crystal structure of Bombyx mori silk fibroin at the air- water interface.Biopolymers,1997.42(6):p.705-717.
    8.Nemoto,R.,et al.,Preferential alignment of hydroxyapatite crystallites in nanocomposites with chemically disintegrated silk fibroin.Journal Of Nanoparticle Research,2004.6(2-3):p.259-265.
    9.Nemoto,R.,et al.,Increasing the crystallinity of hydroxyapatite nanoparticles in composites containing bioaffinitive organic polymers by mechanical stressing.Journal Of The American Ceramic Society,2004.87(6):p.1014-1017.
    10.Nemoto,R.,et al.,Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechanochemical route.Journal Of Sol-Gel Science And Technology,2001.21(1-2):p.7-12.
    11.Wang,L.,R.Nemoto,and M.Senna,Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content.Journal Of The European Ceramic Society, 2004. 24(9): p. 2707-2715.
    
    12. Chen, J.Y., X.X. Feng, and D. Xu, Studies on nano-TiO2 modified siulk ferroin composite films. Acta Polymerica Sinica, 2006(5): p. 649-653.
    
    13. Coradin, T., O. Durupthy, and J. Livage, Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification. Langmuir, 2002. 18(6): p. 2331-2336.
    
    14. Coradin, T., A. Coupe, and J. Livage, Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. Colloids And Surfaces B-Biointerfaces, 2003. 29(2-3): p. 189-196.
    
    15. Her, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry. 1979, New York: Wiley.
    
    16. Smitha, S., et al., Silica-gelatin bio-hybrid and transparent nano-coatings through sol-gel technique. Materials Chemistry and Physics, 2007. 103(2-3): p. 318-322.
    
    17. Tsukada, M., G. Freddi, and J.S. Crighton, Structure and Compatibility of Poly(Vinyl Alcohol)-Silk Fibroin (Pva/Sf) Blend Films. Journal of Polymer Science Part B-Polymer Physics, 1994. 32(2): p. 243-248.
    
    18. Chen, X., Z.Z. Shao, and L. Zhou. 2005: PRC.
    
    19. Vrieling, E.G., et al., Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie-Intemational Edition, 2002. 41(9): p. 1543-1546.
    
    20. Chen, X., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001. 89(1): p. 25-34.
    
    21. Lee, K.H., Silk sericin retards the crystallization of silk fibroin. Macromolecular Rapid Communications, 2004. 25(20): p. 1792-1796.
    
    22. Freddi, G., et al., Physical-properties and dyeability of naoh-treated silk fibers. Journal of Applied Polymer Science, 1995. 55(3): p. 481-487.
    
    23. Tsukada, M., et al., Structural-analysis of poly(4-hydroxybutyl acrylate)-grafted silk fibers. Angewandte Makromolekulare Chemie, 1996. 241: p. 41-56.
    1. Mann, S., Biomineralization Principles and Concepts in Biogenic Materials. 2001, New York: Chemistry Oxford University Press.
    
    2. Weiner, S. and P.M. Dove, An overview of biomineralization processes and the problem of the vital effect, in Biomineralization. 2003. p. 1-29.
    
    3. Naka, K. and Y Chujo, Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chemistry Of Materials, 2001. 13(10): p. 3245-3259.
    
    4. Falini, G., et al., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996. 271(5245): p. 67-69.
    
    5. Choi, C.S. and Y.W. Kim, A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials, 2000. 21(3): p. 213-222.
    
    6. Belcher, A.M., et al., Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature, 1996. 381(6577): p. 56-58.
    
    7. Colfen, H., Precipitation of carbonates: recent progress in controlled production of complex shapes. Current Opinion In Colloid & Interface Science, 2003. 8(1): p. 23-31.
    
    8. Hosoda, N. and T. Kato, Thin-film formation of calcium carbonate crystals: Effects of functional groups of matrix polymers. Chemistry Of Materials, 2001. 13(2): p. 688-693.
    
    9. Ozin, G.A., Panoscopic materials: synthesis over 'all' length scales (pg 419, 2000). Chemical Communications, 2000(8): p. 723-723.
    
    10. Levi, Y, et al., Control over aragonite crystal nucleation and growth: an in vitro study of biomineralization. Chemistry-a European Journal, 1998. 4(3): p. 389-396.
    
    11. Falini, G, et al., Oriented crystallization of vaterite in collagenous matrices. Chemistry-A European Journal, 1998. 4(6): p. 1048-1052.
    
    12. Nemoto, R., et al., Increasing the crystallinity of hydroxyapatite nanoparticles in composites containing bioaffinitive organic polymers by mechanical stressing. Journal Of The American Ceramic Society, 2004. 87(6): p. 1014-1017.
    
    13. Scharnweber, D., et al., Mineralization behaviour of collagen type I immobilized on different substrates. Biomaterials, 2004. 25(12): p. 2371-2380.
    14. Levi-Kalisman, Y., et al., Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. Journal Of Structural Biology, 2001. 135(1): p. 8-17.
    
    15. Falini, G., S. Weiner, and L. Addadi, Chitin-silk fibroin interactions: Relevance to calcium carbonate formation in invertebrates. Calcified Tissue International, 2003. 72(5): p. 548-554.
    
    16. Weiner, S. and W. Traub, X-Ray-Diffraction Study Of The Insoluble Organic Matrix Of Mollusk Shells. Febs Letters, 1980. 111(2): p. 311-316.
    
    17. Sudo, S., et al., Structures of mollusc shell framework proteins. Nature, 1997. 387(6633): p. 563-564.
    
    18. Scott, J.K. and G.P. Smith, Searching For Peptide Ligands With An Epitope Library. Science, 1990. 249(4967): p. 386-390.
    
    19. Li, C.M., G.D. Botsaris, and D.L. Kaplan, Selective in vitro effect of peptides on calcium carbonate crystallization. Crystal Growth & Design, 2002. 2(5): p. 387-393.
    
    20. Xu, A.W., et al., Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials, 2006. 16(7): p. 903-908.
    
    21. Gehrke, N., et al., Superstructures of calcium carbonate crystals by oriented attachment. Crystal Growth & Design, 2005. 5(4): p. 1317-1319.
    
    22. Markov, I.V., Crystal Growth for Beginners; Fundamentals of Nucleation, Crystal Growth and Epitaxy;, ed. W. Scientific. 1995, Singapore.
    
    23. Kontoyannis, C.G. and N.V Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst, 2000. 125(2): p. 251-255.
    
    24. Gotoh, Y., et al., Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer, 1997. 38(2): p. 487-490.
    
    25. Ngo, H., et al., Focused ion beam in dental research. American Journal Of Dentistry, 2000. 13: p. 31D-34D.
    
    26. Moghadama, S.H., R. Dinarvand, and L.H. Cartilier, The focused ion beam technique: A useful tool for pharmaceutical characterization. International Journal Of Pharmaceutics, 2006. 321(1-2): p. 50-55.
    
    27. Chen, X., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001. 89(1): p. 25-34.
    28. Pontoni, D., et al, Crystallization of calcium carbonate observed in-situ by combined small- and wide-angle X-ray scattering. Journal Of Physical Chemistry B, 2003. 107(22): p. 5123-5125.
    
    29. Schuth, F., Non-siliceous mesostructured and mesoporous materials. Chemistry Of Materials, 2001. 13(10): p. 3184-3195.
    
    30. Yang, Y.H., Z.Z. Shao, and X. Chen, Influence of pH value on the structure of regenerated Bombyx mori silk fibroin in aqueous solution by optical spectroscopy. Acta Chimica Sinica, 2006. 64(16): p. 1730-1736.
    
    31. Yamaguchi, K., et al., Primary Structure of the Silk Fibroin Light Chain Determined by Cdna Sequencing and Peptide Analysis. Journal of Molecular Biology, 1989. 210(1): p. 127-139.
    
    32. Zhengbing Cao, X.C., Jinrong Yao, Lei Huang, Zhengzhong Shao,, The preparation of regenerated silk fibroin microspheres. Soft Matters, 2007. 3(7): p. 910-915.
    
    33. Hossain, K.S., N. Nemoto, and J. Magoshi, Rheological study on aqueous solutions of silk fibroin extracted from the middle division of Bombyx Mori silkworm. Nihon Reoroji Gakkaishi, 1999. 27(2): p. 129-130.
    
    34. Ochi, A., et al., Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules, 2002. 3(6): p. 1187-1196.
    
    35. Yu, S.H., H. Colfen, and M. Antonietti, Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. Journal of Physical Chemistry B, 2003. 107(30): p. 7396-7405.
    
    36. Qi, L.M., J. Li, and J.M. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002. 14(4): p. 300-+.
    
    37. Shen, Q., et al., Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. Journal of Physical Chemistry B, 2005. 109(39): p. 18342-18347.
    
    38. Nam, J. and Y.H. Park, Morphology of regenerated silk fibroin: Effects of freezing temperature, alcohol addition, and molecular weight. Journal of Applied Polymer Science, 2001. 81(12): p. 3008-3021.
    
    39. Lia Addadi, D.J., Fabio Nudelman, Steve Weiner,, Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. Chemistry-A European Journal,2006.12:p.980-987.
    40.Suzuki,O.,S.Kamakura,and T.Katagiri,Surface chemistry and biological responses to synthetic octacalcium phosphate.Journal of Biomedical Materials Research Part B-Applied Biomaterials,2006.77B(1):p.201-212.
    41.Zhan,J.H.,et al.,Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation.Advanced Functional Materials,2005.15(12):p.2005-2010.
    42.Lu,X.and Y.Leng,Theoretical analysis of calcium phosphate precipitation in simulated body fluid.Biomaterials,2005.26(10):p.1097-1108.
    43.Iijima,M.,et al.,Efects of Ca addition on the formation of octacalcium phosphate and apatite in solution at pH 7.4 and at 37C.Journal of Crystal Growth,1998.193:p.182-188.
    1. 戴永定,生物矿物学.Vol 第一章.1994,北京:石油工业出版社.
    
    2. Mann, S., Biomineralization Principles and Concepts in Biogenic Materials. 2001, New York: Chemistry Oxford University Press.
    
    3. Falini, G., et al., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996. 271(5245): p. 67-69.
    
    4. Addadi, L., et al., Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry-A European Journal, 2006. 12(4): p. 981-987.
    
    5. Heuer, A.H., et al., Innovative Materials Processing Strategies - a Biomimetic Approach. Science, 1992. 255(5048): p. 1098-1105.
    
    6. Weiner, S. and H.D. Wagner, The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998. 28: p. 271-298.
    
    7. Zhai, Y. and F.Z. Cui, Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2006. 291(1): p. 202-206.
    
    8. C.Jeunieux, Comprehensive Biochemistry, ed. M. Florkin and E.H. Stotz. Vol. 26C. 1971, Amsterdam: Elsevier.
    
    9. Levi-Kalisman, Y, et al., Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. Journal of Structural Biology, 2001. 135(1): p. 8-17.
    
    10. Weiner, S. and W. Traub, Macromolecules In Mollusk Shells And Their Functions In Biomineralization. Philosophical Transactions of The Royal Society Of London Series B-Biological Sciences, 1984. 304(1121): p. 425-&.
    
    11. Heinemann, F., L. Treccani, and M. Fritz, Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. Biochemical and Biophysical Research Communications, 2006. 344(1): p. 45-49.
    
    12. Falini, G., et al., Oriented crystallization of vaterite in collagenous matrices. Chemistry-A European Journal, 1998. 4(6): p. 1048-1052.
    
    13. Cao, B. and C. Mao, oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir, 2007. 23: p. 10701-10705.
    
    14. Shen, Y, M.A. Johnson, and D.C. Martin, Microstructural Characterization of Bombyx mori Silk Fibers. Macromolecules, 1998. 31(25): p. 8857-8864.
    
    15. Tamada, Y, et al., Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. Journal of Biomaterials Science-Polymer Edition, 1999. 10(7): p. 787-793.
    
    16. Takeuchi, A., et al., Apatite deposition on silk sericin in a solution mimicking extracellular fluid: Effects of fabrication process of sericin film, in Bioceramics 16. 2004. p. 403-406.
    
    17. Takeuchi, A., et al., Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. Journal Of Biomedical Materials Research Part A, 2003. 65A(2): p. 283-289.
    
    18. Shao, Z., et al., Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer, 1999. 40(10): p. 2493-2500.
    
    19. Xue, G., Progress in Polymer Science, 1994. 18: p. 337-435.
    
    20. Pontoni, D., et al., Crystallization of calcium carbonate observed in-situ by combined small- and wide-angle X-ray scattering. Journal Of Physical Chemistry B, 2003. 107(22): p. 5123-5125.
    
    21. Li, G., et al., Natural silk spinning process. European Journal of Biochemistry, 2001. 269: p. 1-8.
    1.倪礼忠 and 陈麒,复合材料科学与工程.2000,北京:科学出版社.
    2.D.赫尔,张双寅,郑维平,蔡良武(译),复合材料导论.1989,北京:中国建筑工业出版社.
    3.李世普,生物医用材料导论.2000,武汉:武汉工业大学出版社.
    4.Mao,J.S.,et al.,Structure and properties of bilayer chitosan-gelatin scaffolds.Biomaterials,2003.24(6):p.1067-1074.
    5.Meinel,L.,et al.,Bone tissue engineering using human mesenchymal stem cells:Effects of scaffold material and medium flow.Annals of Biomedical Engineering,2004.32(1):p.112-122.
    6.Meinel,L.,et al.,Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds.Journal of Biomedical Materials Research Part A,2004.71A(1):p.25-34.
    7.Meinel,L.,et al.,The inflammatory responses to silk films in vitro and in vivo.Biomaterials,2005.26(2):p.147-155.
    8.邵正中,et al.,丝蛋白海绵状三维多孔材料制备方法.2005:中华人民共和国.
    9.曹正兵,丝蛋白自组装行为及其在生物医药方面的应用研究,in高分子科学系.2005,复旦大学:上海.
    10.Iizuka,E.,Silk-an Overview.Applied Polymer Symposia,1985(41):p.163-171.
    11.Yamaura,K.,et al.,Flow-Induced Crystallization of Bombyx-Mori L Silk Fibroin from Regenerated Aqueous-Solution and Spinnability of Its Solution.Applied Polymer Symposia,1985(41):p.205-220.
    12.Yu,T.,S.Zhang,and Z.Shao,Conformation transition of silk fibroin Chemical journal of chinese universities-chinese,1996.17(2):p.323-325
    13.Tsukada,M.,et al.,Structure and molecular-conformation of tussah silk fibroin films-effect of methanol.Journal of Polymer Science Part B-Polymer Physics,1995.33(14):p.1995-2001.
    14.Iizuka,E.and J.T.Yang,The disordered and beta conformation of silk fibroin in solution.Biochemistry,1968.7(6):p.2218-2228.
    15.Li,C.,et al.,Electrospun silk-BMP-2 scaffolds for bone tissue engineering.Biomaterials,2006.27(16):p.3115-3124.
    16.Falini,G.,et al.,Influence on the formation of aragonite or vaterite by otolith macromolecules.European Journal of Inorganic Chemistry,2005(1):p.162-167.
    1.Naka,K.and Y.Chujo,Control of crystal nucleation and growth of calcium carbonate by synthetic substrates.Chemistry Of Materials,2001.13(10):p.3245-3259.
    2.Weiner,S.and W.Traub,X-Ray-Diffraction Study Of The Insoluble Organic Matrix Of Mollusk Shells.Febs Letters,1980.111(2):p.311-316.
    3.Weiner,S.and W.Traub,Macromolecules In Mollusk Shells And Their Functions In Biomineralization.Philosophical Transactions Of The Royal Society of London Series B-Biological Sciences,1984.304(1121):p.425-&.
    4.Weiner,S.,Y.Talmon,and W.Traub,Electron-Diffraction Of Mollusk Shell Organic Matrices And Their Relationship To The Mineral Phase.International Journal of Biological Macromolecules,1983.5(6):p.325-328.
    5.Kato,T.,Polymer/calcium carbonate layered thin-film composites.Advanced Materials,2000.12(20):p.1543-1546.
    6.Sorlier,P.,et al.,Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan.Biomacromolecules,2001.2(3):p.765-772.
    7.Li,B.Q.,et al.,Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture.Acta Polymerica Sinica,2002(6):p.828-833.
    8.Zhang,S.and K.E.Gonsalves,Chitosan-calcium Carbonate Composites by a Biomimetic Process.Materials Science and Engineering 1995.C3:p.117-124.
    9.C.Jeunieux,Comprehensive Biochemistry,ed.M.Florkin and E.H.Stotz.Vol.26C.1971,Amsterdam:Elsevier.
    10.Levi-Kalisman,Y.,et al.,Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM.Journal of Structural Biology,2001.135(1):p.8-17.
    11.Falini,G.,S.Weiner,and L.Addadi,Chitin-silk fibroin interactions:Relevance to calcium carbonate formation in invertebrates.Calcified Tissue International,2003.72(5):p.548-554.
    12.Kotachi,A.,T.Miura,and H.Imai,Polymorph control of calcium carbonate films in a poly(acrylic acid)-chitosan system.Crystal Growth & Design,2006.6(7):p.1636-1641.
    13.Payne,S.R.,M.Heppenstall-Butler,and M.F.Butler,Formation of thin calcium carbonate films on chitosan biopolymer substrates.Crystal Growth &Design,2007.7(7):p.1262-1276.
    14.Sugawara,A.and T.Kato,Aragonite CaC03 thin-film formation by cooperation of Mg2+ and organic polymer matrices.Chemical Communications,2000(6):p.487-488.
    15.Hosoda,N.and T.Kato,Thin-film formation of calcium carbonate crystals:Effects of functional groups of matrix polymers.Chemistry of Materials,2001.13(2):p.688-693.
    16.Sugawara,A.,T.Ishii,and T.Kato,Self-organized calcium carbonate with regular surface-relief structures.Angewandte Chemic-International Edition,2003.42(43):p.5299-5303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700