用户名: 密码: 验证码:
强潮驱陆架海中的湍流与混合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
占全球海洋总面积8%的陆架海是海洋中物理、生物活动最为密集的区域.在陆架海中,湍流混合是众多物理、生化过程的核心,它是水体结构及营养盐通量的关键控制因子,并控制着初级生产率及颗粒物的沉降、再悬浮、絮凝与解凝过程.利用在黄海与Clyde海两典型强潮驱陆架海中湍流混合的直接观测,本文对强潮驱陆架海中的湍流混合特征及其机理进行了较为深入与系统的研究.
     通过对弱层化季节黄海两对比性站位(潮流类型分别为往复型与旋转型)处潮流结构与湍流混合特征的研究,本文发现往复型与旋转型潮流中潮混合特征显著不同:1、在往复型潮流中,水体不同深度处水平流速垂直剪切的位相基本一致,而在旋转型潮流中,由海底摩擦作用于潮流而产生的强流速剪切由海底缓慢向上传播;2、在往复型潮流中,由平均流速的对数分布所估计出的海底摩擦速度与由实测高频流速直接计算的结果基本相当,而在旋转型潮流中,前者是后者的二倍.分析表明,潮流的旋转、由局地地形造成的型阻以及水体的弱层化可能是上述差异产生的原因;3、经典的壁湍流理论以及湍封闭模型中经常采用的湍动能与其耗散率间的关系对于弱层化的往复型潮流是成立的,而在旋转型潮流中,壁湍流理论需要进行修正.
     对强层化季节黄海两对比性站位(分别位于中央海盆区与局地陆坡区)处层化、内波以及湍流混合特征的研究结果表明:1、强层化季节的陆架海水体一般呈现显著的三层热盐结构,在水体近乎混合均匀的上混合层与潮流底边界层之间为强跃层;2、近表层水体的湍流混合强度主要由海表浮力通量的日变化与海表风强迫控制,而在潮流底边界层内,潮混合是水体热量、物质、动量与能量垂直交换的主要机制;3、潮混合影响的深度由潮流大小决定,在黄海,一般可达10-15 m,因此,在水深较深的区域,在跃层与潮混合所至深度范围的上界之间存在湍流混合非常弱的区域,这显著抑制水体内物质的垂直通量,为物质垂直交换的瓶颈,而在水深较浅的区域,潮混合影响范围可至跃层底部,因此物质在跃层以下整个水体中混合非常均匀,当跃层内间歇性强混合发生时,可以产生显著的跨跃层物质输运;4、近底潮致强湍流耗散缓慢地向上传播,底上不同深度处垂直湍扩散系数也具有显著的位相差异,且二者均随时间呈现四分之一周日周期的变化;5、在地形较为平坦的中央海盆区,内波活动非常微弱,因此跃层内湍流混合非常弱,垂直扩散系数为分子扩散水平,跨跃层物质通量受到显著抑制,而在地形变化较为显著的局地陆坡区,内波活动非常活跃,除内潮的影响外,高频内波与内孤立波的影响也很显著,因此跃层内存在很强的间歇性强混合,内孤立波存在的区域,水体湍流混合显著增强.
     基于剪切不稳定的线性理论,本文研究了强层化强潮驱陆架海中水体的动力稳定性.结果表明:1、一般来讲水体并不处于一些研究者所认为的临界稳定性状态,而可能是很不稳定或很稳定;2、虽然强潮驱陆架海中实际流动所对应的临界梯度Richardson数有时非常接近Miles-Howard临界值0.25,但在很多情况下其显著小于0.25,因此在实际应用中简单地取0.25作为剪切不稳定发生的临界值是不合理的;3、水体中最不稳定扰动生长的e-折周期与最不稳定扰动最显著处的浮性周期基本相当,水体中小振幅扰动的生长率与湍流混合强度显著地受控于水体的层结状况;4、水体湍流混合特征与剪切不稳定性之间存在着机制性联系,可以由不稳定扰动的特征量来参数化湍动能耗散率,本文给出了相应的参数化公式.
The shelf seas have an importance that is out of proportion to the relativelysmall fraction of the area of the global ocean they occupy (~8%).It is area ofintense physical and biological activity.In shelf seas,turbulent mixing is central tomany physical and biological processes,as it is often the key determinant of watercolumn structure and nutrient fluxes,and hence the rate of primary production,and also the settling,resuspension,aggregation and disaggregation of particulatematter.In this dissertation,turbulence and mixing in typical tidally energeticshelf seas are investigated by using direct measurements of turbulence parametersin the Yellow Sea and Clyde Sea.
     By analyzing the characteristics of turbulence at two comparative stations(the fows are reversing and rotating tidal currents,respectively) in the YellowSea,it is found that the reversing and rotating tidal flows affect small-scale near-bottom dynamics differently.In reversing flows,the near-bottom shear and theshear at the upper levels are almost in phase,while in rotating flows,the shear gen-crated near the scafloor propagates slowly to the water interior.The log-layer andskin-layer estimates of the bottom friction velocity show close correspondence forthe reversing tidal flows,but when the tidal vector rotates over a sloping bottomthe log-layer estimate is approximately twice of the skin-layer one.The rotation,form drag due to local topographic inhomogeneities,and weak but appreciablestratification are suggested to be possible sources for this discrepancy.The clas-sical wall-layer parameterization of the turbulent dissipation rate is found to holdwell for reversing flows,while modifications are needed for rotating flows.Therelationship between the turbulent kinetic energy and its dissipation rate,whichis widely used to parameterize the dissipation rate in turbulence closure models,is found to hold well for both reversing and rotating flows,but with differentcoefficients.
     Microstructure profiling measurements at two comparative stations (a deepercentral basin and a local shelf break) in the stratified Yellow Sea are analyzed,with emphasis on tidal and internal-wave induced turbulence near the bottomand in the pyenocline.The water column has a distinct three-layer thermohaline structure,consisting of weakly stratified surface and bottom boundary layers anda narrow sharp pycnocline.Turbulence in the surface layer is controlled by thediurnal cycle of buoyancy flux and wind forcing at the sea surface.while thebottom stress induced by barotropic tidal eurrents dominates turbulence in thebottom boundary layer.The maximum level at which the tidally enhanced mixingcan affect generally depends on the magnitude of the tidal current,and it canbe up to 10-15 m in the Yellow Sea.This suggests that,in the deeper regionsof the shelf seas,turbulent dissipation and mixing are very weak at the levelsbetween the near-bottom tidally enhanced layer and the pycnocline.Therefore,these levels provide a significant bottle neck for the vertical exchanges.In theshallow regions,however,the tidally-induced turbulence can occupy the wholewater colum below the pycnocline.A quarter-diurnal periodicities of the turbulentdissipation rate and eddy diffusivity are found at different heights with evidenttime lag.In the relatively flat central basin,the pycnocline is essentially non-turbulent and internal-wave activity is very weak.Therefore,vertical fluxes acrossthe pycnocline decreased to molecular levels.In contrast,internal waves of variousperiods can be always found near the local shelf break.Particularly,on the passageof internal solitary waves,turbulence in pycnocline can be increased by orders.
     The linear theory of dynamic instability is used to investigate the stability ofbaroclinic tidal flows in shelf seas.It is found that the flows are not generally ina state of marginally stable,but either very unstable or very stable.Although forsome flows the critical gradient Richardson number is close to the Miles-Howardlimit of 0.25,for others it is substantially less.The e-folding period of the mostunstable disturbances is found to be generally close to the buoyancy period at thelevels where the disturbance has the largest amplitude.This suggests that thegrowth rate of small disturbances and the consequent turbulence in the flow arelargely under a physical control of the st ratification.A mechanistic link betweenthe turbulent dissipation and the instability of the flow is reveale d,based on whicha new paramerization formula for turbulent dissipation is devised.
引文
[1] 周磊,田纪伟,张效谦.东海陆架破折处小尺度过程观测.科学通报,2005, 50 (16):1784-1788.
    [2] Alpers, W., M.-X. He, K. Zeng, et al. The distribution of internal waves in the East China Sea and the Yellow Sea studied by multi-sensor satellite images. Proceedings of 2005 International Geoscience and Remote Sensing Symposium, 2005, IEEE International 7: 4784-4787.
    [3] Arneborg, L. Mixing efficiencies in patchy turbulence. Journal of Physical Oceanography, 32 (5): 1496-1506.
    [4] Barenblatt, G. I., and G.S. Golitsyn. Local structure of mature dust storms. Journal of the Atmospheric Sciences, 1974, 31 (7): 1917-1933.
    [5] Bowden, K. F. The physical oceanography of coastal waters. W. Sussex: Ellis Horwood Ltd.,1983. 302 pp.
    [6] Burchard, H., K. Bolding, T. P. Rippeth, et al. Microstructure of turbulence in the Northern North Sea: A comparative study of observations and model simulations. Journal of Sea Research, 2002,47 (3-4), 223-238.
    [7] Burchard, H., P. D. Craig, J. R. Gemmrich, et al. Observational and numerical modeling methods for quantifying coastal ocean and turbulence. Progress in Oceanography, 2008, 76 (4): 399-442.
    [8] Businger, J., J. Wyngaard, Y. Izumi, et al. Flux-Profile Relationships in the atmospheric surface layer. Journal of Atmospheric Science, 1971,28 (2): 181-189.
    [9] Cheng, R. T, C. H. Ling, and J. W. Gartner. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. Journal of Geophysical Research, 1999,104 (C4): 7715-7728.
    [10] Chriss, T. M, and D. R. Caldwell. Evidence for the influence of form drag on bottom boundary layer flow. Journal of Geophysical Research, 1982, 87 (C6): 4148-4154.
    [11] Craig, P. D., and M. L. Banner. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 1994,24 (12): 2546-2559.
    [12] Dewey, R. K., and G B. Crawford. Bottom stress estimates from vertical dissipation rate profiles on the continental shelf. Journal of Physical Oceanography, 1988, 18 (8): 1167-1177.
    [13] Diamessis, P. J., and L. G. Redekopp. Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. Journal of Physical Oceanography, 2006, 36 (5): 784-812.
    [14] Dickey, T. D., and A. J. Williams Ⅲ. Interdisciplinary ocean process studies on the New England shelf. Journal of Geophysical Research, 2001, 106 (C5): 9427-9434.
    [15] Dillon, T. M. Vertical overturns: a comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research, 1982, 87 (C12): 9601-9613.
    [16] Doron, P. K., L. Bertuccioli, J. Katz, et al. Turbulence characteristic and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography,2001,31 (8): 2108-2134.
    [17] Egbert, G. D., and R. D. Ray. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 2000,405 (15): 775-778.
    [18] Elliott, A. J. The boundary layer character of tidal currents in the eastern Irish Sea. Estuarine, Coastal and Shelf Science, 2002, 55 (3): 465-480.
    [19] Fedorov, K. N. The thermohaline finestructure of the ocean. Oxford: Pergamon Press, 1978.170 pp.
    [20] Fisher, N. R., J. H. Simpson, and M. J. Howarth. Turbulent dissipation in the Rhine ROFI forced by tidal flow and wind stress. Journal of Sea Research, 2002, 48 (4): 249-258.
    [21] Foster, D. L., R. A. Beach, and R. A. Holman. Field observations of the wave bottom boundary layer. Journal of Geophysical Research, 2000, 105 (C8): 19,634-19,647.
    [22] Friedrichs, C. T., and L. D. Wright. Sensitivity of bottom stress and bottom roughness estimates to density stratification, Eckernford Bay, southern Baltic Sea. Journal of Geophysical Research, 1997, 102 (C3): 5721-5732.
    [23] Fugate, D. C, and R. J. Chant. Near-bottom shear stresses in a small, highly stratified estuary. Journal of Geophysical Research, 2005, 110 (C03022), doi:10.1029/2004JC002563.
    [24] Gargett, A. E. Vertical eddy diffusivity in the ocean interior. Journal of Marine Research, 1984, 42 (2): 359-393.
    [25] Gargett, A. E. Observing turbulence with a modified acoustic Doppler current profiler.Journal of Atmospheric and Oceanic Technology, 1994, 11 (6): 1592-1610.
    [26] Gargett, A. E. Velcro measurement of turbulence kinetic energy dissipation rate. Journal of Atmospheric and Oceanic Technology, 1999,16(12): 1973-1993.
    [27] Gregg, M. C. Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research, 1989, 94 (C7): 9686-9698.
    [28] Gregg, M. C., T. B. Sanford, and D. P. Winkel. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 2003,422: 513-515.
    [29] Green, J. A. M., J. H. Simpson, S. Legg, et al.. Internal waves, baroclinic energy fluxes, and mixing at the European shelf edge. Continental Shelf Research, 2008,28 (7): 937-950.
    [30] Guo, X., and T. Yanagi. Three-dimensional structure of tidal current in the East China Sea and the Yellow Sea. Journal of Oceanography, 1998, 54 (6): 651-668.
    [31] Hazel, P. Numerical studies of the stability of inviscid stratified shear flows. Journal of Fluid Mechanics, 1972, 51 (1): 39-61.
    [32] Holloway, P. E., P. G. Chatwin, and P. Craig. Internal tide observations from the Australian North West Shelf in summer 1995. Journal of Physical Oceanography, 2001, 31 (5):1182-1199.
    [33] Howard, L. N. Note on a paper by John W. Miles. Journal of Fluid Mechanics, 1961, 10 (4): 509-512.
    [34] Howard, L. N., and S. A. Maslowe. Stability of stratified shear flows. Boundary Layer Meteorology, 1973,4 (1-4): 511-523.
    [35] Howarth, M. J., J. H. Simpson, J. Sundermannn, et al. Process of vertical exchange in shelf seas (PROVESS). Journal of Sea Research, 2002,47 (3-4): 199-208.
    [36] Howarth, M. J., and A. J. Souza. Reynolds stress observations in continental shelf seas. Deep-Sea Research Ⅱ, 2005, 52 (9-10): 1075-1086.
    [37] Hsu, M. K., A. K. Liu, and C. Liu. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Research, 2000,20 (4): 389-410.
    [38] Ivey, G. N., K. B. Winters, and J. R. Koseff. Density stratification, turbulence, but how much mixing? Annual Review of Fluid Mechanics, 2008,40: 169-184.
    [39] Kang, S. K., M. G. G Foreman, H.-J. Lie, et al. Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M_2 tide. Journal of Geophysical Research, 2002, 107 (C3), 3020, doi:10.1029/2001JC000838.
    [40] Kantha, L. H., and C. A. Clayson. Small scale processes in geophysical fluid flows. San Diego: Academic Press, 2000. 888 pp.
    [41] Kelley, D. E., H. J. S. Fernando, A. E. Gargett, et al. The diffusive regime of double-diffusive convection. Progress in Oceanography, 2003, 56 (3): 461-481.
    [42] Kim, S.-C, C. T. Friedrichs, J. P.-Y. Maa, et al. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data. Journal of Hydraulic Engineering, 2000, 126 (6): 399-406.
    [43] Knauss, J. A. Introduction to physical oceanography (2~(nd) edition). New Jersey: Pearson Prentice-Hall Inc, 2000. 309 pp.
    [44] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR, 1941, 30: 301-305 (Reprinted in:Proceedings of the Royal Society of London A, 1991,434: 9-13).
    [45] Kundu, P. K., and I. M. Cohen. Fluid Mechanics (2~(nd) edition). San Diego: Academic Press,2002. 730 pp.
    [46] Kunze, E. A., A. J. Willams Ⅲ, and M. G Briscoe. Observations of shear and vertical stability from a neutrally buoyant float. Journal of Geophysical Research, 1990, 95 (C10):18,127-18,142.
    [47] Lee, J. C., and K. T. Jung. Application of eddy viscosity closure models for the M_2 tide and tidal currents in the Yellow Sea and East China Sea. Continental Shelf Research, 1999, 19 (4): 445-475.
    [48] Lee, J. H., I. Lozovatsky, S.-T. Jang, et al. Episodes of nonlinear internal waves in the northern East China Sea. Geophysical Research Letter, 2006, 33 (L18601),doi:10.1029/2006GL027136.
    [49] Li, M. Z. Direct skin friction measurements and stress partitioning over movable sand ripples. Journal of Geophysical Research, 1994, 99 (C1): 791-799.
    [50] Liu, Z., H. Wei, G. Liu, et al. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine, Coastal and Shelf Science, 2004,61 (1): 25-35.
    [51] Lohrmann, A., B. Hackett, and L. P. Roed. High resolution measurements of turbulence, velocity, and stress using a pulse-to-pulse coherent sonar. Journal of Atmospheric and Oceanic Technology, 1990,7(1): 19-37.
    [52] Lorke, A., and A. W(?)est. Application of coherent ADCP for turbulence measurements in the bottom boundary layer. Journal of Atmospheric and Oceanic Technology, 2005, 22 (11):1821-1828.
    [53] Lorke A., L. Umlauf, T. Jonas, et al. Dynamics of turbulence in low-speed oscillating bottom-boundary layers of stratified basins. Environmental Fluid Mechanics, 2002, 2 (4):291-313.
    [54] Lozovatsky, I. D., T. M. Dillon, A. Yu. Erofeev, et al. Variations of thermohaline structure and turbulent mixing on the Black Sea shelf at the beginning of autumn cooling. Journal of Marine Systems, 1999, 21 (1-4): 255-282.
    [55] Lozovatsky, I. D., and H. J. S. Fernando. Turbulent mixing on a shallow shelf of the Black Sea. Journal of Physical Oceanography, 2002,32 (3): 945-956.
    [56] Lozovatsky, I., E. Roget, H. J. S. Fernando, et al. Sheared turbulence in a weakly-stratified upper ocean. Deep-Sea Research Ⅰ,2006, 53 (2): 387-407.
    [57] Lu, Y., and R. G. Lueck. Using a broadband ADCP in a tidal channel. PartⅡ: Turbulence.Journal of Atmospheric and Oceanic Technology, 1999,16 (11) 1568-1579.
    [58] Lueck, R. L., and Y. Lu. The logarithmic layer in a tidal channel. Continental Shelf Research,1997,17(14): 1785-1801.
    [59] MacKinnon, J. A., and M. C. Gregg. Shear and baroclinic energy flux on the Summer New England Shelf. Journal of Physical Oceanography, 2003a, 33 (7): 1462-1475.
    [60] MacKinnon, J. A., and M. C. Gregg. Mixing on the late-summer New England Shelf -solibores, shear and stratification. Journal of Physical Oceanography, 2003b, 33 (7):1476-1492.
    [61] MacKinnon, J. A., and M. C. Gregg. Near-Inertial waves on the New England Shelf: the role of evolving stratification, turbulent dissipation, and bottom drag. Journal of Physical Oceanography, 2005a, 35 (12): 2408-2424.
    [62] MacKinnon, J. A., and M.C. Gregg. Spring mixing on the New England Shelf. Journal of Physical Oceanography, 2005b, 35 (12): 2425-2443.
    [63] Matsuno, T., J.-S. Lee, M. Shimizu, et al. Measurements of the turbulent energy dissipation rate e and an evaluation of the dispersion process of the Changjiang Diluted Water in the East China Sea. Journal of Geophysical Research, 2006, 111 (C11S09),doi: 10.1029/2005 JC003196.
    [64] Mellor, G L., and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 1982,20 (4): 851-875.
    [65] Miles, J. W. On the stability of heterogeneous shear flows. Journal of Fluid Mechanics, 1961,10 (4): 496-508.
    [66] Miles, J. W., and L. N. Howard. Note on a heterogeneous shear flow. Journal of Fluid Mechanics, 1964,20 (2): 331-336.
    [67] Monin, A. S., and A. M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1. Cambridge: MIT Press, 1971. 782 pp.
    [68] Monin, A. S., and A. M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2. Cambridge: MIT Press, 1975. 874 pp.
    [69] Monserrat, S., and A. J. Thorpe. Use of ducting theory in an observed case of gravity waves. Journal of the Atmospheric Sciences, 1996, 53 (12): 1724-1736.
    [70] Mourn, J. N., A. Perlin, J. M. Klymak, et al. Convectively driven mixing in the bottom boundary layer. Journal of Physical Oceanography, 2004, 34 (10): 2189-2202
    [71] Muller-Karger, F. E., R. Varela, R. Thunell, et al. The importance of continental margins in the global carbon cycle. Geophysical Research Letter, 2005, 32 (L01602),doi: 10.1029/2004GL021346.
    [72] Nasmyth, P. W. Oceanic turbulence: [PhD dissertation]. Vancouver: University of British Columbia, 1970.
    [73] Nidzieko, N. J., D. A. Fong, and J. L. Hench. Comparison of Reynolds Stress Estimates Derived from Standard and Fast-Ping ADCPs. Journal of Atmospheric and Oceanic Technology, 2006,23 (6): 854-861.
    [74] Nimmo Smith, W. A. M. A submersible three-dimensional particle tracking velocimetry system for flow visualization in the coastal ocean. Limnology and Oceanography: Methods,2008, 6: 96-104
    [75] Nimmo Smith, W. A. M., P. Atsavapranee, J. Katz, et al. PIV measurements in the bottom boundary layer of the coastal ocean. Experiments in Fluids, 2002, 33 (6): 962-971.
    [76] Nimmo Smith, W. A. M., J. Katz, and T. R. Osborn. On the structure of turbulence in the bottom boundary layer of the coastal ocean. Journal of Physical Oceanography, 2005, 35 (1): 72-93.
    [77] Navrotsky, V. V., I. D. Lozovatsky, E. P. Pavlova, et al. Observations of internal waves and thermocline splitting near a shelf break of the Sea of Japan (East Sea). Continental Shelf Research, 2004,24 (12): 1375-1395.
    [78] Osborn, T. R. Estimates of the local rate of vertical diffusion from dissipation measurements.Journal of Physical Oceanography, 1980, 10 (1): 83-89.
    [79] Palmer, M. R., T. P. Rippeth, and J. H. Simpson. An investigation of internal mixing in a seasonally stratified shelf sea. Journal of Geophysical Research, 2008, 113 (C12005),doi:10.1029/2007JC004531.
    [80] Pardyjak, E. R., P. Monti, and H. J. S. Fernando. Flux Richardson number measurements in stable atmospheric shear flows. Journal of Fluid Mechanics, 2002,459: 307-316.
    [81] Perlin, A., J. N. Mourn, J. M. Klymak, et al. A modified law-of-the-wall applied to oceanic bottom boundary layers. Journal of Geophysical Research, 205, 110 (C10S10),doi: 10.1029/2004JC002310.
    [82] Polzin, K. L., J. M. Toole, and R. W. Schmitt. Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 1995, 25 (3): 306-328.
    [83] Prandle, D. The vertical structure of tidal currents and other oscillatory flows. Continental Shelf Research, 1982, 1 (2): 191-207.
    [84] Qiao, F., Y. Yuan, Y. Yang, et al. Wave-induced mixing in the upper ocean: Distribution and application in a global ocean circulation model. Geophysical Research Letter, 2004, 31(L11303),doi:10.1029/2004GL019824.
    [85] Rippeth, T. P. Mixing in seasonally stratified shelf seas: a shifting paradigm. Philosophical Transactions of the Royal Society A, 2005,363: 2837-2854.
    [86] Rippeth, T. P., N. R. Fisher, and J. H. Simpson. The cycle of turbulent dissipation in the presence of tidal straining. Journal of Physical Oceanography, 2001, 31 (8): 2458-2471.
    [87] Rippeth, T. P., and M. E. Inall. Observations of the internal tide and associated mixing across the Malin Shelf. Journal of Geophysical Research, 2002, 107 (C4), 3028,doi:10.1029/2000JC00076.
    [88] Rippeth, T. P., M. R. Palmer, J. H. Simpson, et al. Thermocline mixing in summer stratified continental shelf seas. Geophysical Research Letters, 2005, 32 (L05602),doi: 10.1029/2004GL022104.
    [89] Rippeth, T. P., J. H. Simpson, E. Williams, et al. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. Journal of Physical Oceanography, 2003, 33 (9): 1889-1901.
    [90] Roget, E., I. Lozovatsky, X. Sanchez, et al. Microstructure measurements in natural waters:methodology and applications. Progress in Oceanography, 2006, 70 (2-4): 126-148.
    [91] Sakamoto, K., and K. Akitomo. Instabilities of the tidally induced bottom boundary layer in the rotating frame and their mixing effect. Dynamics of Atmospheres and Oceans, 2006, 41(3-4): 191-211.
    [92] Sandstrom, H., and N. Oakey. Dissipation in internal tides and solitary waves. Journal of Physical Oceanography, 1995,25 (4): 604-614.
    [93] Sanford, T. S., and R.-C. Lien. Turbulent properties in a homogeneous tidal boundary layer.Journal of Geophysical Research, 1999, 104 (C1): 1245-1257.
    [94] Schlichting, H. Boundary Layer Theory (6~(th) edition). New York: McGraw-Hill, 1962. 744 pp.
    [95] Sharpies, J., C. M. Moore, and E. R. Abraham. Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. Journal of Geophysical Research, 2001, 106(C7): 14,069-14,081.
    [96] Sharpies , J., J. F. Tweddle, J. A. M. Green, et al. Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnology and Oceanography, 2007, 52 (5): 1735-1747.
    [97] Shaw, W. J., J. H. Trowbridge, and A. J. Williams. Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. Journal of Geophysical Research, 2001, 106 (C5): 9551-9564.
    [98] Simpson, J. H., C. M. Allen, and N. C. G. Morris. Front on the continental shelf. Journal of Geophysical Research, 1978, 83 (C9): 4607-4614.
    [99] Simpson, J. H., H. Burchard, N. R. Fisher, et al. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons. Continental Shelf Research, 2002, 22 (11-13):1615-1628.
    [100] Simpson, J. H., W. R. Crawford, T. P. Rippeth, et al. The vertical structure of turbulent dissipation in shelf seas. Journal of Physical Oceanography, 1996,26 (8): 1579-1590.
    [101] Simpson, J. H., J. A. M. Green, T. P. Rippeth, et al. The structure of dissipation in the western Irish Sea front. Journal of Marine Systems, 2009, in press.
    [102] Simpson, J. H., and J. Hunter. Fronts in the Irish Sea. Nature, 1974, 250: 404-406.
    [103] Simpson, J. H., T. P. Rippeth, and A. R. Cambell. The phase lag of turbulent dissipation in tidal flow. In: Yanagi T., eds. Interaction between Estuaries, Coastal Seas and Shelf Seas.Tokoyo: TERRAPUB, 2000. 57-67.
    [104] Simpson, J. H., and J. P. Tinker. A test of the influence of tidal stream polarity on the structure of turbulent dissipation. Continental Shelf Research, 2009,29 (1): 320-332.
    [105] Smith, J. D., and S. R. McLean. Spatially averaged flow over a wavy surface. Journal of Geophysical Research, 1977, 82 (12): 1735-1746.
    [106] Smyth, W. D., and J. N. Mourn. Three-dimensional (3D) turbulence. In: Steele J. H.,Thorpe S. A., and Turekian K. K., eds. Encyclopedia of Ocean Sciences. San Diego: Academic Press, 2001. 2947-2955.
    [107] Soulsby, R. Selecting record length and digitization rate for near-bed turbulence measurements. Journal of Physical Oceanography, 1980, 10 (2): 208-219.
    [108] Soulsby, R. L. The bottom boundary layer of shelf seas. In: Johns B., eds. Physical Oceanography of Coastal and Shelf Seas, 35, Elsevier Oceanography Series. Amsterdam: Elsevier, 1983. 189-266.
    [109] Sreenivasan, K. R. On the universality of the Kolmogorov constant. Physics of Fluids,1993, 7 (11): 2778-2784.
    [110] Stacey, M. T., S. G. Monismith, and J. R. Burau. Measurements of Reynolds stress profiles in unstratified tidal flow. Journal of Geophysical Research, 1999, 104 (C5):10,933-10,949.
    [111] Stapleton, K. R., and D. A. Huntley. Seabed stress determination using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms, 1995, 20 (9): 807-815.
    [112] Stips, A. Dissipation measurements: theory. In: Baumert H., Simpson J. H., and Suendermann J., eds. Marine turbulence: theories, observations and methods. Cambridge:Cambridge University Press, 2005. 115-126.
    [113] Stips, A., and H. Prandke. Recommended algorithm for dissipation rate calculation within PROVESS. PROVESS Report, 2000. 17 pp.
    [114] Strang, E. J., and H. J. S. Fernando. Vertical mixing and transports through a stratified shear layer. Journal of Physical Oceanography, 2001, 31 (8): 2026-2048.
    [115] Stigebrandt, A., and J. Aure. Vertical mixing in basin waters of fjords. Journal of Physical Oceanography, 1989, 19 (7): 917-926.
    [116] Sun, C. J., W. D. Smyth, and J. N. Mourn. Dynamic instability of stratified shear flow in the upper equatorial Pacific. Journal of Geophysical Research, 1998, 103 (C5):10,323-10,337.
    [117] Sundfjord, A., I. Fer, Y. Kasajima, et al. Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. Journal of Geophysical Research,2007, 112 (C05008), doi:10.1029/2006JC003524.
    [118] Telford, J. W., and J. A. Businger. Comments on "Von Karman's constant in atmospheric boundary layer flow: Reevaluated". Journal of the Atmospheric Sciences, 1986, 43 (19):2127-2130.
    [119] Testik, F. Y., S. I. Voropayev, S. Balasubramanian, et al. Self-similarity of asymmetric sand-ripple profiles formed under nonlinear shoaling waves. Physics of Fluids, 2006, 18 (108101), doi: 10.1063/1.2362859.
    [120] Thorpe, S. A. Turbulence and mixing in a Scottish Loch. Philosophical Transactions for the Royal Society A, 1977,286(1334): 125-181.
    [121] Thorpe, S. A. On the breaking of internal waves in the ocean. Journal of Physical Oceanography, 1999, 29 (9): 2433-2441.
    [122] Thorpe, S. A. Recent developments in the study of ocean turbulence. Annual Review of Earth and Planetary Sciences, 2004, 32: 91-109.
    [123] Thorpe, S. A. The turbulent ocean. Cambridge: Cambridge University Press, 2005. 485 pp.
    [124] Thorpe, S. A., J. A. M. Green, J. H. Simpson, et al. Boils and turbulence in a weakly stratified shallow tidal sea. Journal of Physical Oceanography, 2008, 38 (8): 1711-1730.
    [125] Thorpe, S. A., and Z. Liu. Marginal instability? Journal of Physical Oceanography, 2009,revised.
    [126] Thorpe, S. A., and R. Jiang. Estimating internal waves and diapycnal mixing from conventional mooring data in a lake. Limnology and Oceanography, 1998,43 (5): 936-945.
    [127] Thorpe, S. A., T. R. Osborn, J. F. E. Jackson, et al. Measurements of turbulence in the upper-ocean mixing layer using Autosub. Journal of Physical Oceanography, 2003, 33 (1):122-145.
    [128] van Haren, H. Properties of vertical current shear across stratification in the North Sea.Journal of Marine Research, 2000, 58 (3): 465-491.
    [129] van Haren, H., L. Maas, J. T. F. Zimmerman, et al. Strong inertial currents and marginal internal wave stability in the central North Sea. Geophysical Research Letters, 1999, 26 (19):2993-2996.
    [130] Voulgaris, G., and J. H. Trowbridge. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. Journal of Atmospheric and Oceanic Technology, 1998,15(1): 272-289.
    [131] Wiles, P. J., T. P. Rippeth, J. H. Simpson, et al. A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophysical Research Letter, 2006, 33 (L21608),doi:10.1029/2006GL027050.
    [132] Williams, E., and J. H. Simpson. Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. Journal of Atmospheric and Oceanic Technology, 2004, 21 (2): 347-357.
    [133] Wollast, R. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink K. H., Robinson A. R., eds. The Sea: The Global Coastal Ocean:Processes and Methods. New York: John Wiley & Sons Inc., 1998. 213-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700