用户名: 密码: 验证码:
新型60m~2无起拱带式烧结机关键技术研究及工程实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁产量的不断增大,作为高炉原料主要供应设备的带式烧结机的作用显得日益重要。台车执行牵引机构是带式烧结机的核心机构,直接关系到烧结台车的连续运转和烧结矿的正常生产。本文介绍了鲁奇式带式烧结机台车执行牵引机构,分析了运行过程中出现的问题,提出了解决措施。研究成果对于今后提高烧结矿的产量,设计、制造、安装和调试新型无起拱带式烧结机具有重要的理论意义和实用价值。
     首先,介绍了新型无起拱带式烧结机的研究内容,包括新型头部和尾部星轮的设计、车轮轨道的设计、下台车列起拱的力控制方法及力控制装置的设计、带式烧结机主要基本参数的确定等。
     其次,研究结果表明,新型头尾星轮不但有效解决了带式烧结机台车运行速度不均匀问题,而且对消除下台车列的起拱也有一定作用。因此,根据台车列辊轮轮距的交替变化,确定了星轮相隔布置的两类齿距,以及星轮的齿数是偶数。将啮合原理与星轮和辊轮啮合的具体工况相结合,建立了分段的星轮实际齿廓曲线,并将该分段曲线用统一方程表达。针对星轮在运行中出现的齿面损伤,应用赫兹接触理论对齿面接触应力进行了计算,并从多方面研究了提高星轮齿面承载能力的措施。采用非线性有限元对理想接触工况及实际接触工况进行了模拟,进一步揭示了齿面损伤产生的原因并证明了提高齿面承载能力所采用措施的有效性。在上述研究基础上,设计制造了新型60m2带式烧结机的偶数齿数变齿距、高承载能力的头尾星轮。
     再次,通过分析带式烧结机尾部星轮和上、下台车列的力学关系,建立了下台车列无起拱的力学模型,提出了对尾部星轮主轴进行转矩加载和对尾部配重进行合理设置作为下台车列无起拱的力控制方法。在对新型60m2带式烧结机台车执行牵引机构进行多刚体仿真的基础上,得到了尾部星轮转矩、力控制前和力控制后的尾部星轮对上、下台车列推力等数值随时间变化的曲线,并初步确定了进行力控制的一组力值,为设计新型60m2无起拱带式烧结机的力控制装置提供了基本数据。仿真还从可视化角度证明了消除下台车列起拱的力学模型正确、力控制方法有效。根据台车结构尺寸和折算质量,建立了系列带式烧结机的力控制数据库,对今后无起拱带式烧结机的工程设计有一定参考价值。
     最后,在确定了尾部星轮主轴液压转矩加载装置的执行机构和加载装置与带式烧结机主机联接方式的基础上,对液压转矩加载机构的工作原理做了详细的说明。结合新型60m2带式烧结机,详细阐述了加载装置的安装方式和液压关键元件的选择计算过程。对新型60m2无起拱带式烧结机进行了工业实验研究,研究内容包括:偶数变齿距头尾星轮的安装和安装后的运行情况分析、液压转矩加载装置与尾部配重的联合调试实验方法、观测数据的详细分析等。在工业现场的实验调试过程中所取得的成绩证明了本文研究理论的正确性和可靠性;同时,对实验过程中出现的不足也做出了说明。
With the increasing yield of steel and iron, the sintering machine supplying raw materials for the blast furnace is becoming more important. The draught mechanism of pallet cars is the core mechanism of the sintering machine, which directly affects the running of the sintering pallet cars and regular production of the sinter. In this paper, the draught mechanism of the Lurgi sintering machine is introduced and the problems during the course of operation are presented. In order to solve these problems, effective methods are proposed. Therefore, the research fruits have great theoretical and practical value not only for increasing the sinter production, but also for design, manufacture, installation and debug of the new type non-arching sintering machine for the future.
     Firstly, the development contents of the new type non-arching sintering machine are introduced, including the design of new type front and back sprocket wheels, the design of the wheel roadway, the force control method, the design of force control device to solve the arching of lower pallet cars and the determination of the fundamental parameters of the new type sintering machine, etc..
     Secondly, the research results show that the new type front and back sprocket wheels can not only effectively resolve the velocity fluctuation of the pallet cars but also make their contribution to decrease the arching of the lower pallet cars. Hence, two kinds of teeth space arranged alternately and the even number of teeth are determined for the sprocket wheel according to the interval changed wheelbases of the rolling wheels in the pallet cars. By combining the meshing principle with the actual working condition between the sprocket wheel and the pallet cars, the practical tooth profile curve with sectionalized is established and expressed by universal equation. Aimed at the tooth surface damage of the sprocket wheel while working, the contact stress of the tooth surface is calculated by using the Hertz theory, and various measures to improve the load capacity of the sprocket wheel tooth surface are studied. The distributions of the contact stress simulated with nonlinear FEM in the ideal working condition and the actual working condition show further that the damage reasons of the tooth surface and prove the availability of the methods for improving the load capacity. Based on the study results mentioned above, the front and back sprocket wheels with even number of teeth, varying teeth space and high load capacity for new type 60m2 sintering machine are designed and manufactured.
     Thirdly, by analyzing the mechanics relation between the back sprocket wheel and the upper and lower pallet cars, the non-arching mechanics model of the lower pallet cars is established. The force control methods of imposing the torque-loading on the main shaft of the back sprocket wheel and correctly collocating the back additional weight are brought forward to carry out the non-arching of the lower pallet cars. By the multi rigid body simulation for the pallet cars’draught mechanism of the new type 60m2 sintering machine, the time depended curves of the torque acted on the main shaft of the back sprocket wheel and the no controlled and controlled thrust forces brought bear from the back sprocket wheel to upper and lower pallet cars are gained, respectively. Meanwhile, basic data used to design new-type 60m2 non-arching sintering machine are obtained on the basis of a set of force control values。From the visualization, the simulation also proves that the mechanics model is correct, and that the force control methods are effective to eliminate the arching of the lower pallet cars. The force control database established according as the structure size and conversion quality of the pallet car of series type sintering machines offers certain reference value for the engineering design of the non-arching sintering machine.
     Lastly, based on the determination of the actuator of the hydraulic torque-loading device on the main shaft of the back sprocket wheel and the connection mode between the loading device and the main machine of the sintering machine, the working principle of the loading device is also elucidated in detail. Taking the new type 60m2 sintering machine for example, the installation of the hydraulic torque-loading device is elaborated and the choice of the key hydraulic components is expatiated. Moreover, industry test is proceed for the new type 60m2 non-arching sintering machine, including the installation and the running situations after installation of the sprocket wheels with even number and varying teeth space, the method of united debug test on hydraulic torque-loading device and back additional weight and the detailed analysis of the observed data, and so on. The debugging achievements attained in the field industry test about the new type sintering machine attest the correctness and reliability of the theories in this paper. Simultaneously, the shortages occurring in the debug stage also are illuminated。
引文
1 Ian Christmas.世界钢铁工业的现状与发展前景. 2001中国钢铁年会论文集(上集).北京:冶金工业出版社, 2001: 4-5
    2李世俊.中国钢铁企业的机遇与挑战. 2001中国钢铁年会论文集(上集) .北京:冶金工业出版社, 2001: 45-52
    3张寿荣.关于21世纪我国钢铁工业的若干思考. 2001中国钢铁年会论文集(上集).北京:冶金工业出版社, 2001: 61-69
    4 M. Yu. Pazyuk; V. I. Grankovskii, A. A. Poleshchuk. Operation of Sintering Machine Surge Hoppers. Steel in the USSR, 1984, 14(4): 167-169
    5 K. Yamada, K. Imada, T. Lida. Modification of Tobata No.3 Sintering Machine and the Operation After Modification. Australian Refrigeration, Air Conditioning and Heating, 1991, 45(1): 127
    6 G. I. Shepelev, L. I. Murashko. New Sintering Machines for Sintering Plant Reconstruction. Stal', 1991, (4): 6-8
    7 V. V. Grekov, A. K. Semenov, G. E.Isaenko, et al. Improvement in Productivity of the Sintering Machines. Stal', 1995, (12): 6-8
    8 E. L. Kharanu, Zh. A. N. Vidal, Da Silva, et al. Modernization of Sinter Shop at CST with Extending of Sinter Machine Pallet. Stal', 1999, (4): 3-6
    9 B. S. Tleugabulov, Loading Units for Sintering Machines. Steel in Translation, 2007, 37(3): 256-260
    10 S. M. Kulakov, N. F. Bondar, V. B. Trofimov. Optimizing Automatic-regulator Settings in Sintering Machines. Steel in Translation, 2007, 37(6): 501-504
    11 R. B. Yusupov, V. P. Lekin, M. E. Polushkin, et al. Influence of Parameters of the Sintering Process on Machine Productivity and Sinter Quality. Metallurg, 2003, (12): 28-29
    12 A. A. Avdeeno, V. I. Klejn, N. M. Logvinov, et al. Utilization of Heat of Hot Sinter at the Sintering Machine. Stal', 2003, (1): 13-14
    13 A. D. Uchitel', V. T. Kiyashko, S. I. Shul'ga, et al. About Opportunity for Final Pelletizing of the Sinter Charge Materials on the Loading Tray of the Sintering Machine. Metallurgicheskaya i Gornorudnaya Promyshlennost, 2004, (1), 100-102
    14 V. P. Movchan. Development of Technology of Sinter-pellets Sintering on Conveyor Burning Machine. Metallurgicheskaya i Gornorudnaya Promyshlennost, 2002, (3): 6-9
    15宋国良,傅志华,张全.烧结机增产节能的途径.钢铁研究学报, 2000, 12(6): 61-64
    16冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册.北京:冶金工业出版社, 1990: 91-157, 309-315, 430-435
    17白明华,孟令忠,阎瑞河.冶金与重型锻压设备.北京:机械工业出版社, 2001: 19-31
    18 V. I. Klejn, A. A. Avdeeno. Modernization of the Sintering Machines. Stal', 2003, (1): 11-12
    19西安重型机械研究所.国外烧结设备.北京:机械工业出版社, 1975: 3-5
    20傅菊英,姜涛,朱得庆.烧结球团学.长沙:中南工业大学出版社, 1996: 1-26
    21 D. Kolar, S. Pejovnik, M. M. Ristic. Sintering-theory and practice. Proceedings of the 5th International Round Table Conference on Sintering. Portoroz, Yugoslavia, 1981: 7-10
    22钱植仪,张景智,夏辛明.宝钢烧结生产工艺.北京:冶金工业出版社, 1995: 1-17
    23宁天星,潘朝英,张景智.宝钢烧结生产设备.北京:冶金工业出版社, 1997: 1-35
    24汪用澎,张信.大型烧结设备.北京:机械工业出版社, 1997: 97-195
    25 R. B. Yusupov, V. P. Lekin, M.E. Polushkin, et al. Effect of the Parameters of the Sintering Operation on the Productivity of Sintering Machines and the Quality of the Sinter. Metallurgist, 2003, 47(11-12): 487-490
    26 Kim Yong Ho, Kwon Wook Hyun. An Application of Min-max Generalized Predictive Control to Sintering Processes. Control Engineering Practice, 1998, 6(8): 999-1007
    27 Shigaki Ichiro, Narazaki Hiroshi. Machine-learning Approach for a Sintering Process Using a Neural Network. Production Planning and Control, 1999, 10(8): 727-734
    28 Yu. A. Frolov, Analysis of Gas Dynamic Operation of the Sintering Machines. Stal', 2005, (6): 42-51
    29姜宏洲.烧结机尾烧结质量智能检测仪的研制. [东北大学工学博士学位论文]. 2000: 1-16
    30孙文东.烧结生产系统的优化与控制研究. [华中科技大学工学博士学位论文]. 2004:1-11
    31 N. I. Vorob'ev, V. A. Andreev, E. A. Kazantsev, et al. Growth of Sinter Production at the Chelyabinsk Metallurgical Combine. Metallurgist, 2002, 46(1-2): 47-48
    32 Zhang. Yanling, Gao. Junshan. Application of Optimal Sinter Burden Design. Mineral Metallurgy Materials, 2002, 9(1): 20-24
    33西安重型机械研究所.重型机械.北京:机械工业出版社, 1995: 1-52
    34白明华.带式烧结机新结构原理与设计计算.北京:机械工业出版社, 1996: 1-242
    35 S. F. Koloda. Analytical Determination of Gaps Between Elements of Side Seals of Strand Sintering Machines Communication 2. Steel in the USSR, 1980, 10(8): 448-450
    36 M. F. Vitushchenko, L. K. Gerasimov, V. N. Vzdorov, et al. Improving the Longitudinal Seals and the Gas-outlet Channel of AKM-312 Sintering Machines. Metallurgist, 1985, 29(3-4): 83-85
    37 S. G. Vedenyapin; V. I. Klejn, N. M. Logvinov, et al. Field Tests of the Sintering Machine of AKM-250 Type. Stal', 2003, (9): 28-30
    38金永龙,徐南平,邬士英,等.烧结机分区段漏风测试技术研究及应用.钢铁, 2003, 38(3): 1-3
    39宋国良,傅志华,张全.烧结机增产节能的途径.钢铁研究学报, 2000, 12(6): 61-64
    40高彦,么占坤,孙长征,等.烧结机漏风治理技术方案.烧结球团, 2004, 29(1): 38-42
    41 Higuchi Kenichi, Kawaguchi Takuya; Kobayashi Masanori, et al. Improvement of Productivity by Stand-support Sintering in Commercial Sintering Machines. Revue de Metallurgie, 2002, 99(3): 241-248
    42金永龙,徐南平,邬士英,等.烧结机漏风测定新技术的研究和应用.钢铁研究学报, 1999, 11(3): 67-70
    43韩绿林,姚桐,程国彪,等.烧结技术改造的生产实践.钢铁, 2005, 40(11): 13-15
    44 Takashima Nobuhiro, Takahashi Hiroyasu, Sugawara Minoru, et al. Countermeasures for Prevention of Air Leakage at Sintering Machine and Their Effects. Kawasaki Steel Technical Report, 1986, (15): 9-15
    45 Hauck Thorsten, Klima Rolf; Kofler Arnd, et al. Verbesserte uberwachung und regelung an sinteranlagen (Improved Process Control of a Sinter Plant). Stahl und Eisen, 2003, 123(4): 69-73
    46 Okuda Kosuke, Imada Kunihiro, Mochizuki Michiharu, et al. Improvement of Sintering Operation at the Low Productivity Level. Transactions of the Iron and Steel Institute of Japan, 1984, 25(3): b.84
    47 P. R. Dawson. Recent Developments in Iron Ore Sintering, Part 4, The Sintering Process. Ironmaking and Steelmaking, 1993, 20(2): 150-159
    48何云华.烧结机磁液密封理论与试验研究. [燕山大学工学硕士学位论文]. 2001: 1-62
    49修建生.带式烧结机运动模拟及磁液密封研究. [燕山大学工学硕士学位论文]. 2000: 54-68, 29-41
    50董书岐,李传收,谷华,等.带式烧结机台车起拱及其改进.烧结球团, 2005, 30(2): 39-41
    51 N. V. Panishev, A. G. Neyasov, O. N. Podbornykh, et al. Control of Operating Parameters on Lengthened Sintering Machine. Steel in the USSR, 1988, 18(5): 193-194
    52 Higuchi Masaaki, Iizuka Motohiko, Takasaki Yasuto. On the Facilities and Operational Control of No.5 Sinter Machine at Fukuyama Works, Nippon Kokan K. K. Ironmaking Proceedings, Metallurgical Society of AIME, Iron and Steel Division. 1976, 36: 525-538
    53 V. I. Klejn, A. A. Avdeeno, G. M. Majzel'. Modernization of the Sintering Machines. Stal', 2003, (1): 11-12
    54 M. I. Kotlyar, Research of the Rational Shape of the Loading Tray of a Sintering Machine. Metallurgicheskaya i Gornorudnaya Promyshlennost, 2004, (2): 105-106
    55刘建钢.湘钢90m2烧结机消除台车起拱的实践.烧结球团, 1997, 22(6):58-60
    56伏庆旦.烧结机密封装置的使用与改进.宝钢技术, 1997, (4): 8-13
    57刘相佩,烧结机回程道上台车起拱问题的探讨.烧结球团, 2003, 28(1): 36-37
    58邱坤.偶数齿形烧结机及参数研究. [燕山大学工学硕士学位论文]. 1992: 1-32
    59白明华,胡国清,邱坤,等.无起拱烧结机新理论的研究.机械工程学报, 1995, 31(6): 68-72.
    60白明华,胡国清,刘洪彬,等.偶数齿带式烧结机的研究.中国机械工程, 1996, 7(1): 71-72
    61白明华,胡国清,邱坤,等.烧结机尾部星轮阻力矩装置的研究.重型机械, 1995 (5): 18-20
    62岳晓丽.偶数齿匀速带式烧结机运动计算机模拟. [燕山大学工学硕士学位论文]. 1996: 1-62
    63白明华,何云华.匀速、变速中新齿形的研究.机械工程学报, 2001, 37(12): 83-85
    64余梅生,周为娟.新型带式烧结机三维运动仿真的研究与实现.计算机仿真, 2001, 19(5): 90-91
    65余梅生,新型烧结机的仿真及其建模中的图形转换问题.中国机械工程, 2001, 13(10): 871-873
    66郝春雨.新型带式烧结机设计理论研究及其参数化. [燕山大学工学硕士学位论文]. 2004: 1-62
    67成大先.机械设计手册(第四版,第3卷).北京:化学工业出版社, 2002, 14(480)-14(490)
    68刘永欣.矿用电动机测试系统的应用.煤炭技术, 2004, 23(10): 16-17
    69李特文.齿轮啮合原理.卢贤占,高业田,王树人译.第二版.上海:上海科学技术出版社, 1994: 1-67
    70张启先,张玉茹.我国机械学研究的新进展与展望.机械工程学报, 1996, 32 (4): 1-4
    71雷光,许洪基.齿轮设计、制造的发展与展望.齿轮, 1987, 11(4): 54-56
    72 F. L. Litvin. Applied Theory of Gearing: State of the Art. Transactions of the ASME, 1995, 117: 128-134
    73 M. H. French, Gear Conformity and Load Capacity. Proceedings of the Institute of Mechanical Engineers, 1965-1966, 180(43): 1013-1024
    74 A. O. Lebeck, E. I. Radzimovsky. The Synthesis of Tooth Profile Shapes and Spur Gears of High Load Capacity. ASME Journal of Engineering for Industry, 1970, 92(4): 543-553
    75 N. E. Anderson, S. H. Loewenthal. Design of Spur Gears for Improved Efficiency. ASME Journal of Mechanical Design, 1982, 104(4): 767-774
    76 H. Iyoi, S. Ishimura. x-Theory in Gear Geometry. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(3): 286-290
    77 G. W. Eggeman. Design of a Synthesized Helical Gear Set. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1987, 109(3): 419-423
    78吴序堂.齿轮啮合原理.北京:机械工业出版社, 1982: 1-92
    79朱孝录,鄂中凯.齿轮承载能力分析.北京:高等教育出版社, 1992: 1-7
    80林菁.基于啮合角函数的平面圆齿轮共轭齿廓啮合理论研究. [东北大学工学博士学位论文]. 1998: 20-34
    81林菁.共轭曲线啮合角函数理论及其应用.北京:科学出版社, 2005: 21-34, 119-126
    82复旦大学数学系.曲线与曲面.北京:科学出版社, 1977: 34-66, 160-254
    83 Imre Juhász. Cubic parametric curves of given tangent and curvature. Computer-Aided Design, 1998, 30(1): 1-9
    84徐良宏,孟勇,陈铁.给定两端点及端点处切方向和曲率的空间Bezier曲线的插值问题.数值计算与计算机应用, 2001, (2): 81-86
    85孙恒,傅则绍.机械原理(第四版).北京;高等教育出版社. 1995: 51-59, 338-355
    86范扬波.销齿传动的重合度计算.福州大学学报(自然科学版), 1999, 27(1): 52-55
    87曾向阳,谢国明,王学平. UGNX基础及应用教程.北京:电子工业出版社, 2003: 3-9
    88朱孝录,齿轮传动设计手册.北京:化学工业出版社, 2005: 93-172
    89黄炎.局部应力及其应用.北京:机械工业出版社, 1996: 134-173, 567-615
    90 K. L. Johnson.接触力学.徐秉业,罗学富,刘信声,等译.北京:高等教育出版社, 1992:96-122
    91周宁. ANSYS机械工程应用实例.北京:中国水利水电出版社, 2006: 1-7
    92关天民. FA型摆线针轮行星传动齿形优化方法与相关理论的研究. [大连交通大学工学博士学位论文]. 2005: 39-41
    93臧新良.张力减径过程组元模型理论及其虚拟仿真系统研究. [燕山大学工学博士学位论文]. 2001: 23-26
    94宋乐民,齿形与齿轮强度.北京:国防工业出版社, 1987: 105-140
    95 C. P. Bhateja, W. L. Bowen. The hollow roller bearing. Journal of Lubrication Technology. Transactions of ASME, 1980, 102(4): 222-234
    96吕彭民,丁智.架桥机滚柱轮结构最佳空心度研究.中国公路学报, 2005, 18(2): 123-126
    97 R. L. Huston, Multibody Dynamics-Model and Analysis Methods, Appl. Mech. Rev, 1991, 44 (3): 109-117
    98 H. J. Fletcher, L. Rongved, E. Y. Yu. Dynamics Analysis of a Two-body Gravitationally Oriented Satellite. Bell System Tech., 1963, 42(5): 2239-2266
    99 W. W. Hooker, G. Margulies. The Dynamical Attitude Equations for an n-Body Satellite. J. Astron. Sci. 1965, (12): 123-128
    100 W. W. Hooker. A Set ofτ-Dynamical Attitude Equations for an n-Body Satellite HavingτRotational Degrees of Freedom. AIAAJ., 1970, 8(7): 1205-1207
    101 W. O. Schiehlen. Dynamics of Complex Multibody Systems. Solid Mechanics Archives, 1984, 9(2): 159-195
    102 N. Orlandea, M. A. Chace, D. A. Calahan. Sparsity-Oriented Approach to the Dynamics Analysis and Design of Mechanical Systems—Part I. Journal of Engineering for Industry, Transactions of the ASME, 1977, 99(3): 773-779
    103 N. Orlandea, D. A. Calahan, M. A. Chace. Sparsity-Oriented Approach to the Dynamics Analysis and Design of Mechanical Systems—Part II. Journal of Engineering for Industry, Transactions of the ASME, 1977, 99(3): 780-784
    104 M. A. Chace. Methods and Experience in Computer Aided Design of Large-Displacement Mechanical Systems. NATO ASI Series, Series F: Computer and Systems Sciences, 1984, 9: 233-259
    105 E. J. Hang. Computer Aided Kinematics and Dynamics of Mechanical Systems. NeedhamHeights: Allyn and Bacon, Massachusetts, 1989: 199-237
    106 R. E. Roberson, W. Wittenburg. A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies with Reference to the Problem of Satellite Attitude Control. 3rd IFAC Congress, 1966. Proc., London, 1968: 45D.2- 46D.9
    107 T. R. Kane, D. A. Levinson. Formulation of Equations of Motion for Complex Spacecraft. Journal of Guidance and Control, 1980, 3(2): 99-112
    108 T. R. Kane, D. A. Levinson. Multibody Dynamics. Journal of. Applied. Mechanics, 1983, 50: 1071-1078
    109波波夫,ЕП.操作机器人动力学与算法.遇立基,陈循介.北京:机械工业出版社, 1993: 62-87
    110 L. Lilov, M. Lorer. Dynamic Analysis of Multirigid-Body System Based on the Gauss Principle. ZAMM, 1982: 62
    111刘延柱.高等动力学.北京:高等教育出版社. 2001: 197-210
    112洪嘉振.计算多体系统动力学.北京:高等教育出版社. 1998: 37-62
    113张越今,宋健,张云清,等.多体系统动力学分析的两大软件-ADAMS和DADS.汽车技术, 1997, 3: 16-20
    114 P. W. Likins. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis. Journal of Solids & Structures, 1972, 8: 709-731
    115 Q. Yu, J. Z. Hong. Static Correction Modes in Dynamical Simulation of Flexible Multibody System with Closed Loops. Journal of Shanghai Jiao Tong University, 1997,2(1):17-20
    116 Li Bin, .Li Yinghui, Yin Xuegang. Dynamic Modeling and Simulation of Flexible Cable with Large Sag. Applied Mathematics and Mechanics, 2000, 21(6): 640-646
    117张学胜,陈万吉.多体系统动力学Euler-Lagrange方程的非线性规划方法.工程力学, 2000, 17(1): 20-24
    118刘勇,洪嘉振,杨辉.多体系统动力学求解与动画输出的并行处理.力学学报, 2002, 34(1): 131-135
    119 Wang Xiaoyan, Wang Zhi, Sun Aiqin. Modified Constraint Violation Stabilization. Journal of Qing dao University, 1998, 13(2): 76-81
    120袁士杰,吕哲勤.多刚体系统动力学.北京:北京理工大学出版社, 1992
    121陆佑方.柔性多体系统动力学,北京:高等教育出版社, 1996
    122覃正,多体系统动力学压缩建模,北京:科学出版社, 2000
    123郑凯,胡仁喜,陈鹿民,等. ADAMS2005机械设计高级应用教程.北京:机械工业出版社, 2006: 2-24
    124陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社, 2005: 21-75, 95-111
    125王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社, 2002: 8-27
    126李军,邢俊文,覃文浩. ADAMS实例教程.北京:北京理工大学出版社, 2002: 12-18
    127郑建荣. ADAMS—虚拟样机技术入门与提高.北京:机械工业出版社, 2002: 4-9
    128 Cham Rakie, Moyer Brian. Introducing ADAMS, a Mechanical System Simulation Software, to Bioengineering Students. ASEE Annual Conference Proceedings, Montreal, Que., Canada, 2002. Washington, DC, United States, American Society for Engineering Education, 2002: 11627-11640
    129 Ferrarotti, Gabriele. Simulating Complex Mechatronic Systems Using MSC. ADAMS/Rail. Eisenbahningenieur, 2002, 53(8): 52-58
    130 Binder, D. John. Building a Prototype on a PC. Aerospace America, 2003, 41(5): 26-28
    131祝效华,廖伟志,黄永安,等. CAD/CAE/CFD/VPT/SC软件协作技术,北京:中国水利水电出版社, 2004: I-II, 194-214
    132 Homage79.将UG里面的实体导入ADAMS成功的例子. (2003-05-22) [2005-04-15]. http://bbs.icax.cn/thread-42447-1-23.html
    133周士昌.液压系统设计图集.北京:机械工业出版社. 2003: 104-128
    134吴晓明.连铸结晶器非正弦振动控制的研究. [燕山大学工学博士学位论文]. 2001: 25-35
    135张保辰,邱耕,刘欣.液压试验平台在400m2烧结机的应用.矿山机械, 2003(11): 91-92
    136段连栋,李国梁,张婷婷.烧结机阀门液压控制系统的改造.液压与气动, 2007 (7): 60-62
    137沙道航,杨华勇,葛思华,等.钢坯修磨机液压加载系统动态特性的研究.钢铁, 1997, 32(11)
    138宋锦春,张志伟,曹淑华,等.飞机拦阻器的液压系统与性能仿真.东北大学学报(自然科学版), 2003, 23(10)
    139谭彧.拖拉机液压悬挂和加载系统性能研究. [中国农业大学工学博士学位论文]. 2004: 38-52
    140费千,徐发淙,王宝军,等.轴承试验机液压加载装置性能分析.大连海事大学学报, 2001, 27(3): 103-105
    141刘明利,马鸿飞,于革刚,等.变速箱液压加载试验台的研制.机床与液压, 2001, (6): 147-148
    142万丽荣,曾庆良.液压马达加载测试装置的设计研究.机床与液压, 2003, (6): 297-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700