用户名: 密码: 验证码:
非平稳环境中的盲源分离算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲源分离是在源信号与传输信道未知的情况下仅利用接收天线的观测数据提取或恢复统计独立的源信号。盲源分离因为在语音处理、医学信号处理,图像增强与无线通信等诸多领域具有广泛的应用前景,从而引起了信号处理学界和神经网络学界的共同兴趣。本文围绕这一热点课题展开,并把研究重点放在非平稳环境中的盲源分离算法研究,本文的主要工作包括以下几个方面:
     1.提出一种变步长、变动量项因子的自适应改进的自然梯度算法实现源信号瞬时混合的盲分离。在后向传播算法的启发下,在自然梯度学习过程中结合动量项以加快收敛速度,同时改善自然梯度算法的稳定性。然后在分离模型中提出一个合适的测度函数自适应控制步长和动量项因子,由此得到的变步长和变动量项因子的改进的自然梯度算法适合解决时变环境下的盲源分离问题。实验表明与经典的自然梯度算法和其它改进的自然梯度算法相比,即使在信源个数很多的情况下,本文所提自适应改进的自然梯度算法有更快的收敛速度和更好的稳态精确性,当混合矩阵突变或信号功率突变时自适应改进的自然梯度算法依然有较好的跟踪能力。此外,结合自然梯度和非线性主分量分析提出了一种块递归的盲源分离方法,构造出按块递归更新的矩阵方程,然后用QR分解和回代法求解该矩阵方程得到最优分离矩阵。所提方法与已有递归型盲源分离算法相比适于实时处理且遗忘因子的选择相对简单,与其它块处理算法相比有较快的初始收敛速度。
     2.针对混合矩阵发生突变的情况,提出一种基于时变遗忘因子递归广义特征分解的非白源盲分离算法。首先给出一种新的协方差矩阵的逆矩阵和时延相关矩阵乘积的递归更新方程,广义特征向量的估计经由近似幂迭代法和压缩处理在线实现,得到的在线算法可以避免同时估计协方差矩阵及其逆矩阵。为跟踪混合矩阵的突然变化,提出一种新颖的基于广义特征向量关于协方差矩阵正交特性的在线决策规则,可以判别混合矩阵是否发生突变,从而利用时变遗忘因子的递归广义特征分解算法在混合矩阵发生突变后能获得较好的跟踪能力及精确的稳态性能。
     3.充分利用人类发音的特点和语音信号的非平稳特性,提出一种数目未知的语音信号瞬时混合的盲分离和信源数目检测算法。首先利用递归广义特征分解在线估计对应于最大广义特征值的广义特征向量,利用向量相似度定义广义特征向量的平均相似度用以拟合信道互扰性能曲线,并根据平均相似度曲线提取出“高相似度区间”近似“分离区间”。然后进一步提取分离性能较好的“高相似度区间”并剔除部分“混合区间”,得到“高分离度区间”。然后对“高分离度区间”中的广义特征向量进行多阶段聚类确定源信号的数目,在实现估计信号数目的同时完成信号的盲分离。此外,所提算法可以克服盲提取问题中先提取出的信源性能好而后提取出的信源性能差的缺点。
     4.针对现有卷积混合盲源分离的频域算法存在的问题,即恢复出的信号是源信号和一个未知的滤波器的卷积,且由于部分频率点处盲源分离方法的失效和无法精确解决排列和尺度模糊问题,分离出的信号中会泄露进其余的信号分量,影响分离性能。提出一种基于多信道语音增强的频域盲源分离后处理方法以消除空间干扰和背景噪声。该方法有机结合盲源分离技术与阵列处理技术,既可充分利用空域信息,又无需增加其它先验信息。首先在频域盲源分离方法中利用语谱分裂技术得到M×N个分离信号,将多输入多输出(MIMO)混合系统分裂成N个单输入多输出(SIMO)系统,泄露进该信号的其它信号分量可以视为干扰信号,然后分别用频域多信道语音增强方法重构出各个语音信号,以消除不同信源间的空间干扰和环境噪声。仿真结果表明该算法具有良好的性能。
Blind source separation (BSS) aims to extract independent but unobservered source signals from their mixtures captured by a number of sensors without knowing the mixing coefficients. Over the past two decades, the problem of BSS has received much attention in various fields, such as speech and audio processing, image enhancement and biomedical signal processing. The main works can be summarized as follows:
     1. An adaptive improved natural gradient algorithm for blind separation of instantaneous mixtures of independent sources is proposed. First, inspired by the well-known back-propagation algorithm, we incorporate a momentum term into the natural gradient learning process to accelerate the convergence rate and improve the stability. Then, an estimation function for the adaptation of the separation model is obtained to adaptively control a step-size parameter and a momentum factor. The proposed natural gradient algorithm with variable step-size parameter and variable momentum factor is therefore well suited to blind source separation in a time-varying environment. The expected improvement in the convergence speed, stability and tracking ability of the proposed algorithm is demonstrated by extensive simulation results in both time-invariant and time-varying environments. The ability of the proposed algorithm to separate extremely weak (or badly scaled) sources and many sources is also verified. In addition, a block recursive approach for blind source separation is presented. Firstly, based on natural gradient and nonlinear principal component analysis, a matrix equation is obtained by block recursive updating,and then the matrix equation is solved using QR factorization and back substitution to obtain the optimal separating matrix. Compared with other existing recursive-type BSS methods, the proposed algorithm is feasible to real-time processing, and the choice of the forgetting factor is simple. Compared with other block processing methods, the proposed algorithm has fast initial convergence speed.
     2. An efficient variable forgetting factor recursive generalized eigen-decomposition algorithm is developed for blind separation of non-white sources when the mixing matrix changes abruptly. We derive a new recursive update equation for the multiplication of a cross-correlation matrix and the inverse of a covariance matrix with compact form and low computational complexity. The generalized eigenvectors are recursively estimated by using the approximated power method and the deflation procedure. Without additional priori information of the mixtures, we propose a novel on-line decision rule to track the abrupt variations of the mixing matrix and then a variable forgetting factor recursive generalized eigen- decomposition algorithm for BSS is presented for the time-varying environments. The improved tracking ability and steady-state accuracy of the proposed algorithm are validated by the computer simulation results.
     3. By exploiting of speech nonstationarity, a method for estimating the number of sources from instantaneous mixtures of speech signals with unknown source number is presented, and then the sources are extracted. The first dominant generalized eigenvector is estimated by recursive generalized eigen-decomposition. The mean similarity curve of the estimated generalized eigenvector is introduced to fit inter-channel interference curve, and then“High Similarity Intervals”are extracted to approach“Separation Interval”. Moreover,“High Separation Intervals" are obtained by extracting“High Similarity Intervals”with better separation performance and eliminate“Mixtures Interval”. Final, the number of the sources is estimated with multistage clutstering techniques and the corresponding sources are extracted. The proposed algorithm can avoid suffering the error propagation of the deflation technique, which exists in all sequential algorithms.
     4. A new post-processing method for convolutive mixtures blind speech separation is proposed. It utilizes multi-channel signal enhancement to suppress spatial interference and background noise. Due to imprecision for solving the permutation ambiguity problem, frequency domain blind source separation has its fundamental limitation in separation quality. To overcome that, by splitting spectrograms, the M×N multi-input multi-output (MIMO) system will be converted into N single-input multi-output (SIMO) system in frequency domain blind speech separation system. Furthermore, to attenuate spatial interference from competing sources and background noise, the multi-channel signal enhancement method is exploited to reconstruct source signals from the N SIMO system respectively. The separation performance of the proposed algorithm is demonstrated by experiments.
引文
[1] Lee T W. Independent component analysis: theory and application. Dordrecht, pp. Kluwer Academic Publishers, 1998.
    [2] Haykin S. Unsupervised adaptive filtering. Vol 1: Blind source separation. New York, pp. Wiley, 2000.
    [3] Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York, pp. Wiley, 2001.
    [4] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York, pp. Wiley, 2003.
    [5] Stone J V. Independent Component Analysis, pp. A Tutorial Introdution. MIT Press, 2004.
    [6] Makino S, Lee T W, Sawada H. Blind speech separation, Springer, 2007.
    [7]张贤达,保铮.通信信号处理.国防工业出版社. 2002年.
    [8]杨福生,洪波.独立分量分析的原理与应用.清华大学出版社. 2006年.
    [9]史习智.盲信号处理-理论与实践.上海交通大学出版社, 2008年.
    [10] Herault J, Jutten C. Space or time adaptive signal processing by neural network models. Neural Network for Computing: AIP Conference Proceeding, 151, New York, American Institute of Physics,1986.
    [11] Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1), pp. 1-10.
    [12] Comon P, Jutten C, Herault J. Blind separation of sources, Part II: Problems statement. Signal Processing, 1991, 24(1), pp. 11-20.
    [13] Tong L, Liu R, Soon V C. Huang J. F. Indeterminacy and identifiablity of blind identification. IEEE Trans Signal Processing, 1991, 38(5), pp. 499-509.
    [14] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals. IEE-Proceedings-F, 1993, 140 (6), pp. 362-370.
    [15] Comon P. Independent component analysis: a new concept? Signal Processing, 1994, 36 (3), pp. 287-314.
    [16] Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6), pp. 1129-1159.
    [17] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, MIT Press: Cambridge, MA, 1996, 8, pp.757-763.
    [18] Amari S. Natural gradient works efficiently in learning. Neural Computation. 1998, 10(1), pp. 251-276.
    [19] Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans on Signal Processing, 1996, 44(12), pp. 3017-3030.
    [20] Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural Computation, 1997, 9(7), pp. 1457-1482.
    [21] Cao X R, Liu R W. General approach to blind source separation. IEEE Trans on Signal Processing, 1996, 44(3), pp. 562-571.
    [22] Amari S, Cardoso J F. Blind source separation: semi-parametric statistical approach. IEEE Trans on Signal Processing, 1997, 45(11), pp. 2692–2700.
    [23] Cardoso J F. Blind signal separation: statistical principles. Proceeding of IEEE, 1998, 86(10), pp. 2009-2025.
    [24] Cardoso J F. On the stability of source separation algorithms. Journal of VLSI Signal Processing. 2000, 26(1/2), pp. 7-23.
    [25] Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1994, 7(1), pp. 113-127.
    [26] Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA. International Journal of Neural Systems, 1998, 8(12), pp. 601–612.
    [27] Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 1998, 22, pp. 5-20.
    [28] Yang B. Projection approximation subspace tracking. IEEE Trans on Signal Processing, 1995, 43(1), pp. 95–107.
    [29] Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letter, 2002, 9(12), pp. 432–435
    [30] Zhu X L, Zhang X D Ding Z Z, Jia Y. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE Transactions on circuits and systems-I, 2006, 53(3), pp.745-753.
    [31] Chang, Ding Z, Yau S, Chan F. A matrix-pencil approach to blind separation of nonwhite signals in white noise. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Seattle, WA, May 1998, 4, pp. 2485-2488.
    [32] Tome A M. Blind source separation using a matrix pencil. in Proc. Int. Joint Conf. Neural Netw., Como, Italy, Jul. 2000, 3, pp. 339-342.
    [33] Parra L, Sajda P. Blind Source Separation via Generalized EigenvalueDecomposition. Journal of Machine Learning Research, 2003, 4(7-8), pp.1261-1269.
    [34] Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics. IEEE Trans on Signal Processing, 1997, 45(2), pp. 434–444.
    [35] Van der Veen A. J. Joint diagonalization via subspace fitting techniques. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 2001, pp. 2773–2776.
    [36] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans on Signal Processing, 2002, 50(7), pp. 1545–1553.
    [37] Ziehe A, Laskov P, Nolte G, Müller K R. A fast algorithm for joint diag- onalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning Research, 2004, 5, pp. 777–800.
    [38] Li X L, Zhang X D. Nonorthogonal Joint Diagonalization Free of Degenerate Solution. IEEE Trans on Signal Processing, 2007, 55(5), pp. 1803-1814.
    [39] Delfosse N, Loubalon P. Adaptive blind separation of independent sources: A deflation approach. Signal Processing, 1995, 45(7), pp. 59-83.
    [40] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7), pp. 1483-1492.
    [41] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans on Neural Networks, 1999, 10(3), pp. 626-634.
    [42] Bingham E, Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 2000, 10(1), pp. 1-8.
    [43] Douglas S C. Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussians signal mixtures. EURASIP Journal on Advances in Signal Processing, 2007, 1(3), pp. 1-15.
    [44] Koldovsky Z, Tichavsky P, Oja E. Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer–Rao lower bound. IEEE Trans on Neural Networks, 2006, 17(5), pp. 1265-1277.
    [45] Tichavsky P, Koldovsky Z, Oja E. Performance analysis of the FastICA algorithm and Cramer-Rao Bounds for linear independent component analysis. IEEE Trans on Signal Processing, 2006, 54(4), pp. 1189-1203.
    [46] Li Y Q, Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Trans on Signal Processing, 2002, 50(5), pp. 997-1006.
    [47] Li X L, Zhang X D. Sequential Blind Extraction Adopting Second-Order Statistics. IEEE Signal Processing Letters, 2006, 14(1), pp. 58-61.
    [48] Souloumiac A. Blind source detection and separation using second order non-stationarity. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 1995, pp. 1912-1915.
    [49] Matsuoka K, Ohya M, Kawamoto M. A neural net for blind separation of nonstationary signals. Neural Network. 1995 8(3), pp. 411-419.
    [50] Pham D T, Cardoso J F. Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans on Signal Processing, 49(9), pp. 1837-1848.
    [51] Choi S, Cichocki A. Blind separation of nonstationary sources in noisy mixtures. Electronics Letters. 2000, 36(4), pp. 848-849.
    [52] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representation. IEEE Trans on Signal Processing, 1998, 46(11), pp. 2888-2898.
    [53] Fadaili E M, Moreau T N, and Moreau E. Non-orthogonal joint diagonalization/ zero-diagonalization for source separation based on time-frequency distributions. IEEE Trans on Signal Processing, 2007, 55(5), pp. 1673-1687.
    [54] Chabriel G, Barrere J, Moreau T N, Moreau E. Algebraic joint zero- diagonalization and blind sources separation. IEEE Trans on Signal Processing, 2008, 56(3), pp. 980-989.
    [55] Everson R M, Roberts S. J. Bind source separation for non-stationary mixing Journal of VLSI Signal Processing. 2000, 26(1/2), pp. 5-23..
    [56] Ahmed A. Signal separation. PhD. Thesis, Corpus Christi College, Cambridge University 2000.
    [57] Parga N, Nadal J P. Blind source separation with time-dependent mixtures. Signal Processing, 2000, 80(10), pp. 2187-2194.
    [58] Lv Q, Zhang X D, Jia Y. Kalman filtering algorithm for blind source separation. IEEE International Conference Acoustics, Speech, Signal Processing, 2005, 5, pp. 257–260.
    [59] Pokharel P P, Ozertem U, Erdogmusb D, Principe J C. Recursive complex BSS via generalized eigendecomposition and application in image rejection for BPSK. Signal Processing, 2008, 88(4), pp. 1368-1381.
    [60] Douglas S C, Cichocki A. Adaptive step size techniques for decorrelation and blind source separation. Signals, Systems﹠ Computers Conference, 1998, pp.1191-1195.
    [61] Thomas P, Allen G, August N. Step-size control in blind source separation. International Workshop on Independent Component Analysis and Blind Source Separation, Helsinki, Finland, 2000, 509-514.
    [62] Chambers A, Jafari G, McLaughlin S. Variable step-size EASI algorithm for sequential blind source separation. Electronics Letters, 2004, 40(6), pp.393-394.
    [63] Yuan L X, Wang W W, Chambers A. Variable step-size sign natural gradient algorithm for sequential blind source separation. IEEE Signal Processing Letters, 2005, 12(8), pp.589-592.
    [64] Slock, D T M, Kailath T. Numerically stable fast transversal filters for recursive least squares adaptive filtering. IEEE Trans on Signal Processing, 1991, 39(1), pp.92-114.
    [65] Papaodysseus C.. A robust, parallelizable O(m), a posteriori recursive least squares algorithm for efficient adaptive filtering. IEEE Trans. on Signal Processing, 1999, 47(9), pp. 2552-2557.
    [66] Amari S. Cichocki A. Adaptive Blind signal processing-neural network approaches. Proceeding of IEEE. 1998, 86(10), pp. 2026-2048.
    [67] Li Y Q, Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Trans on Signal Processing, 2002, 50(5), pp.997– 1006.
    [68] Cichocki A, Karhunen J, Kasprzak W, Vigario R. Neural networks for blind separation with unknown number of sources. Neurocomputing 1999, 24, pp. 55-93.
    [69]冶继民.信源数目未知与变化时的盲信号分离方法研究.西安电子科技大学,博士学位论文,2005.
    [70] Ye J M, Zhu X L, Zhang X D. Adaptive blind separation with an unknown number of sources. Neural Computation, 2004, 16(8), pp. 1641-1660.
    [71] Lv Q, Zhang X D. A Unified Method for Blind Separation of Sparse Sources With Unknown Source Number. IEEE Signal Processing Letters, 2006, 13(1), pp. 49-51.
    [72] Li Y Q, Amari S, Cichocki A, Ho D W C, Xie S L. Underdetermined Blind Source Separation Based on Sparse Representation. IEEE Trans on Signal Processing, 2006, 54(2), pp. 423-437.
    [73] Chen Z, Cichocki A, Rutkowski T M. Constrained Non-Negative Matrix Factorization Method for EEG Analysis in Early Detection of Alzheimer's Disease. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006, pp. 14-19.
    [74] Yang H H, Amari S, Cichocki A. Information-theoretic approach to for blind separation of sources from nonlinear mixture. Signal Processing, 1998, 64(3), pp. 291-300.
    [75]凌燮亭.近场宽带信号源的盲分离.电子学报. 1996, 24 (7), pp. 87 - 92.
    [76]张昕,胡波,凌燮亭.盲信号分离在数字无线通信中的一种应用.通信学报, 2000, 21(2), pp.73-77.
    [77] He Z Y, Liu J, Yang L X. Blind separation of mages using edge worth expansion based ICA algorithm. Chinese Journal of Electronics, 1999, 8(3), pp. 278-282.
    [78] He Z Y, Yang L X, Liu J. Blind source separation using cluster based multivariate density estimation algorithm. IEEE Trans on Signal Processing, 2000, 48 (2), pp. 575-579.
    [79]刘琚,何振亚.盲源分离和盲反卷积.电子学报2002, 30(4), pp. 570-576.
    [80]刘琚,聂开宝,何振亚.非线性混叠信号的可分离性及分离方法研究.电子与信息学报, 2003, 25(1), pp.54-61.
    [81]刘琚,孙建德.基于ICA的数字水印方法.电子学报. 2004, 32(4), pp. 657-660.
    [82]虞晓,胡光锐.基于统计估计的盲信号分离算法.上海交通大学学报, 1999, 33(5), pp. 566-569.
    [83]倪晋平,马远良,孙超,童立.用独立成份分析算法实现水声信号盲分离.声学学报, 2002, 27(4), pp. 321-326.
    [84]倪晋平,马远良,杨坤德.水声信号盲分离的实数算法与复数算法.西北工业大学学报, 2002, 20(1), pp. 44-48.
    [85]倪晋平,马远良,鄢社锋,杨坤德.水声信号盲分离算法性能评价准则.探测与控制学报, 2002, 24(2), pp. 40-44.
    [86]倪晋平,马远良,鄢社锋.基于高阶累积量的复数混合矩阵盲估计算法.电子与信息学报. 2002, 24(11), pp. 1506-1511.
    [87]谢胜利,王杰.一个基于盲信号分离的多路回波消除结构.电子学报. 2004, 32(7), pp. 1124-1126.
    [88]章晋龙,何昭水,谢胜利,刘海林.多个源信号混叠的盲分离几何算法.计算机学报, 2005, 28(9), pp. 1575-1580.
    [89]何昭水,谢胜利,傅予力.信号的稀疏性分析.自然科学进展. 2006, 16(9), pp. 1167-1173.
    [90]张安清,邱天爽,章新华.分数低阶矩的信号盲分离方法.通信学报, 2006, 27(3), pp.32-36.
    [91] Yin F L, Mei T M, Wang J. Blind source separation based on decorrelation andnonstationarity. IEEE Trans on Circuits and Systems-I: Regular Papers, 2007, 54(5), pp. 1150-1158.
    [92] Chen T P, Lin Q. Dynamic behavior of the whitening process Signal. IEEE Processing Letters, 1998, 5(1), pp.25-26.
    [93] Tan Y, Wang J, Zurada J M. Nonlinear blind source separation using a radial basis function network. IEEE Trans on Neural Networks, 2001, 12(1), pp.124-134.
    [94] Tan Y, Wang J. Nonlinear blind source separation using higher order statistics and a genetic algorithm. IEEE Transactions on Evolutionary Computation, 2001, 5(6), pp.600– 612.
    [95] Zhang L Q, Cichocki A, Amari S. Self-adaptive blind source separation based on activation functions adaptation. IEEE Transactions on Neural Networks, 2004, 15(2), pp.233– 244.
    [96]张贤达,保铮.盲信号分离.电子学报, 2001, 29(12A), pp. 1766-1771.
    [97]朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离.中国科学E辑, 2002, 32(5), pp. 693-703.
    [98]朱孝龙,张贤达,冶继民.基于自然梯度的递归最小二乘盲信号分离.中国科学, E辑, 2003, 33(8), pp.741-748.
    [99] Lou S T Zhang X D. Fuzzy-based learning rate determination for blind source separation. IEEE Trans on Fuzzy Systems, 2003, 11(3), pp.375-383.
    [100] Feng D Z, Zhang X D, Bao Z. An efficient multistage decomposition approach for independent components. Signal Processing, 2003, 83(1), pp. 181-197.
    [101] Feng D Z, Zheng, W X, Cichocki A. Matrix-Group Algorithm via Improved Whitening Process for Extracting Statistically Independent Sources From Array Signals. IEEE Trans on Signal Processing, 2007, 55(3), pp. 962-977.
    [102] Weinstein E, Feder M, Oppenheim A V. Multi-channel signal separation by decorrelation. IEEE Trans on Speech and Audio Processing, 1993, 1(4), pp. 405-413.
    [103] Gerven V S, Compernolle V D. Signal separation by symmetric adaptive decorrelation stability, convergence and uniqueness. IEEE Trans on Signal Processing, 1995, 43(7), pp. 1602-1612
    [104] Kawamoto M, Matsucka K, Ohnishi N. A method of blind separation for convolved non-stationary signals. Neurocomputing, 1998, 22(1-3), pp. 157-171.
    [105] Bousbia S H, Belouchrani A, Abed M K. Blind separation of convolutive mixtures using joint block diagonalization. IEEE Proceedings of InternationalSymposium on Signal Processing and its Applications, 2001, 1, pp. 13 -16.
    [106] Yellin D, Weinstein E. Multichannel signal separation: methods and analysis. IEEE Trans on Signal Processing, 1996, 44 (1), pp. 106-118.
    [107] Sun X, Douglas S C. Multichannel blind deconvolution of arbitrary signals: adaptive algorithms and stability analysis. Proceedings of 34th Asilomar Conference on Signals, System, Computer, 2000, 2, pp. 1412-1416.
    [108] Choi S, Hong H, Glotin H, Berthommier F. Multichannel signal separation for cocktail party speech recognition: a dynamic recurrent network. Neurocomputing, 2002, 49(1-4), pp. 299-314.
    [109] Douglas S C, Sawada H, Makino S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters. IEEE Trans on Speech and Audio Processing, 2005, 13(1), pp. 92-104.
    [110] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 1998, 22, pp. 21–34.
    [111] Araki S, Mukai R, Makino S. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans on Speech and Audio Processing, 2003, 11(2), pp. 109–116.
    [112] Parra L, Spence C. Convolutive blind separation of nonstationary sources. IEEE Trans. Speech Audio Processing, 2000, 8(3), pp. 320–327.
    [113] Buchner H, Aichner R, Kellermann W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics. IEEE Trans. Speech and Audio Processing. 2005, 13(1), pp. 120-134.
    [114] Kurita S, Saruwatari H. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. IEEE International Conference Acoustics, Speech, Signal Processing, 2000, pp. 3140–3143.
    [115] Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. IEEE International Conference Acoustics, Speech, Signal Processing, 2002, pp. 881–884.
    [116] Saruwatari H, Kawamura T, Nishikawa T, Lee A, Shikano K. Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Trans on Speech and Audio Processing, 2006, 14(2), pp. 666-678.
    [117] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001, 41, pp. 1–24.
    [118] Asano F, Ikeda S, Ogawa M, Asoh H, Kitawaki N. A combined approach of arrayprocessing and independent component analysis for blind separation of acoustic signals. IEEE Trans on Speech and Audio Processing, 2003, 11(3), pp. 204–215.
    [119] Sawada H, Mukai R, Araki S, Makino S. A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans on Speech and Audio Processing, 2004, 12(5), pp. 530–538.
    [120] Rahbar K, Reilly J P. A frequency domain method for blind source separation of convolutive audio mixtures. IEEE Trans on Speech and Audio Processing, 2005, 13(5), pp. 832–844.
    [121] Serviere C, Pham D T. A novel method for permutation correction in frequency-domain in blind separation of speech mixtures. in Proc. Int. Conf. Independent Component Analysis and Blind Signal Separation, 2004, pp. 807–815.
    [122] Wang W, Chambers J A, Sanei S. A novel hybrid approach to the permutation problem of frequency domain blind source separation. in Proc. Int. Conf. Independent Component Analysis and Blind Signal Separation, 2004, pp. 532–539.
    [123] Mukai R, Suwudu H , Araki S, Makino S. Robust real-time blind source separation for moving speakers in a room. IEEE International Conference Acoustics, Speech, Signal Processing, 2003, V, pp. 469-472.
    [124] Buchner H, Aichner R, Kellermann W. Real-time convolutive blind source separation based on a broadband approach. in Proc. Int. Conf. Independent Component Analysis and Blind Signal Separation, 2004, pp840-848.
    [125] Ding S X, Huang J, Wei D M, Cichocki A. A near real-time approach for convolutive blind source separation. IEEE Trans on Circuits and Systems I: Regular Papers, 2006, 53(1), pp. 114-128
    [126] Parra L, Alvino C. Geometric source separation: Merging convolutive source separation with geometric beamforming. IEEE Trans on Speech and Audio Processing, 2002, 10(6), pp. 352-362.
    [127] Knaak M, Araki S, Makino S. Geometrically Constrained Independent Component Analysis. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(2), pp. 715-726.
    [128] Zwicker E, Zwicker U T. Audio engineering and psychoacoustic: matching signals to the final receiver, the human auditory system. Journal of the Audio Engineering Society, 1991, 39(3), pp. 115-126.
    [129] Pan Q F, Aboulnasr, T. A new perceputal convolutive blind source separationalgorithm for speech separation. Proceedings of International Conference on Signal Processing, 2004, pp. 323-326.
    [130] Low S Y, Nordholm S, Togneri R. Convolutive blind signal separation with post-processing. IEEE Trans on Speech and Audio Processing, 2004, 12(5), pp. 539-548.
    [131] Huang Y T, Benesty J, Chen J D. A blind channel identification-based two-stage approach to separation and dereverberation of speech signals in a reverberant environment. IEEE Trans on Speech and Audio Processing, 2005, 13(5), pp. 882-895.
    [132] Rivet B, Girin L, Jutten C. Mixing audiovisual speech processing and blind source separation for the extraction of speech signals from convolutive mixtures. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(1), pp. 96-108.
    [133] Yilmaz O, Rickard S. Blind separation of speech mixtures via time-frequency masking. IEEE Trans on Signal Processing, 2004, 52(7), pp.1830–1847.
    [134] Sawada H, Araki S, Mukai R, Makino S. Blind extraction of dominant target sources using ICA and time-frequency masking. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(6), pp. 2165–2173.
    [135] Aissa A, Abed-Meraim K, Grenier Y. Blind separation of underdetermined convolutive mixtures using their time–frequency representation. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(5), pp. 1540-1550.
    [136]何培宇,殷斌, Sommen P C W.一种有效的语音盲信号分离简化混合模型.电子学报, 2002, 30(10), pp. 1167-1173.
    [137]何培宇,周激流,夏秀渝,王永德,赵刚.一种基于二阶盲信号分离的多路声回波抑制模型.电子学报, 2006, 34(11), pp. 2110-2114.
    [138]张安清,邱天爽,章新华.卷积混合信号频域盲分离技术研究.大连理工大学学报. 2004, 44(5), pp. 723-728.
    [139]苏野平,何量,杨荣震,朱小刚.一种改进的基于高阶累积量的语音盲分离算法.电子学报, 2002, 30 (7), pp. 956-958.
    [140] Mei T M, Xi J T, Yin F L, Mertins A, Chicharo, J F. Blind source separation based on time-domain optimization of a frequency-domain independence criterion. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(6), pp. 2075-2085.
    [141] He Z S, Xie S L, Ding S X, Cichocki A. Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(5), pp. 1551-1563.
    [142]彭春翌,朱孝龙,张贤达.基于斜投影的卷积信道盲信号分离.清华大学学报(自然科学版), 2005, 45(4), pp. 517-520.
    [1] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals. IEE-Proceedings-F, 1993, 140 (6), pp. 362-370.
    [2] Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics. IEEE Trans on Signal Processing, 1997, 45(2), pp. 434–444.
    [3] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7), pp. 1483-1492.
    [4] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, MIT Press: Cambridge, MA, 1996, 8, pp.757-763.
    [5] Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans on Signal Processing, 1996, 44(12), pp. 3017-3030.
    [6] Yellin D, Weinstein E. Multichannel signal separation: methods and analysis. IEEE Trans on Signal Processing, 1996, 44 (1), pp. 106-118.
    [7] Comon P, Jutten C, Herault J. Blind separation of sources, Part II: Problems statement. Signal Processing, 1991, 24(1), pp. 11-20.
    [8] Tong L, Liu R, Soon V C. Huang J. F. Indeterminacy and identifiablity of blind identification. IEEE Trans Signal Processing, 1991, 38(5), pp. 499-509.
    [9] Tong L, Inouye Y, Liu R. Waveform-preserving blind estimation of multiple independent sources. IEEE Trans Signal Processing, 1993, 41(7), pp. 2461-2470.
    [10] Hyvarinen A. Survey on independent component analysis. Neural Computing surveys, 1999, 2, pp. 94-128.
    [11] Comon P. Independent component analysis: a new concept? Signal Processing, 1994, 36 (3), pp. 287-314.
    [12] Moreau E, Moreau N T. nonsymmetrical contrasts for source separation. IEEE Trans Signal Processing, 1999, 47(8), pp. 2241-2252.
    [13] Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6), pp. 1129-1159.
    [14] Cardoso J F. Infomax and maximum likelihood in source separation. IEEE Signal Processing Letter, 1997, 4(4), pp. 112–114.
    [15] Cardoso J F. On the stability of source separation algorithms. Journal of VLSI Signal Processing. 2000, 26(1/2), pp. 7-23.
    [16] Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 1998, 22, pp. 5-20.
    [17] Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letter, 2002, 9(12), pp. 432–435
    [18] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans on Neural Networks, 1999, 10(3), pp. 626-634.
    [19] Douglas S C, Cichocki A. Adaptive step size techniques for decorrelation and blind source separation. Signals, Systems﹠ Computers Conference, 1998, pp.1191-1195.
    [20] Lambert R H. Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures. Ph.D. dissertation, Univ. Southern California, Los Angeles, 1996.
    [21] Sabala I, Cichocki A, Amari S. Relationships beteeen instantaneous blind source separation and multichannel blind deconvolution. In Proc. Int. Joint Conference on Neural Networks, 1998, pp. 148-152.
    [22] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York, Wiley, 2003.
    [23] Amari S, Douglas S C, Cichocki A, Yang H H. Multichannel blind deconvolution and equalization using the natural gradient. IEEE Proceedings of International Workshop Wireless Communication, 1997, pp. 101-104.
    [24] Douglas S C, Sawada H, Makino S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters. IEEE Trans on Speech and Audio Processing, 2005, 13(1), pp. 92-104.
    [25] Kokkinakis K, Nandi A K. Multichannel blind deconvolution for source separation in convolutive mixtures of speech. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(1), pp. 200-212.
    [26] Torkkola K. Blind separation of convolved sources based on informationmaximization. IEEE Workshop on Neural Networks for Signal Processing, 1996, pp. 423-432.
    [27] Weinstein E, Feder M, Oppenheim A V. Multi-channel signal separation by decorrelation. IEEE Trans on Speech and Audio Processing, 1993, 1(4), pp. 405-413.
    [28] Gerven V S, Compernolle V D. Signal separation by symmetric adaptive decorrelation stability, convergence and uniqueness. IEEE Trans on Signal Processing, 1995, 43(7), pp. 1602-1612
    [29] Lindgren U A, Broman H. Source separation using a criterion based on second- order statistics. IEEE Trans on Signal Processing, 1998, 46(7), pp. 1837-1850
    [30] Kawamoto M, Matsucka K, Ohnishi N. A method of blind separation for convolved non-stationary signals. Neurocomputing, 1998, 22(1-3), pp. 157-171.
    [31] Chan D. Blind signal separation. PhD Thesis Trinity College, Cambridge University, 1997.
    [32] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 1998, 22, pp. 21–34.
    [33] Douglas S C, Gupta M. Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, II, pp.637-640.
    [34] Araki S, Mukai R, Makino S. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans on Speech and Audio Processing, 2003, 11(2), pp. 109–116.
    [35] Parra L, Spence C. Convolutive blind separation of nonstationary sources. IEEE Trans. Speech Audio Processing, 2000, 8(3), pp. 320–327.
    [36] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001, 41, pp. 1–24.
    [37] Kurita S, Saruwatari H. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. IEEE International Conference Acoustics, Speech, Signal Processing, 2000, pp. 3140–3143.
    [38] Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. IEEE International Conference Acoustics, Speech, Signal Processing, 2002, pp. 881–884.
    [39] Asano F, Ikeda S, Ogawa M, Asoh H, Kitawaki N. A combined approach of arrayprocessing and independent component analysis for blind separation of acoustic signals. IEEE Trans on Speech and Audio Processing, 2003, 11(3), pp. 204–215.
    [40] Sawada H, Mukai R, Araki S, Makino S. A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans on Speech and Audio Processing, 2004, 12(5), pp. 530–538.
    [1] Brandstein M, Ward D. Microphone Arrays: Signal Processing Techniques and Applications (Digital Signal Processing), Springer-Verlag, 2001.
    [2] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York: Wiley, 2003.
    [3] Cichocki A, Unbehauen R, Rummert E. Robust learning algorithm for blind separation of signals. Electronics Letters, 1994, 30(17), 1386-1387.
    [4] Cichocki A, Unbehauen R. Robust neural networks with on-line learning for blindidentification and blind separation of sources. IEEE Trans. Circuits and Systems I: Fundamentals Theory and Applications, 1996, 43(11), pp.894-906.
    [5] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, MIT Press: Cambridge, MA, 1996, 8, pp.757-763.
    [6] Bell A, Sejnowski T. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7, pp.1129-1159.
    [7] Amari S. Natural gradient works efficiently. Neural Computation, 1998, 10, pp.251-276.
    [8] Amari S. Differential-geometrical method in statistics. Berlin: Springer-Verlag, 1985.
    [9] Amari S, Chen T, Cichocki A. Stability analysis of adaptive blind source separation. Neural Networks, 1997, 10(8), pp.1345-1351.
    [10] Yang H H, Amari A. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutural information. Nerual Computation, 1997, 9, pp.1457-1482.
    [11] Rattray M, Saad D, Amari S. Natural gradient descent for on-line learning. Physical Review Letters, 1998, 81, pp.5461-5464.
    [12] Bottou L. Online algorithms and stochastic approximations. In D. Saad (Ed.), Online learning and neural networks. Cambridge: Cambridge University Press, 1998.
    [13] Amari S, Chen T, Cichocki A. Nonholonomic orthogonal learning algorithms for blind source separation. Neural Computation, 2000, 12, pp.1463-1484.
    [14] Amari S, Park H, Fukumizu K. Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation, 2000, 12, pp.1399-1409.
    [15] Park H, Murata N, Amari S. Improving generalization performance of natural gradient learning using optimized regularization by NIC. Neural Computation, 2004, 16, pp.355-382.
    [16] Stefano S, Arcangeli A, Piazza F. Stability analysis of natural gradient learning rules in complete ICA: a unifying perspective. IEEE Signal Processing Letters, 2007, 14(1), pp.54-57.
    [17] Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans on Signal Processing, 1996, 44(12), pp.3017-3030.
    [18] Haykin S. Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [19] Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA. Int. J. Neural Syst., 1998, 8(12), 601–612.
    [20] Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letter, 2002, 9(12), pp. 432–435
    [21] Zhu X L, Zhang X D Ding Z Z, Jia Y. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE Transactions on circuits and systems-I, 2006, 53(3), pp.745-753.
    [22] Comon P. Independent component analysis: a new concept? Signal Processing, 1994, 36(3), 287-314.
    [23] Rumelhart D E, Hinton G E, Williams. Learning representations by backpropogating errors. Nature, 1986, 323 pp. 533-536.
    [24] Haykin S. Neural Networks: A Comprehensive Foundation, Prentice-Hall: Upper Saddle River, NJ, 1999.
    [25] Douglas S C, Cichocki A. Adaptive step size techniques for decorrelation and blind source separation. Signals, Systems﹠ Computers Conference, 1998, pp.1191-1195.
    [26] Jacobs, R. Increased rates of convergence through learning rate adaptation. Neural Networks, 1988, 1, pp.295-307.
    [27] Mathews V, Xie Z. A stochastic gradient adaptive filter with gradient adaptive step size. IEEE Trans on Signal Processing, 1993 , 41(6), 2075-2087.
    [28] Thomas P, Allen G, August N. Step-size control in blind source separation. International Workshop on Independent Component Analysis and Blind Source Separation, Helsinki, Finland, 2000, 509-514.
    [29] Chambers A, Jafari G, McLaughlin S. Variable step-size EASI algorithm for sequential blind source separation. Electronics Letters, 2004, 40(6), pp.393-394.
    [30] Yuan L X, Wang W W, Chambers A. Variable step-size sign natural gradient algorithm for sequential blind source separation. IEEE Signal Processing Letters, 2005, 12(8), pp.589-592.
    [31] Douglas S C, Gupta M. Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, II, pp.637-640.
    [32] Moon T K, Stirling W. Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, 2000.
    [1] Haykin S. Unsupervised adaptive filtering. Volume1: Blind source separation. New York: Wiley, 2000.
    [2] Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York, Wiley, 2001.
    [3] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York: Wiley, 2003.
    [4] Makino S, Lee T W, Sawada H. Blind speech separation, Springer, 2007.
    [5] Bell A, Sejnowski T. An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7, pp. 1129–1159.
    [6] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996, 8, pp. 757-763.
    [7] Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans on Signal Processing, 1996, 44(12), pp.3017-3030.
    [8] Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1986.
    [9] Golub G H, Loan C. Matrix Computations. John Hopkins University Press, Baltimore, MD, 1991.
    [10] Chang, Ding Z, Yau S, Chan F. A matrix-pencil approach to blind separation of nonwhite signals in white noise. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Seattle, WA, May 1998, 4, pp. 2485-2488.
    [11] Tome A M. Blind source separation using a matrix pencil. in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw., Como, Italy, Jul. 2000, 3, pp. 339-342.
    [12] Parra L, Sajda P. Blind Source Separation via Generalized Eigenvalue Decomposition. Journal of Machine Learning Research, 2003, 4(7-8), pp.1261-1269.
    [13] Rao Y N, Principe J C, Wong T F. Fast RLS-like algorithm for generalized eigendecomposition and its applications. Journal of VLSI Signal Processing, 2004, 37, pp. 333–344.
    [14] Ozertem U, Erdogmus D. Recursive generalized eigendecomposition for independent component analysis. Proceedings of ICA 2006, Berlin Heidelberg: Springer-Verlag, 2006, 198-205.
    [15] Pokharel P P, Ozertem U , Erdogmus D, PrincipeJose C. Recursive complex blind source separation via eigendecompsition of cumulant matrices. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Seattle, WA, May 2007, II, pp. 645-648.
    [16] Pokharel P P, Ozertem U, Erdogmusb D, Principe J C. Recursive complex BSS via generalized eigendecomposition and application in image rejection for BPSK. Signal Processing, 2008, 88(4), pp. 1368-1381.
    [17] Douglas S C, Cichocki A. Adaptive step size techniques for decorrelation and blind source separation. Signals, Systems﹠ Computers Conference, 1998, pp.1191-1195.
    [18] Thomas, P, Allen G, August N. Step-size control in blind source separation. International Workshop on Independent Component Analysis and Blind Source Separation, Helsinki, Finland, 2000, pp. 509-514.
    [19] Haykin S. Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [20] Eleftheriou E., Falconer D D. Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. Acoustic Speech, Signal Processing, 1986, 34(10), pp. 1097–1109.
    [21] Hua Y, Xiang Y, Chen T, Abed-Meraim K, Miao Y. A new look at the power method for fast subspace tracking. Digital Signal Processing, 1999, 9(10), pp.297-314.
    [22] Lv Q, Zhang X D, Jia Y. Kalman filtering algorithm for blind source separation. IEEE International Conference Acoustics, Speech, Signal Processing, 2005, pp. 257–260.
    [23] Hild K, Erdogmus D and Principe J C. Blind source separation using Renyi’s mutual information. IEEE Signal Processing Letter, 2001, 8(6), pp. 174–176.
    [1] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York: Wiley, 2003.
    [2] Haykin S. Unsupervised adaptive filtering. Volume1: Blind source separation. New York: Wiley, 2000
    [3] Benesty J, Huang Y. Adaptive Signal Processing: Applications to Real-World Problems. Berlin, Germany: Springer, 2003.
    [4] Makino S, Lee T W, Sawada H. Blind speech separation, Springer, 2007.
    [5] Torkkola K. Blind separation of convolved sources based on information maximization. IEEE Workshop on Neural Networks and Signal Processing, Kyota, Japan, 1996.
    [6] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 1998, 22(2), pp. 21-34,.
    [7] Parra L, Spence C. Convolutive blind separation of nonstationary sources. IEEE Trans on Speech Audio Processing, 2000, 8(3), pp. 320-327.
    [8] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001, 41, pp. 1–24.
    [9] Asano F, Ikeda S, Ogawa M, Asoh H, Kitawaki N. A combined approach of array processing and independent component analysis for blind separation of acoustic signals. IEEE Trans on Speech and Audio Processing, 2003, 11(3), pp. 204–215.
    [10] Araki S, Mukai R, Makino S. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans on Speech and Audio Processing, 2003, 11(2), pp. 109–116.
    [11] Ito M, Takeuchi Y, Matsumoto T. Moving-source separation using directional microphones. Proc. Int. Symp. Signal Process. Inf. Theory, Dec. 2002, pp. 523–526.
    [12] Cauwenberghs G, Stanacevic M, G. Zweig. Blind broadband source localization and separation in miniature sensor arrays. Proc. IEEE Int. Symp. Circuits Syst., 2001, 3, pp. 193-196.
    [13] Pedersen M S, Wang D L, Larsen J, Kjems U. Two-microphone separation of speech mixtures. IEEE Trans on Neural Network, 2008, 19(3), pp. 475-492.
    [14] Matsuoka K, Ohya M, Kawamoto M. A neural net for blind separation of nonstationary signals. Neural Network, 1995, 8(3), pp. 411-419.
    [15] Choi S, Cichocki A. Blind separation of nonstationary sources in noisy mixtures. Electronics Letters, 2000, 36(4), pp. 848-849.
    [16] Choi S, Cichocki A. Robust whitening procedure in blind source separation context. Electronics Letter, 2000, 36(24), pp. 2050-2051.
    [17] Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics. IEEE Trans Signal Processing, 1997, 45(2), pp. 434-444.
    [18] Pham D T, Cardoso J F. Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans on Signal Processing 2001, 49(9), pp.1837-1848.
    [19] Yin F L, Mei T M, Wang J. Blind source separation based on decorrelation and nonstationarity. IEEE Trans. Circuits and Systems-I:Regular Papers, 2007, 54(5), pp. 1150-1158.
    [20] Chang C, Ding Z, Yau S, Chan F. A matrix-pencil approach to blind separation of colored nonstationary signals. IEEE Trans on Signal Processing, 2000, 48(3), pp. 900–907.
    [21] Parra L, Sajda P. Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning Research, 2003, 4(7-8): 1261-1269
    [22] Pokharel P P, Ozertem U, Erdogmusb D, Principe J C. Recursive complex BSS via generalized eigendecomposition and application in image rejection for BPSK. Signal Processing, 2008, 88(4), pp. 1368-1381.
    [23] Li Y Q, Wang J, and Zurada J M. Blind extraction of singularly mixed sources signals. IEEE Trans on Neural Network, 2000, 11, pp.1413-1422.
    [24] Li Y Q, Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Trans. Signal Processing, 2002, 46(7), pp. 997-1006.
    [25] Ye J M, Zhu X L, Zhang X D. Adaptive blind separation with an unknown number of sources. Neural Computation, 2004, 16(8), pp. 1641-1660.
    [26] Pokharel P P, Ozertem U, Erdogmusb D, Principe J C. Recursive complex BSS via generalized eigendecomposition and application in image rejection for BPSK. Signal Processing, 2008, 88(4), pp. 1368-1381.
    [27] Haykin S. Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [28] Hua Y, Xiang Y, Chen T, Abed-Meraim K, Miao Y. A new look at the power method for fast subspace tracking. Digiral Signal Processing, 1999, 9(10) , pp.297-314.
    [29] Golub G H, Loan C. Matrix Computations. John Hopkins University Press, Baltimore, MD, 1991.
    [30] Douglas S C, Gupta M. Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, II, pp.637-640.
    [31]张贤达.矩阵分析与应用.北京:清华大学出版社, 2004.
    [1] Brandstein M, Ward D. Microphone Arrays: Signal Processing Techniques and Applications (Digital Signal Processing), Springer-Verlag, 2001.
    [2] Benesty J, Huang Y. Adaptive Signal Processing: Applications to Real-World Problems. Berlin, Germany: Springer, 2003.
    [3] Special Issue on for Signal Processing for Acoustic Communication Systems. EURASIP Journal on applied signal processing. 2003,11(5).
    [4] Special Issue on Multichannel Signal Processing for Audio and Acoustics Applications. IEEE Trans. Speech and Audio Processing. 2004, 12(5).
    [5] Special section on multi-channel acoustic signal processing. IEICE Trans. Fundamentals, 2005, 88(7).
    [6] Berouti M, Schwartz R, Makhoul J. Enhancement of speech corrupted by additive noise. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1979, pp. 208–211.
    [7] Van Veen B D, Buckley K M. Beamforming: A versatile approach to spatial filtering. IEEE Trans on Acoust, Speech, Signal Processing, 1998, 5(2), pp. 4-24.
    [8]张贤达,保铮.通信信号处理.国防工业出版社. 2002年.
    [9] Haykin S. Unsupervised adaptive filtering. Volume1: Blind source separation John Wiley & Sons,Inc., 2000.
    [10] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. New York: Wiley, 2003.
    [11] Amari S, Douglas S, Cichocki A, Yang H. Multichannel blind deconvolution and equalization using the natural gradient. IEEE Workshop Signal Processing Advanced Wireless Communication, 1997, pp. 101–104.
    [12] Lambert R H, Bell A J. Blind separation of multiple speakers in a multipath environment. IEEE Int. Conf. Acoustic, Speech, Signal Processing, 1997, 1, pp. 423–426.
    [13] Torkkola K. Blind separation of convolved sources based on information maximization. IEEE Workshop on Neural Networks and Signal Processing, Kyota, Japan, 1996, pp.423-432.
    [14] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 1998, 22, pp. 21–34.
    [15] Parra L, Spence C. Convolutive blind separation of nonstationary sources. IEEE Trans. Speech Audio Processing, vol. 8, no. 3, pp. 20–327, May 2000.
    [16] Kurita S, Saruwatari H. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. IEEE International Conference Acoustics, Speech, Signal Processing, 2000, pp. 3140–3143.
    [17] Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. IEEE International Conference Acoustics, Speech, Signal Processing, 2002, pp. 881–884.
    [18] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001, 41, pp. 1–24.
    [19] Asano F, Ikeda S, Ogawa M, Asoh H, Kitawaki N. A combined approach of array processing and independent component analysis for blind separation of acoustic signals. IEEE Trans. Speech Audio Processing, 2003, 11(3), pp. 204–215.
    [20] Araki S, Mukai R, Makino S. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans on Speech Audio Processing, 2003, 11(2), pp. 109–116.
    [21] Douglas S C, Gupta M. Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, II, pp.637-640.
    [22] Matsuoka K. Independent component analysis and its application to sound signal separation. IWAENC2003, Kyoto, Japan, pp. 15-18, 2003.
    [23] Gannot S, Burshtein D, Weinstein E. Signal enhancement using beamformingand nonstationarity with applications to speech. IEEE Trans on Signal Processing, 2001, 49(8), pp. 1614–1626.
    [24]张贤达矩阵分析与应用清华大学出版社2004年9月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700