用户名: 密码: 验证码:
南方集体林区木荷次生林生长规律及经营技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次生林已成为中国森林资源的主体。森林资源不合理经营与开发利用而导致森林资源匮乏,如何科学的经营好次生林是一个重大的理论与实践问题。论文属于林业公益性行业科研专项“南方集体林区次生林抚育间伐与高效利用技术研究(编号201004032)”的部分研究内容。在综述次生林结构、生长规律、经营技术的基础上,以湖南省炎陵县青石冈国有林场木荷次生林为研究对象,收集、调查、整理了有关木荷次林的标准地、解析木及测土配方资料,开展木荷次生林林分直径分布规律、竞争生长过程、经营技术体系及经营效果研究,构建间伐指数解决森林抚育间伐对象木选择难题,研究结果从理论上解决了木荷次生林抚育间伐开始期、抚育强度及抚育间伐对象木选择等经营技术难题,形成了木荷次生林经营技术体系。论文研究结果和主要研究结论如下:
     (1)木荷次生林林分结构研究。①研究样地内年龄在10~24年之间的木荷林木株数约占木荷总株数的94.81%,形成以14年为顶峰,14年左右年龄的林木株数逐渐减少的单峰曲线。年龄在10~24年之间的马尾松株数约占马尾松总株数的80.25%;其他树种林木株数非常少,年龄主要集中在5~12年。②采用Weibull函数模拟木荷次生林直径分布,利用柯氏检验法检验直径分布实际值与拟合理论值的差异显著性,通过直径分布的理论偏度、峭度与实际偏度、峭度比较分析分布函数的适用性。研究表明,Weibull函数能够较好模拟具有不同偏度和峭度变化的木荷次生异龄林。
     (2)木荷次生林生长模型研究。采用Hegyi竞争指数分析木荷次生林的竞争关系,研究确定木荷林分的最佳竞争半径(5m)。根据各个树种断面积占林分总断面积比,将树种分为木荷、马尾松和其他树种。根据标准差法将竞争指数值分为3级,将同一树种分为优势木、中庸木和劣势木,分别对木荷、马尾松和其他树种的优势木、中庸木与劣势木的胸径、树高和材积生长过程进行模拟。模拟结果:①各树种优势木、中庸木与劣势木的胸径生长方程拟合效果均以Johnson Schumacher方程最优;②木荷优势木和中庸木及马尾松劣势木、木荷劣势木与马尾松优势木、其他树种的优势木、中庸木和劣势木的树高生长拟合效果分别以Logistic方程、Gompertz方程、Johnson Schumacher方程最优;③木荷、马尾松的优势木、中庸木与劣势木的材积生长拟合效果均以Bertalanffy方程最优,其他树种优势木与中庸木、劣势木的材积生长拟合效果分别以Johnson Schumacher和Richards方程最优。
     (3)木荷次生林竞争生长规律研究。①第一种竞争格局:8~15年内木荷对象木竞争指数缓慢增大,15年以后的竞争指数增加幅度加大。②第二种竞争格局:4~6年内竞争指数明显下降,而6年后缓慢下降。③第三种竞争格局:4-6年内对象木竞争指数迅速下降,6~8年内缓慢下降,第8年后对象木竞争指数呈现持续缓慢增大趋势。④第四种竞争格局:5~8年内对象木的竞争指数表现出明显下降趋势,而后缓慢下降。第9年开始,对象木竞争指数基本平稳在0.2~0.28左右,但有缓慢下降的变化趋势。
     (4)抚育间伐开始期研究。应用ForStat2.1模拟4种竞争格局中对象木的竞争强度与年龄的关系。模拟结果表明,4种竞争格局中对象木的竞争指数均以模型(CI=c+b*A+d*A2——e*A3)模拟效果最优;竞争指数越大,林木间竞争越激烈。通过计算,第一种、第二种、第三种、第四种竞争格局的竞争达最大值时的年龄分别为15.8年、14.1年、15.2年、13.9年,结果表明4种竞争格局的竞争强度达最大时的目的树种平均年龄非常一致,据此确定研究区域木荷次生林的抚育间伐开始期为14~15年。
     (5)竞争结构单元与最大竞争结构单元面积研究。竞争结构单元定义为以对象木为中心,其四个象限内各选1株与对象木最邻近的林木作为竞争木,对象木与4株竞争木组成结构单元。四株竞争木围成的平面四边形的面积称为竞争结构单元面积。通过证明,竞争结构单元平面四边形面积有最大值,其面积有下界但没有最小值。
     (6)木荷次生林密度调控技术研究。以总生物量为因变量,郁闭度为自变量,模拟木荷次生林地上部分生物量与郁闭度之间的相关关系,模拟结果为W总=-18.4531+101.8078P-74.2689P2。林分地上部分生物量达最大时,林分的郁闭度为0.6854。林分郁闭度是平均冠半径与林分密度的函数,所以用林分平均冠幅与林分密度来推算林分的郁闭度。若控制郁闭度为0.68,竞争结构单元面积最大时,单位面积上的竞争结构单元的个数最少,而每个竞争结构单元由5株林木构成,则单位面积林分最少保留株数等于最少竞争结构单元个数与每个竞争结构单元林木株数的积,即为林分最少保留密度。以标准地19为例计算木荷次生林抚育间伐强度。
     (7)间伐指数构建。结合运用头脑风暴法、Delphi法、会内会外法对构成间伐指数的指标进行筛选,确定构建间伐指数的指标,即自由度、混交度、开阔比数、健康指数、空间密度指数和目的树种特性指数,应用层次分析法求算构成间伐指数6个指标的权重。以标准地资料为例,计算标准地内每株林木的6种指标值及其间伐指数值,根据现实林分密度与最少保留密度的关系,确定抚育强度,依据间伐指数大小确定抚育间伐对象,从理论上解决了抚育间伐对象选择难题。
     (8)木荷次生林经营模式及经营效果研究。根据经营目标,以木荷-南方红豆杉混交林为例设计6种经营模式,探索各经营模式的合理技术标准。对不同经营模式的经营效果进行对比研究:①不同经营模式之间:土壤容重、毛管孔隙度、最大持水量和田间持水量无明显差异,而总孔隙度和非毛管孔隙度差异显著;土壤有机质含量均较高,全N、全P、有效P含量均相对较低。林分物种组成差异明显,其中乔木层物种以珍贵树种引种模式最丰富,抚育模式林分物种最少;灌木层物种以封禁模式最多,采育结合模式和抚育模式最少;草本层物种变化趋势与灌木层基本一致。林分高度级和径级结构存在差异,封禁模式林分高度级有5个,补植模式林分高度级有4个,采育结合模式林分只有3个高度级,抚育模式林分Ⅰ、Ⅱ、Ⅲ高度级分布比较均匀。②同一经营模式:不同土壤层次化学性质不同,pH值随土壤层次加深指标值上升,其他化学性质指标值随土壤层次加深而下降。
Secondary forest has become the main body of forest resource in China. Forest resource shortage were caused by unreasonable management and utilization, how to manage secondary forest scientifically is an important theory and practical problem. The paper is a part of the public welfare and forestry:Research on forest thinning and efficicent utilization of southern collective forest (Number:201004032). Based on the summary of the structure, growth law and management technology of secondary forest, Schima superba secondary forest had been taken as the study object in State-owned Forest Farm of Qingshigang. Data of sample plot, sample tree and soil testing were collected, and diameter distribution, competitive growth process, management technical system and effect were studied. In order to solve the problem of thinning object selection, the intermediate cutting index was built. The results solved these problems about beginning time of intermediate cutting, thinning intensity and selection of thinning object, then it formed the management technical system of Schima superba secondary forest. The result and main conclusion have been studied as following:
     (1) Study on stand structure in Schima superba secondary forest.
     ①The quantity was accounted for94.81%of Schima superba which aged between10and24years. Unimodal curve with a peak was formed at14years. The quantity of trees which aged around14years decreased gradually. The quantity was accounted for80.25%of Pinus massoniana which aged between10and24years too. Other trees which aged mainly between5and12years were very few.②Weibull function was used to fitting the diameter distribution of Schima superba secondary forest, and significant difference of the actual value and theoretical fitting value of diameter distribution was verified with method of test for Coriolis. Through comparison between theoretical and practical about skew degree, kurtosis degree of DBH distribution, the applicability of the distribution function was confirmed. The result showed that Weibull function can satisfactorily fit the Schima superba secondary forest.
     (2) Study on growth model in Schima superba secondary forest.
     In order to confirm the best competitive radius of the Schima superba secondary stand, Hegyi competition index was used to analyze the competitive relationship. According to individual tree basal area accounted for the total stand basal area ratio, species were divided into Schima superb, Pinus massoniana and other tree. According to the standard deviation, competition index was divided into3levels. According to the average competition index, each species was divided into superior tree, mediocre tree and inferior tree, then diameter, height and volume increment process of the superior tree, mediocre tree and inferior tree were imitated separately, The fitting results were as following:①Fitting effective of Johnson Schumacher equation presented the most optimal to diameter growth of all species;②Logistic equation presented the most optimal fitting effective to hight growth of Schima superb superior tree, mediocre tree and Pinus massoniana inferior tree, Gompertz equation presented the most optimal fitting effective to hight growth of Schima superb inferior tree and Pinus massoniana superior tree, while Johnson Schumacher presented the most optimal fitting effective to hight growth of other superior tree, mediocre tree and inferior tree;③Bertalanffy equation presented the most optimal fitting effective to volume growth of all Schima superb and Pinus massoniana. Johnson Schumacher equation presented the most optimal fitting effective to volume growth of other superior tree and mediocre tree, while Richards equation presented the most optimal fitting effective to volume growth of other inferior tree.
     (3) Study on competitive growth law in Schima superba secondary forest.
     ①The First competition pattern:Competition index of Schima superba objective tree which aged between8and15years increased slowly and increased more fast than the former after15years.②The Second competition pattern:Competition index of Schima superba objective tree which aged between4and6years decreased obviously and decreased slowly after6years.③The Third competition pattern:Competition index of Schima superba objective tree which aged between4and6years decreased quickly and which aged between6and8years decreased slowly, while competition index increased continuously and slowly after8years.④The Fourth competition pattern:Competition index of Schima superba objective tree which aged between5and8years showed dramatic decline downtrend and decreased slowly. Competition index was kept between0.2and0.28after9years, but it decreased slowly.
     (4) Study on thinning beginning time.
     Forstat2.1was used to fit the relationship between competition index and age of objective tree in four competition patterns. The fitting results showed that were the most optimal to competition index of objective tree of all competition patterns with the model (CI=c+b*A+d*A2+e*A3). Competition index is more greater, competition is more intensely. Through calculating, the age was respectively15.8,14.1,15.2,13.9years of the four competition patterns when competition index reached the maximum value. It is consistent to the average age of four competition patterns when the competition strength reached the maximum value, so the thinning beginning time was determined at14-15years of Schima superba secondary forest.
     (5) Study on competitive structural unit and the maximum area of competitive structural unit.
     One tree which is the nearest to objective tree is chosen as competitive tree in each quadrant, objective tree and four competitive trees form a competitive structural unit, when the objective tree is selected and taken as the center. Area of competitive structural unit is defined that four competitive trees form a quadrilateral. By proof, area of competitive structural unit has a maximum value, but the area has no minimum value.
     (6) Study on technology of density control in Schima super ba secondary forest.
     Total biomass is taken as the dependent variable, canopy density is taken as the independent variable. Relationship between biomass and canopy density of Schima superba secondary forest was simulated. Fitting result was W总=-18.4531+101.8078P-74.2689P2. The biomass reaches the maximum value when canopy density is0.6854. Canopy density is a function of the average crown width and stand density, average crown width and stand density was used to estimate canopy density. If the canopy density is controlled at0.68, the area of competitive structural unit is more larger, the number of competitive structural unit is less, While each competitive structural unit has five trees, then the least reserved density equal to the number of competitive structural unit multiplied by five. Sample plot No.19had been taken as an example to calculate thinning intensity of Schima superba secondary forest.
     (7) Build the intermediate cutting index.
     The Brainstorming, Delphi and Meetings was used to filter these indexes that were consisted of intermediate cutting index, then six indexes (degree of freedom, mingling, open comparison, health index, spatial density index and aim index) were selected to build intermediate cutting index. The AHP was used to get weight coefficients of the six indexes. An experiment sample plot had been taken as an example, the value of every index and intermediate cutting index of each tree were calculated. According to the relationship between actual stand density and the least reserved density, thinning intensity and thinning object were determined with intermediate cutting index. It theoretically solved the problem of thinning object selection.
     (8) Study on management pattern and effect in Schima superba secondary forest.
     According to the management target, six management patterns were designed for Schima superba&Taxus mairei mixed forest. Reasonable technological standard of each management pattern was explored. Contrastive study of management effect in different management pattern was researched.①Among the six management patterns:Soil bulk density, capillary porosity, maximum water-holding capacity and field capacity were without obviously difference, while the total porosity and non-capillary porosity were with significant difference. Soil organic matter content was relatively high, total N, available P and total P content were relatively low. Species composition exists significant difference in tree layer, species were the most in rare tree introduction pattern, while species were the least in thinning pattern. Species were the most of closure pattern in shrub layer and were the least in cutting and planting combination pattern and thinning pattern. Change trend in herbaceous layer was in agreement of shrub layer. Height class and diameter class were different, closure pattern had five height classes, after-culture pattern had four height classes, cutting and planting combination pattern only had three height classes. The distribution of Ⅰ, Ⅱ, Ⅲ height class were balanced in thinning pattern.②In the same management pattern:Chemical properties of different soil layers was with variation. The pH increased with the depth of soil layer, while other indexes decreased.
引文
[1]贾治邦.中国森林资源报告(第七次全国森林资源清查)[M].北京:中国林业出版社,2009.
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[C].2006.
    [3]孟宪宇.测树学[M].北京:中国林业出版社,1996.
    [4]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望[J].林业调查规划,2005,30(2):70-76.
    [5]胡文力.长白山过伐林区云冷杉针阔混交林分结构的研究[D].北京林业大学硕士学位论文.2003.
    [6]李毅,孙雪新,康向阳.甘肃胡杨林分结构的研究[J].干旱区资源与环境,1994,8(3):88-95.
    [7]陈东来,秦淑英.山杨天然林林分结构的研究[J].河北农业大学学报,1994,17(1):36-43.
    [8]沈国舫.现代高效持续林业—中国林业发展道路的抉择[J].林业经济,1998,(4):1-8.
    [9]邵青还.德国的林业保护政策极其评价—中国林业如何走向21世纪[M].北京:中国林业出版社,1995,53-60.
    [10]Kimmins J . Forest Ecology[M]. New York, USA:Macmillan Inc,1996.
    [11]Walt A T, Fule P Z, Covington W W, Moore M M. Diversity in ponderosa pine forest structure following ecological restoration treatments[J]. For Sci,2003, 49(6):885-900.
    [12]Youngblood A, Max T, Coe K. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California[J]. For Ecol & Manage,2004, 199(2):191-217.
    [13]郭昭洋.柳杉人工纯林胸径、树高威布尔分布的拟合[J].江西林业科技,1997,24-25.
    [14]刘君然,赵东方.落叶松人工林威布尔分布参数与林分因子模型的研究[J].林业科学,1997,33(5):412-417.
    [15]孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1988,10(1):40-48.
    [16]洪利兴,杜国坚,张庆荣,等.天然常绿阔叶异龄幼林胸径的Weibull分布及动态预测[J].植物生态学报,1995,19(1):29-42.
    [17]周春国,余光辉,吴富桢,等.用变型Weibull分布对热带雨林结构规律的研究[J].南京林业大学学报,1998,22(4):14-18.
    [18]周国模,刘恩斌,刘安兴,等.Weibull (?)分布参数辨识改进及对浙江毛竹林胸径年龄分不的测度[J].生态学报,2006,26(9):148-156.
    [19]Nanang D. M. Suitability of the Normal, Log-normal and Weibull distributions for fitting diameter distributions of neem plantations in Northern Ghana[J]. Forest Ecology and Management,1998,103:1-7.
    [20]ZHANG Lianjun, GOVE J H, LIU Chuangmin, et al. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands[J]. Can J For Res,2001,31(9):1654-1659.
    [21]惠淑荣,吕永震.Weibull分布函数在林分直径结构预测模型中的应[J].北华大学学报,2003,4(2):101-104.
    [22]BAILEY R L, DELL T R. Quantifying diameter distributions with the Weibull function[J]. For Sci,1973,19(2):97-104.
    [23]陈昌雄,陈平留.闽北天然异龄林林分结构规律的研究[J].福建林业科技,1997,24(4):1-4.
    [24]Mason W L, Quine C P. Silvicultural possibilities for increasing structural diversity in British spruce forests:the case of Kielder forest[J]. Forest Ecology and Management,1995,79(1):13-28.
    [25]Ferris R, Humphrey J W. A review of potential biodiversity indicators for application in British forests[J]. Forestry,1999,72(4):313-328.
    [26]Pommerening A. Approaches to quantifying forest structures[J]. Forestry,2002, 75(3):305-324.
    [27]Aguirre O, Fui G Y, Gadow K V, et al. An analysis of spatial forest structure using neighbourhood-based variables[J]. Forest Ecology and Management, 2003(9):137-145.
    [28]KintV, MeirvenneMV, Nachtergale L, et al. Spatialmethods for quantifying forest stand structure development:a comparison between nearest-neighbor indices and variogram analysis[J]. Forest Science,2003,49(1):36-49.
    [29]刘春华,吴奇镇.马尾松木荷混交林林分结构和士壤肥力研究[J].防护林科技,2002(4):19-21.
    [301 SOLOMON D S, GROVE J H. Effects of uneven-aged management intensity on structural diversity in two major forest types in New England[J]. For Ecol Manage,1999(114):265-274.
    [31]亢新刚,胡文力,董景林,等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报,2003,25(6):1-5.
    [321 Takuo Nagaike, etc. Plant species diversity in abandoned coppice forests in a temperate deciduous forest area of central Japan[J]. Plant Ecology,2003, (166):145-156.
    [33]N. LUST, etc. Increase of biodiversity in homogeneous Scots pine stands by an ecologically diversified management[J]. Biodiversity and conservation,1998, (7):249-260.
    [34]T. Manabe, etc. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in JapanfJ]. Plant Ecology,2000, (151):181-197.
    [35]Christoph Leuschner, etc. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility[J]. Plant and Soil,2004(258):43-56.
    [36]Manuel R. etc. Structure and florislics of secondary and old-growth forest stands in lowland Costa Rica[J]. Plant Ecology,1997(132):107-120.
    [37]Jiri Dolezal and Miroslav Srutek. Altitudinal changes in composition and structure of mountain-temperate vegetation:a case study from the Western Carpathians[J]. Plant Ecology,2002(158):201-221.
    [38]Bent Otto Poulsen. Avian richness and abundance in temperate Danish forests:tree variables important to birds and their conservation[J]. Biodiversity and conservation,2002(11):1551-1566.
    [39]Magdy El-Banal, etc. Vegetation composition of a threatened hypersaline lake(Lake Bardawil), North Sinai [J]. Plant Ecology,2002,163:63-75.
    [40]LAURI M. An algorithm for ensuring compatibility between estimated percentiles of diameter distribution and measured stand variables[J]. For Sci, 2004,50(1):20-32.
    [41]LIU Chuangmin, ZHANG S Y, LEI Yuancai, et al. Evaluation of three methods for predicting diameter distributions of black spruce(Picea mariana)plantations in central Canada[J]. Can J For Res,2004,34(12):2424-2432.
    [42]BLISS C I, REINKER K A. A lognormal approach to diameter distributions in even-aged stands[J]. For Sci,1964,10(3):350-360.
    [43]HAFLEY W L, SCHREUDER H T. Statistical distributions for fitting diameter and height data in even-aged stands[J]. Can J For Res,1977(7):481-487.
    [44]WANG Mingliang, RENNOLLS K. Tree diameter distribution modelling:introducing the logit-logistic distribution[J]. Can J For Res,2005, (35):1305-1313.
    [45]Wayan C. Zipperer Species composition and structure of regenerated and remnant forest patches within an urban land-scape[J]. Urban Ecosystems,2002, (6):271-290.
    [46]Unna Chokkalingam and Alan White. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine[J]. Plant Ecology,2000, (100):1-22.
    [47]N. Nishimura, etc. Tree competition and species coexistence in a warm-temperate old-growth evergreen broad-leaved forest in Japan[J]. Plant Ecology,2002(164):235-248.
    [48]Danaza mabvurira, etc. Predicting and calibrating diameter distributions of Eucalyptus grandis (Hill) Maiden plantations in Zimbabwe[J]. New Forests, 2002(23):207-223.
    [49]SARKKOLA S, HOKKA H, PENTTILA T. Natural development of stand structure in peatland scots pine following drainage:Results based on long-term monitoring of permanent sample plots [J]. Silv Fennica,2004,38(4):405-412.
    [50]LIU Chuangmin, ZHANG Lianjun, DAVIS C J, et al. A finite mixture model for characterizing the diameter distributions of mixed species forest stands[J]. For Sci,2002,48(4):653-661.
    [51]ZASADA M, CIESZEWSKI C J. A finite mixture distribution approach for characterizing tree diameter distribution by natural social class in pure even-aged Scots pine stands in Poland[J]. For Ecol Manage,2005,204(2-3):145-158.
    [52]MATHIEUF, CHHUN U, LOUISA, et al. Calibrating a generalized diameter distribution model with mixed effects [J]. For Sci,2006,52(6):650-658.
    [53]Hansorg Dietz. Plant invasion patches-reconstructing pattern and process by means of herb-chronology [J]. Biological Invasions,2002(4).
    [54]Moeur. M. Characterizing spatial patterns of trees using stem-mapped data[J]. For. Sci.1993,39(4):21-24.
    [55]Greig-Smith, P. Quantitative Plant Ecology[C],3rd cdn. Berkeley:University of California Pres.1983.
    [56]Legendre P, Fortin M. Spatial pattern and ecological analysis[J]. Vegetatio, 1989,80(2),107-138.
    [57]GOODBURN J M, LORIMER C G. Population structure in old-growth and managed northern hardwoods:an examination of the balanced diameter distribution concept[J]. For Ecol Manage,1999(118):11-29.
    [58]HAO Qingyu, ZHOU Yuping, WANG Lihai, et al. Optimization models of stand structure and selective cutting cycle for large diameter trees of broadleaved forest in Changbai Mountain[J]. J For Res,2006,17(2):135-140.
    [59]Clinton B D, Elliott K J, Swank W T. Response of planted eastern white pine(Pinus strobusL) to mechanical release, competition, and drought in the southern Appalachians[J]. Southern Journal of Applied Forestry,1997, 21(1):19-23.
    [60]Lloyd, M. Mean Crowding[J]. J. Anim. Ecol.1967(45):36.
    [61]Morisita, M. Composition of the 15-index[J]. Res. Popul. Ecol.1971:13.
    [62]Clark P J, Evans F C. Distance to nearest neighbor as a measure of spatial relationships in population[J]. Ecology,1954,35(4):445-453.
    [63]FAJARDO A, GOODBURN J M, GRAHAM J. Spatial patterns of regeneration in managed uneven-aged Ponderosa pine/Douglas-fir forests of Western Montana, USA[J]. For Ecol Manage,2006(223):255-266.
    [64]CHEN Jiquan, BRADSHAW G A. Forest structure in space:a case study of an old growth spruce-fir forest in Changbaishan Natural Reserve, P. R. China[J]. For Ecol Manage,1999(120):219-233.
    [65]ANTOS J, PARISH R. Dynamics of an old-growth, fire-initiated, subalpine forest in southern interior British Columbia:trec size, age, and spatial structure[J]. Canadian J For Res,2002(32):1935-1946.
    [66]MOTTA R, EDOUARD J L. Stand structure and dynamics in a mixed and multilayered forest in the upper Susa Valley, Piedmond, Italy[J]. Canadian J For Res,2005,35(1):21-36.
    [67]Cressie N A C. Statistics for spatialdata[M]. NewYork:Wiley,1993:890-900.
    [68]Ripley B D. Modelling spatial patterns (with discussion)[J]. Journal of the Royal Statistical Society:Series B,1977,39(2):172-212.
    [69]Prctzsch H. Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony[J]. Forest Ecology and Management,1997,97(3):237-253.
    [70]Holmes M J, Reed D D. Competition indices for mixed species northern hardwoods[J]. Forest Science,1991,37(5):1338-1349.
    [71]Arney JD. Tables for quantifying competitive stress on individual trees(information report/Canada)[M]. Victoria, BC:Pacific Forest Research Centre, Canadian Forestry Service,1973:16-22.
    [72]Brown G S. Point density in stems per acre[J]. New Zealand Forestry Service Research Notes,1965.38:11-17.
    [73]Belial E. A new competition model for individual tree[J]. Forest Science,1971, 17(3):367-362.
    [74]Spathelf P. Reconstruction of crown length of Norway spruce(Picea abiesL. Karst.) and Silver fir(Abies albaMil. 1)technique, establishment of samplemethods and application in forest growth analysis[J]. Annals of Forest Science,2003,60(8):833-842.
    [75]Rivas J J C, Gonzalez J G A, Aguirre O, et al. The effect of competition on individual tree basal area growth in mature stands of Pinus cooperi Blanco in Durango(Mexico)[J]. European Journal of Forest Research,2005, 124(2):133-142.
    [76]Bristow M, Vancaly J K, Brooks L, et al. Growth and species interactions of Eucalyptus pellitain a mixed and monoculture plantation in the humid tropics of north Queensland[J]. Forest Ecology and Management,2006,233(2):285-294.
    [77]Piutti E, Cescati A. A qualitative analysis of the interaction between climatic response and intraspecific competition in European beech [J]. Canadian Journal of Forest Research,1997,27(3):277-284.
    [78]Hasse P. Spatial pattern analysis in ecology based on Ripley's K-function:introduction and methods of edge correction[J]. Journal of Vegetatio Science,1995,6(4):575-582.
    [79]Dale M R T. Spatial pattern analysis in plantecology[M]. NewYork:CambridgeUniversity Press,1999:326.
    [80]David F N and Moo P G. Notes on contagious Distibution in palant populations[J]. Ann. Bot. Lond. N. S.1954:18-22.
    [81]De Luis M, Raventos J, Cortina J, et al. Assessing components of a competition index to predict growth in an even aged Pinus nigra stand[J]. New forests,1998, 15(3):223-242.
    [82]Mailly D, Turbis S, Pothier D. Predicting basalarea increment in a spatially explicit, individual tree model:a test of competition measureswith black spruce[J]. Canadian Journal of Forest Research,2003,33(3):435-443.
    [83]BelandM, Lussier J M, Bergeron Y, et al. Structure, spatial distribution and competition in mixed jack pine(Pinus banksiana)stands on clay soils of eastern Canada[J]. Annals of Forest Science,2003,60(7):609-617.
    [84]Canham C D, LePage P T, CoatesK D. A neighbourhood analysis of canopy tree competition:effects of shading versus crowding[J]. Canadian Journal of Forest Research,2004,34(4):778-787.
    [85]Fisher R A, Corbet AS, W illiams C B. The relation between the number of species and the numberof individuals in a random sample of an animal population[J]. The Journal of Animal Ecology,1943,12(1):42-58.
    [86]Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management,2006,224(3):266-277.
    [87]Kint V. Structural development in ageing temperate Scots pine stands[J]. Forest Ecology and Managemnet,2005,214(1):237-250.
    [88]North M, Chen J Q, Oakley B, et al. Forest stand structure and pattern of old-growth western Hemlock/Douglas-fir and mixed-conifer forests[J]. Forest Science,2004,50(3):299-311.
    [89]GUL A U, MISIR M, MISIR N, et al. Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterba's modified competition density rule[J]. For Ecol Manage,2005(214):212-220.
    [90]亢新刚,胡文力,董景林等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报,2003,25(6)1-5.
    [91]陈学群.不同密度30年生马尾松林生长特征与林分结构的研究[J].福建林业科技,1995(5):40-45
    [92]牟慧生.用幂数指数方程模拟林木胸径分布的探讨[J].吉林林业科技,1996(6):38-40.
    [93]王顺忠,王飞,张恒明,等.长白山阔叶红松林径级模拟研究—林分模拟[J].北京林业大学学报,2006,28(5):22-27.
    [94]胥辉,全宏波等.思茅松标准树高曲线的研究[J].西安南林学院学报,200020(2):74-77.
    [95]郭丽虹,李荷云.桤木人工林林分胸径与树高的威布尔分布拟合[J].江西林业科技,2000(2):26-27.
    [96]吕勇.树木树高曲线模型研究[J].中南林学院学报,1997, 17(4):86-89.
    [97]邓坤枚,邵彬,李飞,长白山北坡云冷杉林胸径、树高结构及其生长规律的分析[J].资源科学,1999 21(1):77-84.
    [98]张光坤.柳衫平均高与胸径平均模型的研究[J].福建林业科技,1995,22(3):55-58.
    [99]王明亮,李希菲.非线性树高曲线模型的研究[J].林业科学研究,200013(1):75-79.
    [100]洪伟,刘金福.格氏栲种群个体年龄与胸径的时间序列模型研究[J] .植物生态学报,1999,23(3):283-288.
    [101]王益和.马尾松人工林相对树高曲线模型及其应用研究[J].福建林业科技,2000,27(1):36-39.
    [102]戴继先.华北落叶松人工林直径树高结构规律的研究[J].山西林业科技,1993(3):15-18.
    [103]代力民,孙伟中等.长白山北坡锻树阔叶红松林群落主要树种的年龄结构研究[J].林业科学,2002,38(3):73-77.
    [104]张伟,郝青云等.庞泉沟次生混交林主要种群年龄结构和空间格局研究[J].山西农业大学学报,2002,12(2):50-53.
    [105]高俊峰,郭晋平.关帝山林区森林交错带群落林木年龄结构及其动态的研究[J].山西农业大学学报,2005 25(2):168-172.
    [1061孙冰,杨国亭,李弘,等.白话种群的年龄结构及其群落演替[J].东北林业大学学报,1994,22(3):43-48.
    [107]梁士楚,李久林,程仕泽.贵州青岩油杉种群年龄结构和动态的研究[J].应用生态学报,2002,13(1):21-26.
    [108]肖扬,郭晋平,冯晓燕.华北落叶松天然林年龄结构初步研究薛俊杰[J].林业科技通讯,2002(4):23-24.
    [109]贺姗姗.北京山区油松人工林林分结构与生长模拟研究[D].北京林业大学 硕士学位论文,2009.
    [110]张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究,2004,17(6):787-795.
    [111]Hanewinkel M, Pretzsch H. Modelling the conversion from evenaged to uneven-aged stands of Norway spruce (Picea abies L. Kars. t) with a distance-depentant growth simulator[J]. Forest Ecology and Management, 2000,134(1):55-70.
    [112]BIONDI F, MYERS D F, AVERY C C. Geostatistically modelling stem size and increment in an old-growth forest[J]. Can J For Res,1994,24:1354-1368.
    [113]GRUSHECHY S T, FAJVAN M A. Comparison of hardwood stand structure after partial harvesting using intensive canopy maps and geostatistical techniques[J]. For Ecol Manage,1999(114):421-432.
    [114]Courbaud B, Goreaudb F, Dreyfusc P, et al. Evaluating thinning strategies using a tree distance dependent growth model:some examples based on the CAPSIS software"uneven-aged spruce forests"module[J]. Forest Ecology and Management,2001,145(1):15-28.
    [115]肖君.林分生长与收获模型的研究现状与发展趋势[J].林业勘察设计,2007(1):7-10.
    [116]Avery T E, Burkhart H E. Forest Measurements[M]. Third Edition MCGRAW-Hill book company NewYork.1983.
    [117]邓成.林分生长和收获模型整体化思路探讨[J].林业调查规划,2008,33(4):7-9.
    [118]魏占才.长白落叶松人工林林分生长与收获模型应用研究[D].东北林业大学硕士学位论文,2003.
    [119]Landsberg J J. Physiological Ecology of Forest Production[C]. Academic Press, Sydney, Australia.1986.
    [120]Kimmins, J.P. Modeling the sustain ability of forest Production and yield for a changing uncertain future[J]. Forestry Chronicle,1990(66):271-280.
    [121]Mohren, G.. M. L., Burkhart, H. E., Jansen, J. J. Contrasts between biologically-based process models and management-oriented growth and yield models[J]. Forestry Ecology and management.1994(69):1-5.
    [122]Peng C H, Liu J X, Dang Q L, et al. TRIPLEX:a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics [J]. Ecological modeelling.2002(153):109-130.
    [123]MunroD. D. Forest growth models a prognosis. In:Fries. Growth models for tree and stand simulation[M]. Sweden:Royal College Of Forestry Stockholm, 1974(22):7-12.
    [124]雷相东,李希菲.混交林生长模型研究进展[J].北京林业大学学报,2003,25(3):105-110.
    [125]Monserud R A, Sterba H. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J]. For. Ecol. Manage.,1996(80):57-80.
    [126]Schroder J, Soalleiro R R. Alonso GV An age-independent basal area increment model for maritime Pine trees in northwester Spain[J]. Forest Ecology and Management,2002(157):55-64.
    [127]杜纪山.用二类调查样地建立落叶松单木直径生长模型[J].林业科学研究,1999,12(2):160-164.
    [128]葛宏立,项小强,何时珍,等.年龄隐含的生长模型在森林资源连续清查中的应用[J].林业科学研究,1997,10(4):420-424.
    [129]NUNIFU K T. Calibrating the mixed wood growth model(MGM) for Lodgepole Pine (Pinus contorta) and associated species in Alererta[D]. University of Alberata,2003.
    [130]Lin C R, Buongiorno J, Vasievich M. A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood[J]. Ecological Modelling,1996(91):193-211.
    [131]Atta-Boateng J, Moser J W. A method for classifying commercial tree species of an uneven-aged mixed species tropical forest for growth and yield construction[J]. Forest and Ecology management,1998,104:89-99.
    [132]Jogiste K.. Productivity of mixed stands of Norway spruce and birch affected by population dynamics:a model analysis[J]. Ecol Model.1998,106:77-91.
    [133]Payandeh B, Wang Y. Variable stocking version of Plonskips yield tables formulated[J]. Forestry, Chronicle 1996a,72(2):181-184.
    [134]曾翀,雷相东,刘宪钊,等,落叶松云冷杉林单木树高曲线的研究[J].林业科学研究,2009,22(2):182-189.
    [135]朱永红,翁困庆.热带雨林生长与收获预估简介[J] .林业资源管理,2000(6):14-17.
    [136]赵俊卉.长白山云冷杉混交林生长模型的研究[D].北京林业大学硕士学位论文,2010.
    [137]翁国庆.异龄林生长与收获模型[J].林业勘察设计,1996a, (1):5-12.
    [138]Ostaff W S, Carvell K L, Wiant H V. Comparative site index of eight hardwood species on the west Virginia University Forest[R]. west Virginia University Forestry Notes,1982,9:18-20.
    [139]闫明准.帽儿山地区天然次生林单木生长模型的研究[D].东北林业人学硕士学位论文,2009.
    [140]翁国庆.林分动态上长模型的研究[J].林业贷源管理,1996(4):25-28.
    [141]卢军.长白山地区天然混交林单木生长模型的研究[D].东北林业大学硕士学位论文,2005.
    [142]张少昂.兴安落叶松天然林林分生长模型和可变密度收获表的研究[D].东北林业大学学报.1986,14(3):17-26.
    [143]Buckman R. E. Growth and yield of red pine in Minnesota U.S.D.A Tech Bull.1962.
    [144]Clutter J. L. Sullivan A.D. A simultaneousGriwth and yield model for loblolly pine[J]. For. Sci.,1972,18(1):76-86.
    [145]张少昂.林分生长模型和收获表(综述)[M].译丛.哈尔滨:东北林业大学出版社,1985,3:1-6.
    [146]唐守正.广西大青山马尾松泉林整体生长模型及其应用[J].林业科学研究.1991a, 4(增刊):8-13.
    [147]张贵,李伟.广义schulnaeher方程及其应用[J].中南林学院学报.1999, 19(2):39-2.
    [148]胡晓龙.长白落叶松林分断面积生长模型的研究[J].林业科学研究,2003,16(4):449-452.
    [149]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究.19936(6):672-679.
    [150]Wang Mingliang, Renndls. Tree diameter distribution modeling:introducing the logit-loistic distribution[J]. Can J For Res.,2005,35(6):1305-1313.
    [151]Wang Mingliang, Renndls. A new parameterization of Johnson's SB distribution with application to fitting forest tree diameter data[J]. Can J For Res.,2005,35(3):575-579.
    [152]惠淑荣,吕永震.Weibull分布函数在林分直径结构预测模型中的应用研究[J].北华大学学报(自然科学版).2003,4(2):101-104.
    [153]黄家荣,孟宪宇,关毓秀.马尾松人工林直径分布神经网络模型研究[J].北京林业大学学报,2006,28(1):28-31.
    [154]张建国,段爱国.理论生长方程与直径结构模型的研究[M].北京:科学出版社.2004.
    [155]段爱国,张建国,童书振.6种生长方程在杉木人工林林分直径结构上的应用[J].林业科学研究,2003,16(4):423-429.
    [156]吴载璋,吴锡麟.福建杉人工林生长模型的研究[J].福建林业科技,2004,31(4):11—14.
    [157]李凤日,吴俊民,鲁胜利.Richards函数与Schnute生长模型的比较[J].东北林业大学学报,1993,21(4):15-24.
    [158]何敏,向志明.提高Logistic生长模型精度的研究[J].辽宁林业科技,1996(6):22-23.
    [159]Usher M B. A matrix approach to the management of renew able resources, with special reference to selection forests[J]. J Appl. Eco.,1966(3):355-367.
    [160]Solomon D S, Hosmer R A, Hayslett H T Jr. A two-stage matrix model for predicting growth of forest stands in the Northeast[J]. Can J of For Res.,1986, 16(3):521-528.
    [161]殷传杰.异龄林动态系统与经营模型的研究-兼天山中东部林区天山云冷杉林的应用[D].北京林业大学硕士学位论文.1988.
    [162]曾伟生.异龄林的生长动态与最优经营[D].北京林业大学硕士学位论文.1990.
    [163]王飞,代力民,邵国凡,等.非线性状态方程模拟异龄林径阶动态-以长白山阔叶红松林为例.生态学杂志[J].2004,23(5):101-105.
    [164]王飞.阔叶红松林结构调整的研究与应用[D].沈阳农业大学硕士学位论文,2005.
    [165]王飞,邵国凡,代力民,等.矩阵模型在森林择伐经营中的应用[J].生态学杂志,2005b,24(6):681-684.
    [166]覃林,陈平留,刘健.闽北异龄林生长矩阵模型研究[J].生物数学学报,1999,14(3):332-337.
    [167]邵国凡,赵士洞,舒噶特.森林动态经营-兼论红松林的优化经营[M].北京:中国林业出版社.1995.
    [168]Zhou M. Managing resources for multiple Purposes Markov models of southern mixed loblolly pine-hardwood forests[D]. Ph.D. Thesis in University of Wisconsin-Madison,2005.
    [169]Newham R M. The Development of a stand model for Douglasfir[D]. Vancouver:University of Column,1964:201.
    [170]韩兴吉.林分生长和产量的数学模型(综述)[J].北京林业大学学报,1986,8(3):85-98.
    [171]邵国凡.红松人工林单木生长模型的研究[J].东北林业大学学报,198513(3):38-45.
    [172]黄家荣.马尾松人工林单木竟争指标及生长模型研究[J].林业科技,2001,26(3):2-4.
    [173]Jogiste K. Productivity of mixed stands of Norway spruce and birch affected by population dynamics:a model analysis[J]. Ecol. Model,1998,106:77-91.
    [174]Bertelink H H. A growth model for mixed forest stands[J]. For. Ecol. Manage, 2000,134:29-43.
    [175]Pukkala T, Miina J, Kurttila M, et al. A spatial yield model for optimizing the thinning regime of mixed stands of Pinus sylvestris and Picea abie[J]. Scand J For. Res.,1998,13:31-42.
    [176]Pukkala T, Miina J. Tree-selection algorithms for optimizing thinning using a distance-dependent growth model [J]. Can J For. Res.,1998,28:693-702.
    [177]邵国凡,赵士洞.森林动态模拟[M].北京:中国林业出版社,1995.
    [178]桑卫国.森林动态模型概论[J].植物学通报,1999,16(3):193-200.
    [179]Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth[J]. J Eco,1972,60(3):849-873.
    [180]Shugart HH, West D C. Development of an application deciduous forest succession model and its application to assessment of the impact of the chestnut blight[J]. J Environ Manage,1977,5:161-179.
    [181]邵国凡,赵士洞,赵光.应用地理信息系统模拟森林娥观动态的研究[J].应用生态学报[J],1991,2(2):103-107.
    [182]Teck R, Moeur M, Eav B. Forecasting ecosystems with the forest vegetation simulator[J]. J For,1996,94:7-10.
    [183]Vettenranta J, Miina J. Optimizing thinnings and rotation of Scots pine and Norway spruce mixtures[J]. Silva Fennica,1999,33:73-84.
    [184]张惠光.福建柏单木生长模型的研究[J].中南林业调查规划,200625(3):1-4.
    [185]谢守鑫.华北落叶松人工林单木模型的研究[D].北京林业大学硕士学位论文,1991.
    [186]于秀勇.杉木人工林单木模型的研究[D].福建农林大学硕士学位论文,2009.
    [187]励龙昌.兴安落叶松天然林生长过程的研究-关于单木与距离无关模型[D].东北林业大学硕士学位论文,1988.
    [188]吕勇,汪新良,张晓蕾.杉木人工林单木竞争生长模型的研究[J].林业资源管理, 1999(3):60-62.
    [189]姚东和,吕勇.基于人工神经网络的杉木竞争生长模型研究[J].中南林学院学报.2001,21(1):17-20.
    [190]吕勇.杉木人工林生长率模型的研究[J].林业科学,2002,38(1):146-149.
    [191]刘兆刚,李凤日,于金成.落几卜松人工林单木模型的研究[J].植物研究,2003,23(2):237-244.
    [192]刘平,马履一等.油松人工林单木树高生长模型研究[J].林业资源管理,2008,(5):50-56.
    [193]郭跃东.庞泉沟保护区天然华北落时-松林单木生长过程研究[J].山西林业科技.2009,38(2):6-9.
    [194]邓红兵,王庆礼.红松、长白落叶松树高生长模型的研究及应用[J].辽宁林业科技,1997(5):23-27.
    [195]赵晓云.柳杉单立木生长模型拟合的初步研究[J].四川林业科技2004,25(1):55-58.
    [196]洪伟,吴承祯,闫淑君.广义schumacher模型的改进及其应用[J].应用生态学报,2004,15(2):241-244.
    [197]张跃西.邻体干扰模型的改进及其在营林中的应用[J].植物生态学与地植物学学报1993,16(4):34-37.
    [198]李凤日,刘兆刚,时雅滨.落叶松人工林林分极限密度确定方法的研究[J].东北林业大学学报,1995,23(3):1-9.
    [199]成子纯,曾思齐,佘济云等.马尾松水保林经营模式与经营数表研究[M].北京:中国林业出版社,2003.
    [200]王洪英.黄土高原人工刺槐林土壤水分动态及生物量的密度效应研究[D].北京林业大学硕士学位论文,2006.
    [201]吴承祯,洪伟,柳江等.封育次生马尾松林优势种群竞争密度效应[J].应用与环境生物学报,2005,11(1):15-17.
    [202]Food and Agriculture Organization of the United Nations. Forestry policies in Europe[R], FAO,1988,
    [203]Franklin J K, American Forests[J]. Toward a new forestry,1989(5).
    [204]Helliwell D R, Planning for Nature Conservation[J]. Packard, Chichester,1985.
    [205]Grayson A J, Private Forestry Policy in Western Europe [J]. CAB INTERNATIONAL,1993:43-213.
    [206]罗传文.森林采伐格局控制的万原则[J].生态学报,2005,25(1):135-140.
    [207]汤孟平,唐守正,雷相东,等.林分择伐空间结构优化模型研究[J].林业科学,2004,40(5):25-31.
    [208]周新年,巫志龙,郑丽凤等.森林择伐研究进展明[J].山地学报,2007,25(5):629-636.
    [209]于政中,亢新刚.检查法第一经理期研究[J].林业科学,1996,32(1):24-34.
    [210]刘建泉,宋秉明,郝玉倔.祁连山青海云杉抚育更新研究[J].江西农业大学学报,1998,20(1):82-85.
    [211]郭建宏.福建中亚热带经营单位水平森林可持续经营评价研究[D].福建农林大学硕士学位论文,2003.
    [212]大金永治.森林择伐[M].北京:中国林业出版社,1998.
    [213]曹新孙.择伐[M].北京:中国林业出版社,1990.
    [214]陈梦雄,择伐强度和择伐周期的合理确定[J].陕西林业科技,1995(4):48-51.
    [215]肖生灵.谈影响择伐强度的因素[J].森林工程,2001,17(2):5-6.
    [216]曾思齐,余济云,吕勇,等.长江中上游低质低效次生林改造技术研究 [M].北京:中国林业出版社,2002.
    [217]Kissling-Naf Ingrid, Bisang K. Rethinking recent changes of forest regimes in Europe through property-rights theory and policy analysis [J]. Forest Policy and Economics,2001, (3):99-111.
    [218]Lazdinis M, The European Union and the concept of national forest programmes [J]. Special Since database,2008.
    [219]Letal C N, The Report of the Ecological Society of America Committee on the scientific basis for ecosystem management[J]. Ecological Applications,1996, 6:665-691.
    [220]Schaaf K A, Broussard S R, Private forest policy tools:a national survey exploring the American public's perceptions and support [J]. Forest Policy and Economic,2006, (9):316-334.
    [221]Kilgore M A, Blinn C R. Policy tools to encourage the application of sustainable timber harvesting practices in the United States and Canada[J]. Forest Policy and Economics,2004,6(2):111-127.
    [222]唐守正.统计和生物数学模型计算(ForStat)[M].北京:科学出版社,2009.
    [223]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,1981.
    [224]段仁燕,王孝安.太白红杉种内和种间竞争研究[J].植物生态学报,2005,29(2):242-250.
    [225]Shugart HH, West D C. Development of an application deciduous forest succession model and its application to assessment of the impact of the chestnut blight[J]. J Environ Manage,1977,5:161-179.
    [226]Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth[J]. J Eco,1972,60(3):849-873.
    [227]王明亮,唐守正.标准树高曲线的研制[J].林业科学研究,1997,10(3):259-264.
    [228]赖巧玲,胥辉,杨为民.非参数估计在构造树高曲线中的应用[J].北京林业大学学报.2006,28(4):77-81.
    [229]向玮,吕勇,邱林.湖南黄丰桥林场杉木树高曲线模拟研制[J].中南林业调查规划.2007,26(1):16-18.
    [230]徐悦,陈昌华,蒋之富,等.天然赤松胸径与树高相关模型的研究[J].林业调查规划,2008,33(3):56-58.
    [231]吕勇.林木树高曲线模型研究[J].中南林学院学报,1997,17(4):86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700