用户名: 密码: 验证码:
基于光谱及数据挖掘技术的油菜养分及品质信息的无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精细农业是21世纪全球农业发展的必然趋势。它的技术核心是农田信息的获取、信息的管理与决策及变量作业三个部分。其中如何快速准确的获取作物生长信息,是开展精细农业的重要基础,也是精细农业研究的一个热点和难点。
     针对国内外现状,本论文以油菜(Brassica napus)为对象,通过正交二次回归设计方法进行了油菜氮、磷、钾和硼等四种重要营养元素田间试验,采用可见-近红外光谱技术研究了油菜植株的氮、磷、钾、硼含量与油菜叶片和冠层的光谱反射特性之间的关系。还研究了油菜叶片氮含量与SPAD值,油菜冠层3CCD多光谱图像与SPAD值之间的关系。此外,还初步探讨了辐照处理对油菜籽的光谱反射特性的影响。本论文的主要研究结论如下:
     (1)研究了油菜叶片的光谱反射特性与油菜叶片氮、磷、钾、硼四种含量的关系,并分别建立了全波段模型及最优波长模型。结果表明,四种元素含量的最优全波段模型均为直接正交信号校正(DOSC)结合偏最小二乘法(PLS)模型,最优模型对氮、磷、钾和硼的预测相关系数分别为0.9743、0.6971、0.9316和0.8903;利用连续投影算法(SPA)选择最优波长并建立数学模型的研究中,提出了采用DOSC结合SPA选择的氮、磷、钾和硼四种元素的最优波长的优化模型,得出的最优特征波长分别为958、540、627和686nm。结果表明,氮含量最佳模型采用DOSC-SPA结合最小二乘-支持向量机(LS-SVM)方法,其预测相关系数为0.9737;磷、钾、硼三种元素含量的最佳模型都是采用DOSC-SPA结合人工神经网络(BPNN)方法,其预测相关系数分别为0.7054、0.9380及0.8916。
     (2)研究了油菜冠层光谱反射特性与油菜植株氮、磷、钾三种含量的关系,并分别建立了全波段模型及最优波长模型。通过对不同预处理方法结合PLS所建立模型的效果比较,三种元素的最佳光谱预处理方法都是DOSC.其最佳模型的预测相关系数分别为0.9440、0.8260和0.9574。利用DOSC-SPA算法选择的最优波长分别为761、994和927nm。氮和磷两种元素含量的最佳模型是DOSC-SPA结合LS-SVM方法所建立的模型,预测相关系数分别为0.9423和0.8124。钾元素含量的最佳模型采用了DOSC-SPA结合PLS方法,预测相关系数为0.9526。
     (3)研究了油菜叶片SPAD值与氮含量的相关性。结果显示,在油菜生长期,油菜叶片SPAD值与氮含量呈线性相关的关系,其相关系数为0.861,对三个未知样本的预测精度分别达到78.8%,91.8%及94.12%。
     (4)研究了油菜冠层多光谱图像与氮含量之间的关系。构建了一套集可见-近红外光谱仪、3CCD多光谱成像仪于一体的油菜氮含量多光谱图像测试平台。建立了基于油菜冠层多光谱反射率的植被指数NDVI、GNDVI和Ratio与SPAD值之间的校正模型。三个模型的预测相关系数分别为0.932、0.879及0.885。
     (5)研究了辐照处理后油菜籽光谱反射特性的变化规律。探讨了不同预处理方法组合及神经网络隐含层节点数对所建模型的影响。所建最优模型先后采用了中值滤波平滑法、附加散射校正及二阶求导法三种预处理方法。BPNN模型建立过程中,选择对6个PLS主成分进行自然对数变化,所设定的隐含层节点数为4或9。结果表明,油菜籽经过辐照处理后,其光谱反射特性会发生较大的改变。最优模型对辐照和未辐照样本的识别率均为100%,对油菜籽所受辐照剂量的预测精度达到85.71%。说明可见-近红外光谱技术可以用于评估辐照处理对油菜籽光谱特性产生的影响。
Precision agriculture is the developing trend of global agriculture in the 21st century. The technologies of crop growth information collection, information management and variable operations are the key technologies of precision agriculture. Fast and precise collection of the crop growth information is one of the important basis, hot and difficulties of precision agriculture.
     Considering the problems and deficiencies of current research of precision agriculture, this thesis was focus on rapeseed (Brassica napus). Quadratic regression orthogonal design was applied in the field experience to produce different levels of nitrogen (N), phosphorus (P), potassium (K) and boron (B) of rapeseed. Visible and near infrared spectroscopy technology was applied to study the relationship between reflectance spectra and the content of N, P, K, and B of rapeseed leaf and canopy. The relationship between N content of rapeseed leaf and SPAD value, and relationship between 3CCD multi-spectral image of rapeseed canopy and SPAD value were also investigated in this thesis. Furthermore, the influence of gamma-ray treatment on spectral characteristic of rapeseed was studied. The main research achievements were as follows:
     (1) The relations between reflectance spectra and content of N, P, K, and B content of rapeseed leaf were studied. Chemometric models were built by the full waveband and optimal wavelengths. The results showed that the best models of the four elements were all developed by direct orthogonal signal correction (DOSC) method combined with partial least squares (PLS) method. The prediction coefficients of the four best models were 0.9743,0.6971,0.9316 and 0.8903 for N, P, K and B, respectively. Successive projections algorithm (SPA) method was applied to select the optimal wavelengths with least collinearity and redundancies. The optimum wavelengths selected by DOSC combined with SPA method (DOSC-SPA) were 958,540,627 and 686 nm. The best model of N content was built by DOSC-SPA combined with least squares-support vector machine (LS-SVM) method. The correlation coefficient for prediction set was 0.9737. The best models of P, K, and B content were all built by DOSC-SPA combined with back-propagation neural network (BPNN) method. The correlation coefficients for prediction set were 0.7054,0.9380 and 0.8916 for P, K and B, respectively.
     (2) The relations between reflectance spectra and content of N, P, and K content of rapeseed canopy were studied. Chemometric models were built by the full waveband and optimal wavelengths. After comparing prediction results of the PLS models built by different pre-processing methods, DOSC was chosen as the best pre-processing method of these three elements. The correlation coefficients for prediction set were 0.9440,0.8260 and 0.9574 for N, P and K, respectively. The optimal wavelengths selected by DOSC-SPA were 761,994 and 927 nm, respectively. The best models of N and P content were both developed by DOSC-SPA-LS-SVM. The correlation coefficients for prediction set were 0.9423 and 0.8124 for N and P, respectively. The best model of K content was built by DOSC-SPA-PLS, and correlation coefficient was 0.9526.
     (3) The relation between N content of rapeseed leaf and SPAD value was studied. The result indicated that there existed a linear relationship between the N content and SPAD value during the growth period. The coefficient was 0.861. The prediction precisions of the three unknown samples were 78.8%,91.8% and 94.12%.
     (4) The relation between multi-spectral image of rapeseed canopy and N content was studied. Multi-spectral image test system which combined visible and near infrared spectroradiometer with 3CCD camera was set up. The models between SPAD value and NDVI, GNDVI and Ratio which were based on multi-spectra reflectance of rapeseed canopy were built. The correlation coefficients for prediction set were 0.932,0.918 and 0.885 for NDVI, GNDVI and Ratio, respectively.
     (5) The changing rule of the spectral characteristic of rapeseed after being treated by gamma-ray was studied. The influences of different pre-processing combinations and nodes number of hidden layers to the models were discussed. As a result, the optimal model was established and the parameters of the model were shown as follows. The original spectra data were pretreated by smoothing media filter, multiplicative scatter correction and 2nd Savitzky-Golay derivatives. The 6 PLS principal components were transformed by using natural logarithm transformation method. The nodes number of hidden layers of the BPNN model was selected as 4 or 9. The results indicated that after being treated by gamma-ray, the spectral characteristic of rapeseed would change greatly. The prediction precision of the optimal model to distinguish the untreated samples from gamma-ray treated samples was 100%. The precision of predicting the dosages of gamma-ray treatment of all samples achieved 85.71%. It can be concluded that the visible and near infrared spectroscopy could be used to estimate the influence of different gamma-ray dosages on the spectral characteristic of treated rapeseed.
引文
1.艾复清,李改珍.施氮量、密度与油菜产量关系的旋转回归分析[J].中国农学通报,2005,21(4):142-144.
    2.陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用[J].分析测试学报,2007,26(1):66-69.
    3.陈达,王芳,邵学广,等.近红外光谱与烟草样品总糖含量的非线性模型研究[J].光谱学与光谱分析,2004,24(6):672-674.
    4.陈新平,李志宏,王兴仁.土壤、植株快速测试推荐施肥技术体系的建立与应用[J].土壤肥料,1999,(2):6-10.
    5.褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542.
    6.崔继林.陈永康水稻高产经验研究第1集[M].上海:上海科技出版社,1964,30.
    7.丁希泉.农业应用回归设计[M].长春:吉林科学科技出版社,1984,123-151.
    8.丁小霞,李培武,李光明,等.傅立叶变换近红外光谱技术测定完整油菜籽中芥酸和硫甙含量[J].中国油料作物学报,2004,26(3):76-79.
    9.渡边和彦.作物营养元素缺乏与过剩症的诊断与对策[M].罗小勇.日本:日本种苗株式会社,1999,58.
    10.范康年.谱学导论[M],北京:高等教育出版社,2001.
    11.冯雷,方慧,周伟军,等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752.
    12.冯新沪,史永刚.近红外光谱及其在石油产品分析中的应用[M].北京:中国石油化工出版社,2002.
    13.谷筱玉,徐可欣,汪瞧.波长选择算法在近红外光谱法中药有效成分测量中的应用[J].光谱学与光谱分析,2006,26(9):1618-1620.
    14.官梅,李栒.12C重离子束辐照对油菜(Brassica napus)的影响[J].作物学报,2006,32(6):878-884.
    15.何勇.精细农业.杭州:浙江大学出版社,2003,1-5.
    16.黄文江,黄木易,刘良云,王纪华,赵春江,王锦地.利用高光谱指数进行冬小麦条锈 病严重度的反演研究[J].农业工程学报,2005,21(4):97-103.
    17.金震宇,田庆久,惠凤鸣等.水稻叶绿素浓度与光谱反射率关系研究[J].遥感技术与应用,2003,18(3):134-137.
    18.景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江.不同氮素营养条件下的冬小麦生理及光谱特性[J].应用技术,2003,2:28-31.
    19.李得宙,张胜,张润生,张德健.不同施肥水平双低油菜产量喊含油率的影响[J].内蒙古农业大学学报,2005,26(1):24-26.
    20.李延莉,孙超才,钱小芳,等.油菜籽品质测定方法(近红外反射光谱法与传统化学方法)的比较[J].上海农业学报,2003,19(1):11-14.
    21.李云梅,倪绍祥,黄敬峰.高光谱数据探讨水稻叶片叶绿素含量对叶片及冠层光谱反射特性的影响[J].遥感技术与应用,2003,18(1):1-5.
    22.李志宏,易小琳,王兴仁.应用植株快速诊断确定春小麦的追氮量[J].北京农业大学学报,1995,21(增刊):41-46.
    23.李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究:春小麦氮营养诊断及追肥推荐体系的研究[J].植物营养与肥料学报,1997a,3(4);349-356.
    24.李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究:冬小麦-夏玉米轮作制度下氮素诊断及追肥推荐的研究[J].植物营养与肥料学报,1997b,3(4):357-362.
    25.刘广军,戴冬梅,高洪涛.正交信号校正算法及其在光谱预处理中的应用[J].山东建筑工程学院学报,2005,20(2):83-87.
    26.刘宁宇,王伟,吴拥军.近红外光谱技术在药物分析中的应用[J].安阳师范学院报,2005,(5):50-52.
    27.刘芷宇.植物营养诊断的回顾与展望[J].土壤,1982,24(1);173-175.
    28.陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术[M].北京:中国石油化工出版社,2000.
    29.裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出版社,1991,276-279.
    30.彭玉魁,李菊英,祁振英.近红外光谱分析技术在小麦营养成分鉴定上的应用[J].麦类作物,1997,17(3):33-35.
    31.彭月,魏虹,朱韦,等.作物氮素营养状况的高光谱遥感估测技术探析[J].云南民族大学学报:自然科学版,2006,15(1):45-49.
    32.裘正军,宋海燕,何勇,方慧.应用SPAD和光谱技术研究油菜生长期间的氮素变化规律[J].农业工程学报,2007,23(7):150-154.
    33.任芊,解国玲,董守龙,黄友之.OSC-PLS算法在近红外光谱定量分析中的应用的研究[J].北京理工大学学报,2005,25(3):272-275.
    34.芮玉奎,黄昆仑,王为民,郭晶,金银花,罗云波.近红外光谱技术在检测转基因油菜籽中芥酸和硫甙上的应用研究[J].光谱学与光谱分析,2006,26(12):2190-2192.
    35.沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究[J].水土保持研究,2003,10(2):21-24.
    36.帅修富,王兴仁,曹一平.冬小麦氮营养诊断及氮追肥推荐[J].北京农业大学学报,1995,21(增刊):47-51.
    37.谈黎虹,何勇,陈开考.随车乳化器的设计及在495A柴油机上的试验研究[J].农业工程学报,1998,14(1):116-120.
    38.唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002,637-640.
    39.唐延林,王人潮,黄敬峰,孔维妹,程乾.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004,8(2):185-192.
    40.陶勤南,方萍,吴良欢等.水稻氮素营养的叶色诊断研究[J].土壤,1990,22(4):190-193.
    41.田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报,2005,29(2):318-323.
    42.王福民,王渊,黄敬峰.不同氮素水平油菜冠层反射光谱特征研究[J].遥感技术与应用,2004,19(2):80-84.
    43.王纪华,田庆久.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107.
    44.王家俊,罗丽萍,李辉,等.FT-NIR光谱法同时测定烟草根茎叶中的氮磷钾[J].烟草科技/烟草化学,2004,12:24-27.
    45.王珂,沈掌泉,Abou-Ismail, O, Yaghi, A,王人潮.不同钾营养水平的水稻冠层和叶片
    光谱特征研究初报[J].科技通报,1997,13(4):21 1-214.
    46.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报,1993,19(增刊):7-14.
    47.王秀珍,王人潮,李云梅,沈掌泉.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    48.王渊,黄敬峰,王福民,刘占宇.油菜叶片和冠层水平氮素含量的高光谱反射率估算模型[J].光谱学与光谱分析,2008,28(2):273-277.
    49.魏良明,严衍禄,戴景瑞.近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究[J].中国农业科学,2004,37(5):630-633.
    50.吴宝宁,王学武,刘建平,等.成像光谱测量研究[J].应用光学,2002,23(6):32-35.
    51.吴迪,冯雷,张传清,何勇.基于可见/近红外光谱技术的番茄叶片灰霉病检测研究[J].光谱学与光谱分析,2007,27(11):2208-2211.
    52.吴建国,石春海,张海珍,等.应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究[J].作物学报,2002,28(3):421-425.
    53.吴倩,林蕾,王学军,李宁宁.福海叶绿素含量的人工神经网络反演模型[J].地理与地理信息科学,2004,20(4):27-30.
    54.吴曙雯,王人潮,陈晓斌,等.稻叶瘟对水稻光谱特性的影响研究[J].上海交通大学学报(农业科学版),2002,20(1):73-84.
    55.吴昀昭,田庆久,季峻峰,陈骏,惠凤鸣.土壤光学遥感的理论、方法及应用[J].遥感信息,2003,1:40-47.
    56.伍素辉,程见尧,刘景福.氨基态氮作为棉花氮营养诊断指标的研究[J].中国棉花,1991,(2):29-30.
    57.徐冠仁.核农学导论[M].北京:原子能出版社.1997,6-10.
    58.许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工程,2007,36(1):13-17.
    59.许禄.化学计量学方法[M].北京:科学出版社,1995.
    60.叶莺,陈崇帼,林熙.偏最小二乘回归的原理及应用[J].海峡预防医学杂志,2005,11(3):3-6.
    61.易小琳,曹一平,王敬国.作物氮素快速营养诊断方法的初探[J].北京农业大学学报, 1995,21(增刊):37-41.
    62.于飞健,闵顺耕,巨晓棠,张福锁.近红外光谱法分析土壤中的有机质和氮素[J].分析实验室,2002,21(3):49-51.
    63.张广军.机器视觉[M].北京:科学出版社.2005.
    64.张国平,周伟军.作物栽培学[M].杭州:浙江大学出版社,2001,168-169.
    65.张建平,谢雯燕,束茹欣,等.烟草化学成分的近红外快速定量分析研究[J].烟草科技,1999,(3):37-38.
    66.张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    67.张树兰,同延安,赵护兵.冬小麦E夏玉米轮作氮肥施肥量与氮营养诊断[J].西北农业学报,2000,9(2):104-197.
    68.张行峰.实用农化分析[M].北京:化学工业出版社,2005,188-201.
    69.张雪红,刘绍民,何蓓蓓.不同氮素水平下油菜高光谱特征分析[J].北京师范大学学报:自然科学版,2007,43(3):245-249.
    70.张晔晖,赵龙莲,李晓薇.用傅立叶变换近红外光谱法测定完整油菜籽三种品质性状的初步研究[J].激光生物学报,1998,7(2):138-141.
    71.周启发,王人潮.水稻氮素营养水平与光谱特征的关系[J].浙江农业大学学报,1993,19(增刊):40-46.
    72.周兆,胡大禄,曹建春,张世琼.二次回归正交设计在高强度耐磨合金中的应用[J].昆明理工大学学报,1999,24(3):33-40.
    73. Adams, M.L., Philpot, W.D., and Norvell, W.A., et al. Yellowness indexes:an application of spectra second derivatives to estimate chlorosis of leaves in stressed vegetation [J]. International Journal of Remote Sensing,1999,20(18):3663-3675.
    74. Ahmad, I.S., Reid, J.F. Evaluation of color representations for maize image [J]. Journal of Agricultural Engineering Research,1996,63:185-196.
    75. Ahmad, I.S., Reid, J.F. Evaluation of color representations for maize image [J]. Journal of Agricultural Engineering Research,1996,63:185-196.
    76. Bajwa, S.G., Bajcsy, P., Groves, P., Tian, L.E. Hyperspectral image data mining for band selection in agricultural applications [J]. Transactions of the ASAE,2004,47 (3):895-907.
    77. Bajwa, S.G., Bajcsy, P., Groves, P., Tian, L.E. Hyperspectral image data mining for band selection in agricultural applications [J]. Transactions of the ASAE,2004,47 (3):895-907.
    78. Bajwa, S.G., Tian, L.F. Aerial CIR remote sensing for weed density mapping in a soybean field [J]. Transactions of The ASAE,2001,44 (6):1965-1974.
    79. Bausch, W.C., and Duke H.R. Remote sensing of plant nitrogen status in corn [J]. Transactions of the ASAE,1996,39:1869-1875.
    80. Blackmer, T.M., Schepers, J.S.., and Varvel, G.E. Light reflectance compared with other nitrogen stress measurements in corn leaves [J]. Agronomy Journal,1994,86:934-938.
    81. Blanco, M., Coello, J., Montoliu, I., Romero, M.A. Orthogonal signal correction in near infrared calibration [J]. Anlytica Chimica Acta,2001,434:125-132.
    82. Broner, I., Bausch, W., Westfall, D., and Khosla, R. Decision support for crop management using remote sensing [C]. Preceedings of the World Congress of Computation in Agriculture and Natural Resources,2002,13-15, March Iguacu Falls, Brazil PP:339-346.
    83. Bullock, D.G., and Anderson, D.S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn [J]. Journal of Plant Nutrition,1998,21:741-755.
    84. Casady, W.W., Singh, N.C., Ostello, T.A. Machine vision for measurement of rice canopy dimensions [J]. Trans of the ASAE,1996,39 (5):1891-1898.
    85. Champagne, E.T., Bett-Garber, K.L., Grimm, C.C. et al. Near-infrared reflectance analysis for prediction of cooked rice texture [J]. Cereal Chemistry,2001,78(3):358-362.
    86. Chang Cheng-Wen. Near-infrared reflectance spectroscopic measurement of soil properties [D].2000.
    87. Chang, C., Laird, D.A., Mausbach, M.J., and Hurburgh, C.R. Jr. Near-Infrared reflectance spectroscopy-principal components regression analyses of soil properties [J]. Soil Sci Am J, 2001,65:480-490
    88. Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., and McMurtrey, J.E.Ш. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote sensing of environment,2000,74:229-239.
    89. Ehsani, M.R., Upadhyaya, S.K., Fawcett, W.R., Protsailo, L.V., Slaughter, D. Feasibility of detecting soil nitrate content using a mid-infrared technique [J]. Transaction s of the ASAE,2001,44(6):1931-1940.
    90. Feng L., He, Y., Zhu, Z.Y., Huang, M. Study on Nitrogen Stress Characterization of Rape based on Ground Multispectral Imaging Sensor [C]. Proceedings of 2005 SPIE's Congress of the International Commission for Optics Challenging Optics in Science& Technology. 2005, Changchun, China.
    91. Gibson, K.D., Dirks, R., Medlin, C.R. Detection of weed species in soybean using multispectral digital images [J]. Weed Technology,2004,18 (3):742-749.
    92. Guyer, D.E., Miles, GE, Schreiber, M.M. Machine vision and image processing for plant identification [J]. Trans of the ASAE,1986,29(6):1500-1507.
    93. Hansen, P.M., Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote sensing of Environment,2003,86:542-553.
    94. He, Y., Song, H.Y., Pereira, A.G., Gomez, A.H. A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy [J]. Lecture Notes in Computer Scinece,2005,3644:859-867.
    95. Hummel, J.W., Sudduth, K.A., Hollinger, S.E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor [J]. Computer and Electronics in Agriculture,2001,32:149-165.
    96. Juan, X., Sandra, L. Effects of bruise type on discrimination of bruised and non-bruised 'Golden Delicious'apples by VIS/NIR spectroscopy [J]. Postharvest Biology and Technology,2003,30 (3):249-258.
    97. Kano, Y., McClure, W.F., and Skaggs, R.W. A near infrared reflectance soil moisture meter [J]. Transactions of the ASAE,1985,28(6):1852-1855.
    98. Kim, Y., Reid, J.F., Hansen, A., Zhang, Q., and Dickson, M. Ambient illumination effect on a spectral image sensor for detecting crop nitrogen stress [C]. ASAE paper No.011178, St. Joseph, MI.2001.
    99. Kokaly, R.F, Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple liner regression [J]. Remote sensing of environment,1999,67:267-287.
    100. Lee, W.S., Rao, S., Mylavarapu, Jung Seob Choe, and Jodie, D. Study on soil properties and spectral characteristics in Florida [C].2001, ASAE paper,01-1179.1-12.
    101. Leight, R. A. and Johnson, A. E. Nitrogen concentration in field grown spring barely:an experiment of the usefulness of expecting concentration on the basis of tissue water [J]. Agric Sci Camb,1985,105:397-406.
    102. Lennart Eriksson, Johan Trygg, Erik Johansson, Rasmus Bro, Svante Wold. Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process
    fluorescence data [J]. Anlytica Chimica Acta,2000,420:181-195.
    103. Li Shengxiu. Current progress in soil research in People's Republic of China[M], Jiangsu Science and Technology Publishing House,1986,225-235.
    104. Li, Y., Demetriades-Shah, T.H. Kanemasu, E.T. Shultis, J.K. and Kirkham, M.B. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds [J]. Remote Sens Environ,1993,44:81-87.
    105. Malthus, T.J., Maderia, A.C. High resolution spectroradiometry:spectra reflectance of field bean leaves infected by botrytis fabae [J]. Remote sensing of Environ,1993,45:107-116.
    106. Meyer, G.E., Mehta, T., Kocher, M.F. Textural imaging and discriminant analysis for distinguishing weeds for spraying [J]. Transactions of the ASAE,1998,41(4):1189-1197.
    107. Michio, S., Tsuyoshi, A. Seasonal visible, near-infrared and mid-infrared spectra of rice spectra canopies in relation to LAI and above-ground dry phytomass [J]. Remote Sensing of Environment,1989,27(2):119-127.
    108. Min Huang, Yong He, Haiyan Cen. Predictive analysis on electric-power supply and demand in China [J]. Renewable Energy,2007,32(7):1165-1174.
    109. Minolta, C.L. Manual for chlorophyll meter SPAD-502[M]. Japan,1989.
    110. Noh, H.K, Zhang, Q., Shin, B., and Han, S.F. Multispectral image sensor for detection of nitrogen deficiency in corn by using an empirical line method [C]. ASAE paper No. 031135. Las Vegas, Nevada.2003.
    111. Noh, H.K., Zhang, Q., Han, S., Shin, B. Dynamic calibration and image segmentation for multispectral imaging corn nitrogen deficiency sensors [J]. Transactions of the ASAE, 2005,48(1):393-401.
    112. Norris, K.H. Reports on design and development of anew moisture meter [J]. Agricultural Engineering,1964,45(7):370-372.
    113. Norris, K.H., Barnes, R.F., Moore, J.E., et al. Prediction forage quality by NIRS [J]. Journal of Animal Science,1976,43(4):889-897.
    114. Paulo, H., Fidencio, Ronei J. Poppi, Joao Carlos de Andrade. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy [J]. Analytica Chimica Acta,2002,453:125-134.
    115. Raymond, F.K., Roger, N.C. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption feature and stepwise multiple linear regression [J]. Remote Sensing of Environment,1999,67 (3):267-287.
    116. Rinehart, G.L., Cathoun, J.H. and Schabbenberger,O. Remote sensing of stripe patch and dollar spot on creeping bentgrass and annual bluegrass turf using visible and near-infrared spectroscopy [J]. Australian Turfgrass management,2002,4(2).
    117. Roth, G.W., Fox, R.H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat [J]. Agron J,1989,81:502-507.
    118. Schepers, J.S., Francis, D.D., Vigil, M., and Below, F.E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings [J]. Communications in Soil Science and Plant Analysis,1992,23:2173-2187.
    119. Shear, S.A., Thomasson, J.A., Meneill, S.G Filter selection for NIR sensor of plant and soil matrials [J]. Transactions of the ASAE,1996,39(3):1209-1214.
    120. Singh, N., Casady, W.W., Costello, T.A. Machine vision based nitrogen management models for rice [J]. Trans of the ASAE,1996,39(3):1899-1904.
    121. Skidmore, E.L., Dickerson, J.D., and Schimmelpfenning, H. Evaluating surface-soil water content by measuring reflectance [J]. Proc Soil SciSocAm,1975,39(2):238-242.
    122. Slaughter, D.C., Pelletier, M.G., Upadhyaya, S.K. Sensing soil moisture using NIR spectroscopy [J]. American Scociety of Agricultural Engineers,2001,17(2):241-247.
    123. Sudduth, K.A., Hummel, J. Portable Near-Infrared Spectrophotometer for rapid soil analysis [J] transactions of the ASAE,1993b,36(1):185-193.
    124. Sudduth, K.A., Hummel, J. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer [J]. Transactions of the ASAE,1993a,36(6):1571-1582.
    125. Svante Wold, Henrik Antti, Fredrik lindgren, Jerker Ohman. Orthogonal signal correction of near-infrared spectra [J]. Chemometrics and Intelligent Laboratory Systems,1998,44: 175-185.
    126. Tabor, J.A., Warrick, A., Spatial, D.W. Variability of nitrate in irrigated cotton I. Petioles Soil [J]. Sci Soc Am J,1984,48:602-607.
    127. Tom Fearn. On orthogonal signal correction [J]. Chemometrics and Intelligent Laboratory Systems,2000,50:47-52.
    128. Tumbo, S.D., Wagner, D.G., and Heinemann, P.H. Hyperspectral-based neural network for predicting chlorophyll status in corn [J]. Transactions of the ASAE,2002,45(3):825-832.
    129. Velasco, L., Becker, H.C. Analysis of total glucosinolate content and individual glucosinolates in Brassica spp. by near-infrared reflectance spectroscopy [J]. Plant Breeding,1998a,117:97-102.
    130. Velasco, L., Becker, H.C. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L) by near-infrared reflectance spectroscopy [J]. Euphytica, 1998b,101:221-230.
    131. Westerhuis, J.A., De Jong, S., Smilde, A.K. Direct orthogonal signal correction [J]. Chemometrics and Intelligent Laboratory Systems,2001,56(1):13-25.
    132. Williams, P.C., Preston, K.P. Determination of amino acids in wheat and barely by NIRS [J]. Journal of Food Science,1984,49(1):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700