用户名: 密码: 验证码:
双色中波红外图像差异特征分析及融合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外中波细分是多色化探测的重要组成部分,其成像在军事和民用领域都具有重要应用价值。探测中利用双色中波成像仪虽然能够采集到高质量且各具优势的两个细分波段图像,但是还需融合处理才能最终获取到更丰富、精确和可靠的目标信息。目前双色中波红外图像融合一般仅根据先验估计进行研究,由于未结合成像差异特性的深入分析,常常会造成无法针对性地选择和研究融合算法,从而严重制约了融合效果和效率的提升。针对该问题,本文从双色中波红外图像差异特征形成机理入手来研究其图像融合方法。
     本文的主要研究内容包括以下三部分:
     1、建立了两个细分中波段成像的差异特性形成模型。图像融合的目的是综合原图像的差异信息。而原图像的差异信息是在成像过程中形成的,是影响成像的各种因素的综合反映。一旦成像特性差异发生变化,通常图像的差异特征也随之改变,对融合方法的需求相应地也会发生变化。本文通过深入分析两个细分中波段的目标辐射特性、辐射传输特性、环境影响特性、探测器响应特性等成像因素来研究成像差异特性的形成机理。建立了红外点目标、面目标和大目标的成像演化模型;通过对模型仿真验证,揭示了两个细分中波段成像在灰度值和目标背景对比度方面的差异规律,为图像差异特征提取和融合规则制定提供了指导。
     2、深入分析了两个细分中波段图像的差异特征。融合算法只有满足图像间差异特征的融合需求,冰能形成一幅数据质量更高、更适合人眼视觉观察的图像,因而,差异特征的提取和表征对图像融合研究具有决定性作用。本文分析了成像特性差异与图像特征差异的映射关系,以此为指导提取了两个细分中波段图像的视觉特征、统计特征、变,换域特征和代数特征,并且利用局部线性嵌入法、雷达图法、主分量分析法和分形维特征提取法等对差异特征进行了降维综合,得到了两个细分中波段图像的综合差异特征,据此确定了不同条件下成像的不同融合技术需求,为图像融合研究奠定了基础。
     3、提出了针对不同成像条件的双色中波红外图像融合方法,均得到了能综合两个细分中波段原图像信息、并且更适合人眼视觉观察的融合图像。具体如下:
     (1)通过建立两个细分中波段图像差异特征和融合策略之间的映射关系,为融合方法研究奠定基础。以所建立的映射关系为指导,在灰度图像融合中,针对阳光照射条件下的成像,提出了分割支持度变换融合方法;针对非阳光照射条件下的成像,提出了双树复小波与可能性映射相结合的融合方法。实验证明这两种方法的融合结果不仅图像细节更清楚、信息更丰富,而且运行速度都较快,有助于后续的融合自动化和工程化研究。在此基础上提出了基于阈上随机共振的双色中波红外弱信号图像融合方法,解决了强噪声情况下双色中波红外探测图像的融合问题。
     (2)为了使融合图像更符合人的视觉特性,在灰度融合研究的基础上,采用伪彩色技术和颜色迁移技术对双色中波红外图像进行了彩色融合。在伪彩色融合研究中提出了“局部融合与全局融合相结合,先灰度融合、再彩色融合”的融合思路,并将FC^C#颜色空间映射与支持度变换灰度融合相结合实现了伪彩色融合。在颜色迁移融合中,提出了在颜色空间利用MWIR1和MWIR2-MWIR1图像的散度信息分别增强f/、V通道来提高融合效果的新方法。对仿真结果的主观和客观评价都表明:采用所提出方法融合的图像不仅清晰度更高、信息量更大、细节更清楚,而且更符合人的视觉特性,有助于场景的识别与理解。
Infrared mid-wave sub-band is an important part in multi-color detection. Its images playa very important role both in military and civil fields. By using a dual-color mid-wave imager,two sub-bands images, which are in high quality and have their own advantages, can becollected,but their plenty, accuracy, and reliable target information can be finally got only byfusion. Presently, the researches for dual-color mid-wave image fusion are done usually byprevious assessments. As some fusion algorithms can not be done without some relatedchoices and researches, the improvement of fusion result and efficiency can not be got. Thepaper here is directed to the problem mentioned. It starts with the formation ways of imagedifference characteristics in order to study the fusion ways of the dual-color mid-waveinfrared images.
     There are mainly three parts in this paper.
     1. Formation models have been built for the characteristic differences between twosub-bands. The purpose of image fusion is to synthesize the difference information of originalimages. The difference information is an aggregative reflection of various factors which isformed during detecting. Once the imaging characteristic differences change, the image'sdifference characteristics change accordingly, and the same is fusion needs. By deeplyanalyzing the imaging factors in the sub-bands such as radiance, radiance transmission,environment inlfuence, detector response, and so on, the paper tries to research the principlesof imaging difference characteristics. Besides, the imaging evolution models for the infraredpoint target, surface target, and the big target are also built here. The validity of these modelsproposed is proved by the simulation results. The difference rules between the gray scale andthe target background contrast degree for the two sub-band imaging are also brought out,'which produces some instructions for extracting images difference characteristics and making some fusion rules.
     2. A deep analysis for the difference characteristics between the two sub-bands isshown in this paper. The fusing algorithm should meet the fusion demands of differencecharacteristics among images, then the images, which are both in high quality and ift topeople's vision, can be formed. So collecting and characterizing difference characteristics isvery important for the research of image fusion. Based on the mapping relations betweeni'maging characteristic differences and image characteristic ones, the images characteristics instatistics, vision, exchange and algebra are shown in the sub-bands. In addition, somemethods such as locally linear embedding(LLE),radar chart, principal component analysis(PCA),fractal dimension are used in order to lower the dimension. Then, the image'ssynthetic difference characteristics in the two sub-bands can be shown, which not onlydetermines different fusion technology demands in different imaging conditions,but also laysthe foundation for the study of image fusion.
     3. Several fusion methods used for dual-color mid-wave infrared images are putforward in this paper,and some fusion images have been got from these methods. Theseimages can show synthetic information from the original images in the two mid-wavesub-bands, and they are more convenient for people to observe them.
     By setting up the mapping relations between image difference characteristics and fusionstrategies, the foundation for studying the fusion ways is set up. Under the direction of thesemapping relations, two groups of fusion ways are put forward here.
     (1)One group is for gray image fusion, which includes three ways. The ifrst one is thefusion of segmentation and support value transform, aiming at those images taken under thesun. The second one is the way to combine the dual-tree complex wavelet transform withpossible mapping,aiming at those images taken without the sunlight. The experimental resultsshow that fused images full of information and details. What is more,the operation speed ofthese fusion methods is much faster, which is very helpful to the latter study for fusionautomation and engineering. The last one in this group is the fusion for those dual-colormid-wave infrared weak signal images on the basis of supra-threshold stochastic resonance.The problem of strong noisy images fusion is solved.
     (2)The other group of fusion methods is for the color fusion of the dual-color mid-waveinfrared images by using two ways of pseudo-color and color transfer. The pseudo-colorfusion is to combine the local fusion with overall fusion, and to do the gray fusion ifrst, then the color fusion. The pseudo-color fusion can be completed by combining gray fusion basedon support value transform with YCaCp color space mapping. The other way is for colortransfer fusion which is done by using the divergence from both the MWIR1andMWIR2-MWIR1images to increase the U passage and V passage separately, and then, toimprove the fusion result. Some experiments have proved that both subjective evaluation andobjective evaluation for the two fusion methods mentioned above are much better,fusionimages not only have higher resolution, more information and more clearly details, but alsomore closely ift with human perception. The fusion results are helpful to image identificationand understanding, which indicates that the fusion results are significant.
引文
[1] A. Rogalski. Infrared detectors for the future[J]. Acta Physica Polonica A,2009,116(3):389~406.
    [2] Simon Denman,Todd Lamb,Clinton Fookes, et al. Multi-spectral fusion for surveillancesystems[J]. Computers&Electrical Engineering,2010,36(4):643~663.
    [3] M. Münzberg,R. Breiter,W. Cabanski,et al. Dual color IR detection modules, trends andapplications [C].SPIE,2007,6542:654207~654214.
    [4] Robert Rehm,Martin Walther,Joachim Fleiner,et al. Bispectral thermal imaging withquantum well infrared photodetectors and InAs/GaSb Type-II superlattices[C]. SPIE,2006,6206:62060Y.
    [5] A. Khoshakhlagh,J. B. Rodriguez,E. Plis,et al. Bias dependent dual band response fromInAs/Ga(In)Sb type II strain layer superlattice detectors[J]. Applied Physics Letters,2007,91(26):263504~263506.
    [6] E. Plis,H. S. Kim,J. B. Rodriguez,et al. NBN based infrared detectors using Type-IIInAs/(In,Ga)Sb superlattices[C]. SPIE,2008,6940:69400E.
    [7] S. J. Lee,S. K. Noh,E. Plis,et al. Subband transitions in dual-band n-B-n InAs/GaSbsuperlattice infrared photodetector identified by photo response spectra[J]. AppliedPhysics Letters,2009,95(10):102106~102108.
    [8] Yiqiao Chen,Aaron Moy,Shangheng Xin,et al. Improvement of RA product of type-IIInAs/GaSb superlattice MWIR/LWIR photodiodes[J]. Infrared Physics&Technology,2009,52(6):340~343.
    [9] WeiFeng Sun,MeiCheng Li,LianCheng Zhao. Design for new structure InAs/InxGa1-xSbsuperlattice two-color short and long wavelength infrared photodetector[J]. Physica E,2010,42(7):1905~1910.
    [10] G. Destefanis,A. Astier,J. Bayle,et al. Recent developments of high-complexity HgCdTefocal plane arrays at Leti Infrared Laboratory[J]. Journal of Electronic Materials,2003,32(7):592~601.
    [11] Pierre Yves Delaunay,Binh Minh Nguyen,Darin Hoffman,et al. High quantum efficiencytwo color type-II InAs/GaSb n-i-p-p-i-n photodiodes[J]. Applied Physics Letters,2008,92(11):1112~1114.
    [12] M. Münzberg,R. Breiter,W. Cabanski,et al. Multi spectral IR detection modules andapplications [C]. SPIE,2006,6206:620627~620638.
    [13] Robert Rehm,Martin Walther,Johannes Schmitz,et al. InAs/GaSb superlattices foradvanced infrared focal plane arrays[J]. Infrared Physics&Technology,2009,52(6):344~347.
    [14]王忆峰,余连杰,田萦.Ⅱ类超晶格双光谱红外探测器光谱串音的量化分析计算[J].红外技术,2011,33(5):293~295.
    [15] A. Rogalski. Recent progress in infrared detector technologies[J]. Infrared Physics&Technology,2011,54(3):136~154.
    [16] http://www.nsfc.gov.cn/nsfc/cen/bzgh_125/index.html.
    [17] W. Cabanski,R. Breiter,K. H. Mauk,et al. Broadband and dual-color high-speed MCTMWIR modules[C]. Proceedings of SPIE,2002,4721:174~182.
    [18] R. Breiter,W. Cabanski,K. H. Mauk,et al. Multicolor and dual-band IR camera formissile warning and automatic target recognition[C]. Proceedings of SPIE,2002,4718:280~288.
    [19] M. Kaldirim,S. U. Eker,Y. Arslan,et al. Large-format voltage-tunable dual-colormidwavelength infrared quantum-well infrared photodetector focal plane array[J]. IEEEPhotonics Technology Letters,2008,20(9):709~711.
    [20] http://www.photonicsonline.com/article.mvc/Sofradir-Releases-Multiple-Wavelength-IR-0001/2010.
    [21] Yann Reibel,Fabien Chabuel,Cedric Vaz,et al. Infrared dual band detectors for nextgeneration [C]. SPIE,2011,8012:381~383.
    [22] Milton L. Noble,N. Y.Liverpool. Infrared imager forming two narrow waveband imagesof the same object field[P]. United States Patent(19),US005258618A.
    [23] John T. Caulfield. Next generation IR focal plane arrays and applications[C].Proceedings of the32nd Applied Imagery Pattern Recognition Workshop,IEEE.2003,0-7695-2029-4/03.
    [24] P. Ballet, P. Castelein. Demonstration of a25μm pitch dual band HgCdTe infrared focalplane array with spatial coherence [C]. SPIE,2005,595703.
    [25] G. Destefanis, P. Ballet. Bi-color and dual-band HgCdTe infrared focal plane arrays atDEFIR[C]. SPIE,2006,6206(2):1~15.
    [26] Yann Reibel,Laurent Rubaldo,Cedric Vaz,et al. MCT (HgCdTe) IR detectors: latestdevelopments in France [C]. SPIE,2010,78340M.
    [27]刘琳.中波红外大相对孔径非制冷热像仪光学系统的研究[D].苏州:苏州大学,2010.
    [28]叶玉堂,刘爽.红外与微光技术[M].北京:国防工业出版社,2010:151~154.
    [29] W. Cabanski,R. Breiter,R. Koch, et al. Third gen focal plane array IR detection modulesat AIM [J]. Infrared Physics&Technology,2002,43:257~263.
    [30] G. Destefanis, J. Baylet, P. Ballet, et al. Status of HgCdTe bicolor and dual-bandinfrared focal arrays at LETI[J]. Journal of Electronic Materials,2007,36(8):1031~1044.
    [31]叶振华,周文洪,胡伟达等.碲镉汞红外双色探测器响应光谱研究[J].红外与毫米波学报,2009,28(1):4~7.
    [32] Joseph P. Havlicek, Chuong T. Nguyen, Guoliang Fan, et al. Integration of a dual-bandIR data acquisition system using low-cost PV320cameras [C]. Infrared Technology andApplications XXXII, SPIE,2006,6206:1~9.
    [33] S. U. Eker, Y. Arslan, M. Kaldirim, et al. QWIP focal plane arrays on InP substrates forsingle and dual band thermal imagers[J]. Infrared Physics&Technology,2009,52(6):385~390.
    [34] Vincent Guériaux,Alexandru Nedelcu, Mathieu Carras, et al. Mid-wave QWIPs for the
    [3-4.2μm] atmospheric window[J]. Infrared Physics&Technology,2009,52(6):235~240.
    [35] E. Laffosse,J. Baylet,J. P. Chamonal,et al. Inductively coupled plasma etching ofHgCdTe using a CH4-based mixture[J]. Journal of Electronic Materials,2005,34(6):740~745.
    [36] A. Manissadjian,S. Magli,E. Mallet,et al. Compact Dewar and electronic for largeformat infrared detectors [C]. SPIE,2011,80123I.
    [37] M. Zecri, P. Maillart. Advanced ROICs design for cooled IR detectors [C]. SPIE,2008,6940:1~12.
    [38] F. Pistone, P. Tribolet, G. Decaens, et al. Low IR input flux condition operation thanksto MCT e-APD [C]. SPIE,2010,7660(2):1~8.
    [39]徐向晏,叶振华,李志锋等.中波双色光伏型HgCdTe红外探测器模拟研究[J].红外与毫米波学报,2007,26(3):165~169.
    [40] Frank Rutz,Robert Rehm,Johannes Schmitz,et al. InAs/GaSb super lattice focal planearray infrared detectors: Manufacturing aspects [C]. SPIE,2009,7298:1~10.
    [41] R. Rehm,M. Walther,J. Schmitz,et al. Type-II superlattices: the Fraunhofer perspective
    [C]. SPIE,2010,7660:1~12.
    [42] Fillip Neele. Two-color infrared missile warning sensors[C]. SPIE,Airborne Intelligence,Surveillance,Reconnaissance(ISR) Systems and Applications Ⅱ,2005,5787:134~145.
    [43] S.D. Gunapala,S.V. Bandara,J.K. Liu,et al. Towards dualband megapixel QWIP focalplane arrays[J]. Infrared Physics&Technology,2007,50:217~226.
    [44]文宏.南非“矛枪”舰空导弹[J].舰船知识,2007,(10):48~49.
    [45]许洪.多光谱、超光谱成像探测关键技术研究[D].天津:天津大学,2008.
    [46]张建奇,王晓蕊.光电成像系统建模及性能评估理论[M].西安:西安电子科技大学出版社,2010:21~50.
    [47] Pieter A. Jacobs.地面目标和背景的热红外特性[M].吴文健,胡碧茹,满亚辉译.北京:国防工业出版社,2004:122~185.
    [48]宣益民,韩玉阁.地面目标与背景的红外特征[M].北京:国防工业出版社,2004:19~206.
    [49] E. P. G. Smith,L. T. Pham,G.M.Venzor,et al. HgCdTe focal plane arrays for dual-colormid-and long-wavelength infrared detection[J]. Journal of Electornic Materials,2004,33(6):509~515.
    [50] Steve Moyer,Ronald G. Driggers,Richard H. Vollmerhausen,et al. Informationdeference between subbands of the mid-wave infrared spectrum[J]. Society of photo-optical instrumentation engineers,2003,42(8):2296~2303.
    [51] F. D. Shepherd, J. M. Mooney, T. E. Reeves, et al. Adaptive MWIR spectral imagingsensor [C]. SPIE,2008,7055:1~8.
    [52] Srikant Chari,Carl Halford,Eddie Jacobs,et al. Multi-spectral infrared image classifica-tion using filters derived from independent component analysis[C]. SPIE,2007,65760B.
    [53] Frank Rutz,Robert Rehm,Martin Walther,et al. InAs/GaSb superlattice technology [J].Infrared Physics&Technology,2011(54):237~242.
    [54] Frank Rutz,Robert Rehm,Johannes Schmitz,et al. InAs/GaSb superlattices for high-performance infrared detection[C]. Sensor and Test Conferences2011-IRS Proceedings,16~20.
    [55] J. Baylet,P. Ballet, P. Castelein,et al. TV/4Dual-Band HgCdTe Infrared Focal PlaneArrays with a25-mm Pitch and Spatial Coherence [J]. Journal of Electronic Materials,2006,35(6):1153~1158
    [56] Robert Rehm,Martin Walther,Frank Rutz,et al. Dual-color InAs/GaSb superlatticefocal-plane array technology [J]. Journal of Electronic Materials,2011,40(8):1738~1743.
    [57] Robert Rehm,Johannes Schmitz,Joachim,et al. InAs/GaSb type-II superlattices forsingle-and dual-color focal plane arrays for the mid-infrared spectral range [J]. Phys.Stat.,2006,3(3):435~438.
    [58] P. Ballet,F. Noel,F. Pottier,et al. Dual-band infrared detectors made on high-qualityHgCdTe epilayers grown by molecular beam epitaxy on CdZnTe or CdTe/Ge substrates[J]. Journal of Electronic Materials,2004,133(6):667~672.
    [59]戎志国,张玉香,刘诚等.中波红外火情遥感的大气辐射传输特性[J].红外与激光工程,2009,38(4):589~593.
    [60]杨风暴.多波段红外图像目标特征分析与融合方法的研究[D].北京:北京理工大学,2006.
    [61]冷敏.红外中波细分图像的伪彩色增强研究[D].太原:中北大学,2010.
    [62] Y. Zhou,M. A. Omar. Routines for fusing infrared, visible acquisitions, applied to nightvisiong systems[J]. International Journal of Optomechatronics,2009,3(1):41.
    [63] Shutao Li,Bin Yang,Jianwen Hu. Performance comparison of different multi-resolutiontransforms for image fusion[J]. Imformation Fusion,2011,12:74~84.
    [64] Mourad Zribi. Non-parametric and region-based image fusion with Bootstrap sampling[J]. Imformation Fusion,2010,11:85~94.
    [65] Yi Chai, Huafeng Li,Xiaoyang Zhang. Multifocus image fusion based on featurescontrast of multiscale products in nonsubsampled contourlet transform domain[J].Optik-International Journal for Light and Electron Optics,2012,123(7):569~581.
    [66] James R. Waterman,Dean Scribner. Real-time fused color imagery from two-colormidwave HgCdTe IRFPAS[J]. AD-A400026,1998,1~11.
    [67] Lipchen Alex Chan,Sandor Z. Der,Nasser M. Nasrabadi.Dual-band FLIR fusion fortarget detection [C]. SPIE,2002,4668:108~118.
    [68] A. Ardeshir Goshtasby, Stavri Nikolov. Image fusion: Advances in the state of the art[J].Information Fusion,2007,8(2):114~118.
    [69] F. Rutz, R. Rehm, A. Worl, et al. Imaging detection of CO2using a bispectral type-IIsuperlattice infrared camera[J]. QIRT2012ID~233.
    [70]杨风暴,倪国强,张雷.红外中波细分波段图像的小波包变换融合研究[J].红外与毫米波学报,2008,27(4):275~279.
    [71]杨风暴,倪国强,荆绍威.红外中波细分图像的伪彩色增强[J].红外与毫米波学报,2009,28(2):97~101.
    [72]冷敏,杨风暴,齐伟.基于人眼中心-环绕对抗受域神经网络的红外中波细分图像的融合[J].红外技术,2009,31(7):403~406.
    [73] Rosa Rodriguez Sánchez, J.A. García, J. Fdez Valdivia. From computational attention toimage fusion [J]. Pattern Recognition Letters2011,32(14):1778~1795.
    [74] Linhai Jing,Qiuming Cheng. An image fusion method based on object-orientedclassification[J]. International Journal of Remote Sensing,2012,33(8):2434~2450.
    [75] Haitao Yin,Shutao Li, Leyuan Fang. Simultaneous image fusion and super-resolutionusing sparse representation[J]. Information Fusion,2012,24:1~11.
    [76] YuQiu Sun,MinSung Koh, Esteban R,et al. A new infrared image fusion method usingempirical mode decomposition and inpainting[J]. Image Processing,2011:1477~1480.
    [77] James W. Davis,Vinay Sharma. Background-subtraction using contour-based fusion ofthermal and visible imagery[J]. Computer Vision and Image Understanding,2007(106):162~182.
    [78] Songfeng Yin, Liangcai Cao, Yongshun Ling, et al. Fusion of noisy infrared and visibleimages based on anisotropic bivariate shrinkage[J]. Infrared Physics&Technology,2011,54(1):13~20.
    [79]王大伟.基于特征级图像融合的目标识别技术研究[D].长春:中国科学研究院长春光学精密机械与物理研究所,2010.
    [80] Rafael C. Gonzalez.阮秋琦等译,数字图像处理[M].北京:电子工业出版社,2007:514~553.
    [81]章毓晋.中国图像工程:2008[J].中国图像图形学报,2009,14(5):809~837.
    [82] J. Zeng,S. J. Li. An Ekeland’s variational principle for set-valued mapping withapplications[J]. Jouenal of Computational and Applied Mathematucs,2009,230(2):477~484.
    [83] Wen Chenglin, Xu Xiaobin. A new unified description of multisource heterogeneousinformation[C]. Proceedings of the6th World Congress on Control and Automation,2006:4082~4087.
    [84]彭冬亮,文成林,徐晓滨等.随机集理论及其在信息融合中的应用[J].电子与信息学报,2010,28(11):2199~2204.
    [85] Satyanadh Gundimada,Vijayan K. Asari,Neeharika Gudur. Face recognition in multi-sensor images based on a novel modular feature selection technique[J]. InformationFusion,2010,11(2):124~132.
    [86] Yi Zhou, Abedalroof Mayyas,Ala Qattawi,et al. Feature-level and pixel-level fusionroutines when coupled to infrared night-vision tracking scheme [J]. Infrared Physics&Technology,2010,(53):43~49.
    [87]范永杰,金伟其,李力等.基于FPGA的可见光/红外双通道实时视频融合系统[J].红外技术,2011,33(5):257~261.
    [88]曲锋,刘英,王健等.红外双波段图像实时融合系统[J].光学精密工程,2010,18(7):1684~1689.
    [89]中国航天科工集团第三研究院第八三五八研究所.红外成像系统测试与评价[M].天津:红外与激光工程编辑部出版,2006:1~53.
    [90] John Lester Miller.Future sensor system needs for staring arrays[J]. Infrared Physics&Technology,2011,(54):164~169.
    [91]孙继银,孙向东,王忠等.前视红外景象匹配技术[M].北京:科学出版社,2011:3~4.
    [92] D. E. L. Freeman. Guidelines for narcissus reduction and modeling in simulation andmodeling of optical systems[C]. SPIE Proceeding,1988,892:27~37.
    [93] G.C.Host. CCD arrays,cameras,and displays[D]. Winter Park: JCD Publishing,1996:142~145.
    [94] N. Bluzer. Sensitivity limitations of IRFPAs imposed by detector nonuniformities ininfrared detector and arrays[C]. SPIE Proceedings,1988(930):64~75.
    [95] J. D. Agostino,C. Webb.3-D analysis framework and measurement methodology forimaging system noise in infrared imaging systems: design, analysis,modeling andtestingⅡ[C]. SPIE Proceedings,1991,1488:110~121.
    [96] J. W. Coltman. The specification of imaging properties by response to a Sine Waveinput[J]. Journal of optical society of America,1954,44(6):468~471.
    [97]钟建业,魏雯.美国预警卫星探测技术及相关技术[J].中国航天,2005(6):22~30.
    [98]刘兆军,陈伟.面阵凝视型成型应用空间技术[J].红外与激光工程,2006,35(5):541~545.
    [99]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004:51~63.
    [100]徐根兴.目标与环境的光学特性[M].北京:中国宇航出版社,1995:190~211.
    [101]张敬贤,李玉丹,金伟其.微光与红外成像技术[M].北京:北京理工大学出版社,1995:60~81.
    [102]吴北婴,李卫,陈洪滨等.大气传输实用算法[M].北京:气象出版社,1998:40~78.
    [103] Robert Rehm, Martin Walther, Johannes Schmitz, et al.2rdand3rdgeneration themalimager based on type-II superlattices photodiodes[C]. Proc. of SPIE,2006,6294:629404~7.
    [104] Martin Walther,Robert Rehm,Joachim Fleiner,et al. InAs/GaSb type-II short-periodsuperlattices for advanced single and dual-color focal plane arrays[C]. SPIE,2007,6542:654206~654213.
    [105]杨德贵,肖顺平.基于单站双波段红外图像的面目标被动测距研究[J].信号处理,2010,26(5):714~718.
    [106]仪垂祥,周涛.大气有效发射率与水气和CO2的纬带关系研究[J].北京师范大学学报(自然科学版),1996,32(2):278~280.
    [107] http://www.szcw.cn/kjqy/20100827/654ec86f-fdd6-46e4-82db-3c09762ad65b.htm.
    [108]夏新林,艾青,任德鹏.飞机蒙皮红外辐射的瞬态温度场分析[J].红外与毫米波学报,2007,26(3):174~177.
    [109] Q. D. Trier,A. K. Jain,T. Taxt. Feature extraction methods for character recognition--asurvey[J]. Pattern Rccogntion,1996,29(4):641~662.
    [110] J. Karhunen,J. Joutsensalo.Generalizations of principal component analysis,optimi-zation problems, and nerual networks[J]. Neural Networks,1995,18(4):549~562.
    [111]李勇智.图像特征提取方法及其在人脸识别中的应用[D].南京:南京理工大学,2009.
    [112]崔建江,贾旭,刘晶等.基于计盒维数和多小波的静脉图像特征提取[J].东北大学学报(自然科学版),2010,31(10):1397~1409.
    [113] M. E. ElAlami. A novel image retrieval model based on the most relevant features[J].Knowledge-Based Systems,2011(24):23~32.
    [114]苏秀琴,梁金峰,陆陶等.海天复杂背景下红外目标的检测跟踪算法[J].光子学报,2009,38(5):1309~1312.
    [115]赵大恒.红外图像目标特征提取与分类算法研究[D].西安:西安电子科技大学,2010.
    [116]范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007:80~86.
    [117]刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622~635.
    [118] Michael Dorr,Karl R.Gegenfurtner,Erhardt Barth. The contribution of low-level featuresat the centre of gaze to saccade target selection [J]. Vision Research,2009,49(24):2918~2926.
    [119]马社强,邵春福,刘东等.基于差异驱动原理的道路交通安全评价[J].吉林大学学报,2010,40(4):981~985.
    [120] Srikant Chari. Multispectral mwir image classification using filters-derived fromindependent component analysis[D]. USA:The University of Memphis,2007.
    [121] Kazuyoshi Yata,Makoto Aoshima. Effective PCA for high-dimension, low-sample-sizedata with noise reduction viageometric representations[J]. Journal of MultivariateAnalysis,2012,105(1):193~215.
    [122] Jing Sui,Tülay Adali,Qingbao Yu,et al. A review of multivariate methods for multimodalfusion of brain imaging data[J]. Journal of Neuroscience Methods,2012,204(1):6~81.
    [123]张国政,姜威.采用频谱脸和FLD的分量融合彩色人脸识别[J].计算机工程与应用,2011,47(23):188~192.
    [124] Kun Feng,Zhinong Jiang,Wei He,et al. A recognition and novelty detection approachbased on Curvelet transform, nonlinear PCA and SVM with application to indicatordiagram diagnosis[J]. Expert Systems with Applications,2011(38):12721~12729.
    [125] Genaro Daza Santacoloma,German Castellanos Dominguez,Jose C. Principe. Locallylinear embedding based on correntropy measure for visualization and classification[J].Neurocomputing,2012(80):19~30.
    [126]陈勇,陈潇凯,林逸.改进雷达图评价方法在汽车综合性能评价中的应用[J].吉林大学学报(工学版),2011,41(6):1522~1526.
    [127] I. Hirsh,L. Shkedy,D. Chen,et al. Hybrid dual-color MWIR detector for airborne missilewarning systems[J]. Infrared Technology and Applications,2012,8353,1~12.
    [128] Martin Walther,Robert Rehm,Johannes Schmitz,et al. Antimony-based superlattices forhigh-performance infrared imagers[C]. Proc. of SPIE,2008,6940,6940OA
    [129] Gérard Destéfanis,Philippe Tribolet,Michel Vuillermet,et al. MCT IR detectors inFrance[C]. Proc.of SPIE,2011,8012,1~12.
    [130] S. Rwoeis, L. Sual. Nonlinear dimensionality reduetion by locally linear embedding[J].Science,2000,290:2323~2326.
    [131] J. Tenenbuam,V. De Silva,J. Lnagofrd. A global geometric framework for nonlineardimension reduetion[J]. Science,2000,290:2319~2323.
    [132]汪泊锦,黄敏,朱启兵等.基于高光谱散射图像技术的UVE-LLE苹果粉质化分类[J].光子学报,2011,40(8):1132~1136.
    [133]黄移军.基于局部线性嵌入法的流形学习[J].数学理论与应用,2009,29(4):38~42.
    [134]蒲小勤.基于多重分形的图像识别研究[D].西安:西北大学.2009.
    [135]敬忠良,肖刚,李振华.图像融合——理论与应用[M].北京:高等教育出版社,2007:47~67.
    [136]姚为.像素级和特征级遥感图像融合方法研究与应用[D].大连:大连理工大学,2011.
    [137] Bin Yang,Shutao Li. Pixel-level image fusion with simultaneous orthogonal matchingpursuit[J]. Information Fusion,2012(13):10~19.
    [138] Jamal Saeedi,Karim Faez. Infrared and visible image fusion using fuzzy logic andpopulation-based optimization[J]. Applied Soft Computing,2012,(12):1041~1054.
    [139] A. Toet,M. A. Hogervorst,S. G. Nikolov,et al. Towards cognitive image fusion[J].Information Fusion,2010,11(2):95~113.
    [140] Arthur L da Cunha,Jiangping Zhou,Minh N Do. The nonsubsampled contourlettransform: theory, design, and applications[J]. IEEE Transactions on Image Processing,2006,15(10):3089~3101.
    [141] L. A Zadeh. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems,1978,1(1):3~28.
    [142] D. Dubois, H. Prade. Possibility theory and data fusion in poorly informedenvironments[J]. Control Engineering Practice,1994,2(5):811~823.
    [143] M. Oussalah,H. Maaref,C. Barret. New fusion methodology approach and application tomobile robotics: investigation in the framework of possibilitu theory[J]. InformationFusion,2001,2(1):31~48.
    [144] V. Lohweg,K. Voth,S. Glock. A possibilistic framework for sensor fusion withmonitoring of sensor reliability[J]. Sensor Fusion-Foundation and Applications,2011,32(4):191~226.
    [145]王国宏,何友.基于模糊贴近度和不精确推理的雷达识别方法[J].系统工程和电子技术,1995,32(1):25~30.
    [146] C. S.Xydeas,V. S.Petrovic. Objective pixel-level image fusion performance measure[J].Prcessing of SPIE,2000,4051:89~98.
    [147] Z.Wang,A. C.Bovik,H. R.Sheikh,et al. Image quality assessment:from error visibility tostructural sinilarty[J]. IEEE Trans.on Image Processing,2004,13(4):600~612.
    [148]朱维涛.汽车前照灯系统光学设计方法研究[J].仪器仪表学报,2005,26(9):971~975.
    [149]刘颂豪,李淳飞.光子学技术与应用(上册)[M].合肥:安徽科学技术出版社,2006:23~56.
    [150] Sheng Zheng,Wen-Zhong Shi,Jian Liu,et al. Multisource image fusion method usingsupport value transform[J]. IEEE Trans. Image Processing,2007,16(7):1831~1839.
    [151] J. A. K. Suykens,J. Vandewalle. Least squares support vector machine classifiers[J].Neural Process Letter,1999,9(3):293~300.
    [152]杨风暴,蔺素珍,冷敏.双色中波红外图像的分割支持度变换融合[J].红外与毫米波学报,2010,29(5):362~366.
    [153] N. G. Kingsbury. The dual-tree complex wavelet transform: A new efficient tool forimage restoration and enhancement[C]. Proc.European Signal Processing Conf.Rhodes,1998,319~322.
    [154] N. G. Kingsbury. Complex wavelets for shift invariant analysis and filtering ofsignals[J]. Appl. Comp.Harmonic Anal.,2000,10(3):234~253.
    [155] V. Petrovic, C. Xydeas. On the effects of sensor noise in pixel-level image fusionperformance[C]. Proceedings of the Third International Conference on Image Fusion,2000,(2):14~19.
    [156] V. S. Petrovic,C. S. Xydeas.Gradient-based multiresolution image fusion[C]. IEEETransactions on Image Processing,2004,13(2):228~237.
    [157] R. Benzi,A. Sutera, A. Vulpiani. The mechanism of stochastic resonance [J]. Journal ofPhysics A: Mathematical and General,1981,14(11):453~457.
    [158] A. Das,N. G. Stock,E. L.Hins. Enhanced coding for exponentially distributed signalsusing supra-threshold stochastic resonance[J]. Communications in Nonlinear Scienceand Numerical Simulation,2009,14(1):223~232.
    [159] H. Sasaki,S. Sakane,T. Ishida,et al. Supra threshold stochastic resonance in visual signaldetection [J]. Behavioral Brain Research,2008,193(1):152~155.
    [160] H. Sasaki,M. Todorokihara,T. Ishida,et al. Effect of noise on the contrast detectionthreshold in visual perception [J]. Neuroscience Letters,2006,408(2):94~97.
    [161]薛凌云.神经元随机共振机制及其在语音与图像处理中的应用研究[D].杭州:浙江大学,2008.
    [162]向学勤,范影乐,庞全等.基于神经元阈上非周期随机共振机制的灰度图像复原研究[J].中国图象图形学报,2009,14(1):77~81.
    [163]郭浙伟,庞全,范影乐.随机共振在强噪声环境中语音增强应用[J].计算机仿真,2009,26(7):351~353.
    [164] N. G. Stocks. Supra-threshold stochastic resonance: an exact result for uniformlydistributed signal and noise [J]. Physics Letters A,2001,279(1):308~312.
    [165] M. S. Grace, O. M. Woodward. Altered visual experience and acute visual deprivationaffect predatory targeting by infrared-imaging boid Snakes [J]. Brain Research,2001,919:250~258.
    [166] C. Moon, S. Terashima. Response of the infrared receptors of a crotaline snake toethanol [J]. Neuroscience Letters,2002,334(1):29~32.
    [167]周巨伟,方志良,杨胜杰等.θ调制多光谱照相中图像融合及假彩色化研究[J].电子·激光,2005,16(10):1248~1252.
    [168]李伟伟,杨风暴,蔺素珍等.红外偏振与红外光强图像的伪彩色融合研究[J].红外技术,2012,34(2):109~113.
    [169]王珂.红外和可见光图像融合技术的研究[D].吉林:吉林大学,2008.
    [170] D. L. Ruderman,T. W. Cronin,C. C. Chiao. Statistics of cone responses tonatural images:Implications for visual coding[J]. Optical Soc.of America,1998,15(8):2036~2045.
    [171] E. Reinhard,M. Ashikhminm,B.Gooch,et a1. Color transfer between images[J]. IEEEComputer Graphics and Applications,2001,21(5):34~41.
    [172] A.Toet. Natural color mapping for multiband nightvision imagery [J]. InformationFusion,2003,4(3):155~166.
    [173] S. F. Yin,L. C. Guo,Y. SH. Ling,et al. One color contrast enhanced infrared and visibleimage fusion method [J]. Infrared Physics&Technology,2010,53(2):146~150.
    [174]李光鑫,徐抒岩,赵运隆等.颜色传递技术的快速彩色图像融合[J].光学精密工程,2010,18(7):1637~1647
    [175] Tania Pouli, Erik Reinhard. Progressive color transfer for images of arbitrary dynamicrange [J]. Computers&Graphics,2011,35(1):67~80.
    [176] Xiaoyan Qian,Yujin Wang, Bangfeng Wang. Fast color contrast enhancement methodfor color night vision [J]. Infrared Physics&Technology,2012,55(1):122~129.
    [177]倪国强,肖蔓君,秦庆旺等.近自然彩色图像融合算法及其实时处理系统的发展[J].光学学报,2007,27(12):2101~2109.
    [178]金伟其,王岭雪,赵源萌等.彩色夜视成像处理算法的新进展[J].红外与激光工程,2008,37(1):147~150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700