用户名: 密码: 验证码:
燃气长直管道泄漏检测及定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国国民经济的持续高速发展对能源,特别是燃气资源的需求越来越迫切。随着我国西部天然气大开发和国外天然气的大量引进,燃气管道的长度越来越长,并且呈现高压力、大管径的特点。伴随着这些高压燃气管道的长度不断增加,管道泄漏事故也时有发生。因为管道内燃气压力很高,一旦发生泄漏,会造成严重的生命财产损失和环境污染。因此,及时发现泄漏并定位泄漏位置,开展应对措施,对燃气管道安全至关重要。本文采用实验和理论相结合的方法,对燃气长直管道的泄漏检测与定位做了以下的研究:
     根据燃气流动基本控制方程,针对燃气管道正常工况和泄漏工况,利用特征线法分别推导了基本控制方程对应的差分方程,研究了相应的计算方法。根据燃气流动的运动方程和能量方程推导出管道沿线压力和温度分布。建立了燃气管道泄漏的储罐模型、小孔模型、大孔模型和管道模型。并利用计算算例,对模型的正确性进行了验证,实现了燃气管道泄漏量的计算。
     根据实验研究目的,考虑研究对象的物理模型和实验条件,改造搭建了燃气直管道泄漏检测实验台。研究了光纤光栅应变传感器检测管道内压力变化的原理,并进行了实验测试。结合流体力学理论,对泄漏实验结果进行了分析,验证了实验研究的可行性。
     为了利用基于扩展卡尔曼滤波器的方法来检测泄漏并定位泄漏位置,将滤波器估计的实时模型法的基本思想与已经建立的离散化的泄漏工况下的管道瞬态流动模型结合,假设泄漏分布在分段点上,从而建立离散化的包含多点泄漏的瞬态流动模型。将分段点上泄漏量包含到模型中,并使其成为状态变量的一个分量。利用扩展卡尔曼滤波器对状态变量进行估计,并利用等效管道的原理,研究了实际管道泄漏量和泄漏位置的计算方法。应用模拟算例和实验数据测试验证了该方法。
     负压波法是目前应用最广泛的管道泄漏检测与定位的方法,但这种方法的漏报率比较高、定位精度比较低。本文将光纤传感技术与负压波法结合,提出一种改进负压波法,并研究了此方法泄漏检测及定位的原理。研究了基于小波阈值法的负压波信号降噪的方法。通过实验对比及负压波衰减规律的研究,从技术和理论上分析了改进负压波法检测效果优于负压波法的原因。
     为了应用改进负压波法定位泄漏位置,首先研究了小波分析寻找信号突变点的方法,并利用此方法得到负压波传播到上下游光纤光栅应变传感器的时间差。其次,考虑管道内气体流速变化和负压波传播速度变化对泄漏定位的影响,建立了改进的燃气管道泄漏定位算法,并利用复化辛普森和二分法进行求解。最后,应用实验数据测试验证了该方法的定位效果。
     为了降低误漏报率、减少人工,将模式识别的理论引入到燃气管道的泄漏检测。提取改进负压波法采集到的泄漏工况和正常工况下的波形特征作为输入特征向量,并由此建立基于最小二乘支持向量机的燃气管道泄漏检测模型,实现了燃气管道泄漏的实时智能检测。
The demand for energy, especially for natural gas resources, is becoming more urgent now. With the exploitation of natural gas in western China and the import of foreign natural gas, pipelines connecting natural gas fields to demand centers are becoming longer, of increased pressure and with larger diameter pipes. In this case, pipeline leakage accidents occur frequently, and lead to serious life and property loss and environmental pollution. Therefore, it is vital to detect and locate the leaks in time and to carry out countermeasures to prevent leaks. Therefore, this thesis presents research toward the detection and locating of leakage in long straight pipelines using both experimental and theoretical techniques.
     For normal conditions and leakage conditions, differential equations of basic gas flow equations are deduced respectively using the method of characteristic line. Pressure and temperature distribution along the pipeline are obtained based on the equations of motion and the energy equation. The gas pipeline leakage models (a storage tank model, a small hole model, a large hole model and a pipe model) are establised, these four models are verified using simulation data, thus, leakage rate can be calculated.
     Toward to this research object, consider the physical model and the experimental condition, a gas pipeline leakage detection test bench is built. The principle of Fiber Bragg grating (FBG) strain sensors detecting pipeline internal pressure changes is studied, and also experimental tested. Combined with hydrodynamic theory, the leakage test results were analyzed to verify the feasibility of experimental studies.
     In order to use the extend kalman filter (EKF) based method to detect and locate leaks in natural gas pipeline, the basic idea of real-time model for filter and the established discrete transient pipe flow model including one point leakage are combined. In this condition, assuming the leak points are distributed on the segment, so a discrete transient flow model includes multi-point leakage are obtained. The leakage amount of segment points is included in this discrectizaion model and taken as a component of state variables. Consider the impact of system noise and measurement noise, the EKF is employed to estimate the flow of hydraulic elements, such as leakage amout et al. The leakage amount and leakage position formulas are eatablished. Simulation example and experimental data are used to test and verify this method.
     The negative pressure wave (NPW) method is currently the most widely used method for pipeline leak detection and location. However, high rates of false positives and low accuracy of positioning are the main drawbacks of this method. In this thesis, the method of using FBG strain sensors to detect negative pressure waves is studied and experimental tested. From this, an improved NPW method for leak detection and location is proposed and the principle of this method is studied. Using this method, the signal from FBGs is de-noised by a wavelet threshold method. Based on the comparison of experimental results and the study of the negative pressure wave attenuation law, the reasons why an improved NPW method is superior to a conventional NPW method is technically and theoretically analyzed.
     In order to locate the leakage position using the improved NPW method, firstly, wavelet analysis is employed to find the signal point mutation. Therefore, the time difference between the arrivals of the negative pressure wave propagates at the upstream and downstream FBG strain sensors can be calculated. Secondly, an improved leak location formula is proposed based on the variation in the negative pressure wave propagation velocity and the gas velocity variation, and Compound Simpson and Dichotomy Searching are employed to solve this formula. Finally, the positioning effect is verified by using experimental data.
     To reduce the false alarm rate and labor, the pattern recognition theory is introduced into the leak detection field. Using this theory, the features of the normal signal and leakage signal, as captured by FBG strain sensors are extracted as input feature vectors, and thus a least squares support vector machine (LS-SVM) based gas pipeline leak detection model is built, a real-time intelligent gas pipeline leak detection system is achieved.
引文
[1]刘然冰.国内外天然气发展现状及我国国际合作探讨.当代石油化学.2008,16(2):28~30
    [2]戚爱华.我国油气管道运输发展现状及问题分析.国际石油经济.2009(12):57~59
    [3]李影,李国义,马文鑫.我国油气管道建设现状及发展趋势.中国西部科技.2009,8(14):6~8
    [4]蒲明.中国油气管道发展现状及展望.国际石油经济.2009(3):40~47
    [5]吴元亚.从油气储运发展看“管道经济”的形成.石油天然气学报.2007,29(3):489~491
    [6]李影,李国义,马文鑫.我国油气管道建设现状及发展趋势.中国西部科技.2009,8(14):6~8
    [7]蒲明,马建国.2010年我国油气管道新进展.国际石油经济.2011(3):26~34
    [8]潘家华.关于老龄管道的安全运行.油气储运.2008,27(5):1~3
    [9]张宇.输油管道泄漏检测新方法与关键技术研究.天津大学博士论文.2009:15~19
    [10]杨荣根.长输石油管道泄漏检测与定位技术研究.南京理工大学博士论文.2011:21
    [11]肖智光,吴嗣跃,薛小红.管道泄漏检测技术应用分析.管道技术与设备.2009(2):23~26
    [12] J.L.Sperl. System pinpoints leaks on point arguello offshore line. Oil&GasJoumal,1991,89(36):47~52
    [13] G.W.Hennigar. Advances in gas leak detection. Pipeline&Gas Journal,1985,212(11):39~42
    [14] N.H.Hurt. Stand-alone sensors monitor for combustible gas leaks. PipelineIndustry,1991,74(1):65~66
    [15] C.Sandberg. The application of a continuous leak detection system to pipelineand associated equipments, IEEE Transaction on Industry Applicaition,1989,25(5):906~909
    [16]胡琼.在役管线泄漏检测技术研究.武汉理工大学博士学位论文.2009:3~4
    [17] A.J.Rogers. Distributed optical-fiber sensor, J. Phys. D: Appl. Phys,1986(19):2237~2255
    [18]孙洁娣.基于多地震动传感器的管道安全监测预警关键技术的研究.天津大学博士论文,2008:35~38
    [19]陈志刚,张来斌,王朝晖.基于分布式光纤传感器的输气管道泄漏检测方法.传感器与微系统.2007,26(7):108~110
    [20]李好学.光子晶体光纤传感结构的优化及其工程应用的方案设计.北京交通大学硕士论文.2010:59~64
    [21] H.N.Li, D.S.Li, S.Y.Wang. Study and application of health monitoring by fiberoptic sensors in civil engineering, ASME, Pressure Vessels and Piping Division,2003(468):217~224.
    [22]熊壮.基于小波变换法的天然气泄漏定位研究.天津大学硕士论文.2009:25~27
    [23] Jim.C.P. Liou. Leak detection by mass balance effective for Norman wells line,Oil&Gas Journal,1996(3):69~74
    [24]白莉,李洪升,贾旭等.基于瞬变流和故障检测的管线泄漏监测试验分析.大连理工大学学报.2005,45(1):8~11
    [25] R.Isermann. Process fault detection based on modeling and estimation methods-A survey, Automatica,1984,20(4):387~404
    [26] S.A.Ashton, D.N.Shields, S.Daley. Fault detect in pipelines using nonlinearobservers, UKACC International Conference on Control,1998(455):135~140
    [27] Z.Kowalczuk, K.Gunawickrama. Leak detection and isolation for transmissionpipelines via nonlinear state estimate,4th IFAC Safe Process,2000(2):943~948
    [28] Jim.C.P.Liou. Pipeline integrity monitoring using system impulse response,International Pipeline Conference ASME, San Francisco, USA,1996:1137~1142
    [29] C.Verde. Leakage location in pipelines by minimal order nonlinear observer,Proceedings of the American Control Conference Arlington, VA,2001
    [30]董东,王桂增. Kalman滤波器在长输管道泄漏诊断中的应用.自动化学报.1990,16(4):303~309
    [31] A.Benkherouf. Leak detection and location in gas pipelines, Control Theroyand Applications,1988,135:142~148
    [32] C.Verde. Multi-leak detection and isolation in fluid pipelines, ControlEngineering Practice,2001,9(6):673~682
    [33] J.B.Gomm. Adaptive neural network approach to on-line learning for processfault fiagnosis, Trans Inst MC,1998,20(3):144~152
    [34] X.J.Zhang. Statistical leak detection in gas and liquid pipelines, Pipes&Pipelines International,1993,38(4):26~29
    [35] X.J.Zhang. Designing a cost-effective and reliable pipeline leak detectionsystem, Pipes&Pipelines International,1997,1:20~26
    [36] H.Ye, G.Z.Wang, C.Z.Fang. Application of wavelet transform to leak detectionand location in transport pipelines. Engineering Simulation,1996,13:1025-1032
    [37]李利锋.基于小波理论的输油管道检漏与定位技术研究.延安大学硕士论文.2009:67~68
    [38]夏海波,张来斌,王朝晖,刘玉辉.小波分析在管道泄漏信号识别中的应用.石油大学学报.2003,27(2):78~80
    [39]胡瑾秋,张来斌,梁伟,王朝晖.基于谐波小波分析的管道小泄漏诊断方法.中国石油大学学报(自然科学版).2009,33(4):118~124
    [40] C.H.Ge, H.Y.Yang, H.Ye, G.Z.Wang. A fast leak locationg method based onwavelet transform, Tsinghua science and technology,2009,14(5):551~555
    [41]陈华立,叶昊.基于图像处理的管道泄漏检测与定位.清华大学学报.2005,45(l):119~122
    [42]朱晓星,陈悦,王桂增,叶昊.仿射变换在管道泄漏定位中的应用.山东大学学报.2005,35(3):32~35
    [43] H.L.Chen, H.Ye, C.Lv, H.Y.Su. Application of Support Vector MachineLearning to leak detection and location in pipelines, IMTC,2004(3):2273~2277
    [44]柳战良,耿艳峰,马英.热油输送管道泄漏点定位算法的改进.石油学报.2008,29(3):467~470
    [45]张东领,王树青,张敏.热输油管道泄漏定位技术研究.石油学报.2007,28(1):131~133
    [46]任伟建,孙勤江,林百松,霍凤财.基于自适应免疫算法的输油管道泄漏定位研究.信息与控制.2007,36(5):634~638
    [47]靳世久,王立宁,李健.瞬态负压波结构模式识别法原油管道泄漏检测与定位.电子测量与仪器学报.1998,12(1):59~64
    [48] L.B.Zhang, X.Y.Qin, Z.H.Wang, W.Liang. Designing a reliable leak detectionsystem for west products pipeline. Journal of loss prevention in the proeessindustries,2009,22(6):981~989
    [49]陶洛文,方崇智,萧德云.以辨识为基础的长输管线故障定位.清华大学学报.1986,26(2):69~75
    [50]娄身强,叶昊,杨红英.基于模型的管道泄漏监测抗扰动方法研究.控制工程.2007,14(5):51~55
    [51] G.Z.Wang, D.Dong, C.Z.Fang. Leak detection for transport pipelines based onautoregressive modeling, IEEE Transaction on instrumentation andmeasurement,1993,42(1):68~71
    [52] L.Billmann, R.Isermann. Leak detection methods for pipelines. Automation,1987,23(3):381~385
    [53] R.Tetzner. Model based pipeline leak detection and localization,3RInternational,2003,42(7):455~460
    [54] G.Geiger, B.Bollermann, R.Tetzner. Leak monitoring of an ethylene gaspipeline, PSIG annual meeting, California, USA,2004,4(2): l~30
    [55]孙良.基于模型的油气管道泄漏检测与定位方法研究.北京化工大学博士论文.2010:95~101
    [56]马丽娜.基于模型的输油管道泄漏检测与定位方法研究.北京化工大学博士论文.2009:53~65
    [57] R.Wan, B.Z.Wu, Z.T.Ding. Fault detection using high gain observer:application in pipeline system. Proeeedings of the UKACC IntemationalConference on Control,2008
    [58] Q.Zhao, D.H.Zhou. Leak detection and location of gas pipelines based on astrong tracking filter. Transaction on Control, Automation, and SystemsEngineering,2001,3(2):89~94
    [59]白莉,岳前进,李洪升.基于水利瞬变与扩展卡尔曼滤波的管道流体监测与泄漏定位.计算力学学报.2005,22(6):739~744
    [60] A.Mendez, T.F.Morse, F.Mendez. Applications of embedded optical fibersensors in reinforced concrete buildings and structures. Proc. SPIE, Fiber Optic Smart Structures and Skins,1990,1170:60~69
    [61] P.Ferraro, G.D.Natale. On the Possible use of optical fiber Bragg gratings asstrain sensors for geodynamical monitoring. Optics and Lasers in Engineering,2002,37(2-3):115~130.
    [62] E.Udd, M.Kunzler, M.H.Laylor, W.Sehulz, S.Kreger. Fiber Grating Systems forTraffic Monitoring, SPIE,4337:510~514
    [63]潘树新,刘耀炜.光纤传感器在水文地球化学地震前兆观测中的应用及其前景.国际地震动态.2001,12:9~14
    [64]赵廷超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述.重庆大学学报.1997,20(5):104~109
    [65]李辰砂等.光纤传感器监测复合材料固化成型过程.清华大学学报.2002,42(2):161~164
    [66]查开德.用于大型结构应变测量的光纤传感器.中国激光.1995,22(10):761~765
    [67] D.S.Mekeehan, J.E.Halkyard. Marine Application for a Continuous Fiber OpticStrain Monitoring System, The18th Annual OTC, Houston,1986:345~342
    [68]曲志刚.分布式光纤油气长输管道泄漏检测及预警技术研究.天津大学博士论文.2007:77~80
    [69] V.Bernhard. Leakage Detection Systems by Using Distributed Fiber opticalTemperature Measurement, SPIE2001,4328:23~34
    [70] R.M.López, V.V.Spirin, M.G.Shlyagin. Coherent optical frequency domainreflectometry for interrogation of bend-based fiber optic hydrocarbon sensors,Optical Fiber Technology,2004,10:79~90
    [71] Q.M.Hou, R.Liang et al. Natural Gas Pipeline Leakage Detection Based onFBG Strain Sensor, Proeeedings of the2013Fifth International Conference OnMeasuring Technology and Mechatronics Automation,2013:712~715
    [72] H.Kanai, Y.Yatabe, Y.Asano. A Study of the Applicability of a Leak DetectionSystem Utilizing Pressure Waves to Gas Pipelines. Proeeedings of the1998International Gas Research Conference,1998
    [73] I.Stoianov, L.Nachman, S.Madden. A Wireless Sensor Network for PipelineMonitoring, Information Processing in Sensor Networks,2008,(7):264~273
    [74] S.B.M.Beck, N.M.Bagshaw, J.R.Yates. Explicit Equations for Leak RatesThrough Narrow Cracks, International Journal of Pressure Vessels and Piping,2005,82(7):565~570
    [75]周琰.分布式光纤管道安全检测技术研究.天津大学博士论文,2006:42~48
    [76]李军,玉建军.不同模型燃气管道动态模拟对比分析.煤气与热力.2010,30(1):24~27
    [77] E.B.Wylie, V.L.Streeter. Fluid Transients in Systems,1993:52~58
    [78] M.Lustyk, J.Janus, M.P.Kudela. Analysis of Solutions of a NoncanonicalHamilton–Jacobi Equation Using the Generalized Characteristics Method andthe Hopf–Lax Representations, Nonlinear Analysis Theory Methods&Applications.2009,71(10):5084~5089
    [79]陈克勤.基于负压波的气体管道泄漏检测定位精度影响因素研究.哈尔滨工业大学硕士学位论文,2010:56~72
    [80]霍春勇,董玉华,余大涛.长输管线气体泄漏量的计算方法研究.石油学报,2004,25(1):101~105
    [81] J.L.Woodward, K.S.Mudan, J. Loss Prev. Process Ind.4(1991):161~165
    [82] Levenspiel. Engineering Flow and Heat Exchange, Plenum, New York,1984
    [83] D.A.Crowl, J.F.Louvar. Chemical Process Safety: Fundamentals withApplications, Prentice-Hall, NJ,1990
    [84] H.Montiel. Mathematical modeling of accidental gas releases. Journal ofHazardous Materials,1998,59:211~233
    [85]曹建明,李根宝.高等工程热力学.北京大学出版社.2010:101~103
    [86]王新.天然气管道泄漏扩散事故危害评价.哈尔滨工业大学硕士论文.2010:41~43
    [87]王大庆,霍春勇,高惠临.长输管线气体泄漏量简化计算方法.天然气工业.2008,28(1):116~118
    [88] Q.M.Hou, W.L.Jiao, P.H.Zou. The Analysis for the Environmental Impact ofNatural Gas Leakage and Diffusion into the Atmosphere, Advanced MaterialsResearch,2011,225-226:656-659
    [89]赵金辉.燃气管道泄漏检测定位理论与实验研究.哈尔滨工业大学博士论文.2010:36~38
    [90] B.Culshaw. Smart Structures and Materials, Artech House Publishers,1996
    [91] K.Wood, T.Brown, R.Rogowski. Fiber optical sensors for health monitoring ofmorphing airframes: I. Bragg grating strain and temperature sensor. SmartMater. Struct,2005,9(2000):163~169
    [92]杨玉坤,王新. FBG应变传感器在盾构隧道监测中应用.低温建筑技术.2011,2(28):95~97
    [93]任亮.光纤光栅传感技术在结构健康监测中的应用.大连理工大学博士论文.2008:28~35
    [94]张小虹,王丽娟,任姝婕.数字信号处理基础.清华大学出版社.2007:62~64
    [95]阳子轩.复杂管道泄漏检测技术研究.武汉理工大学博士论文.2011:86~88
    [96]张征方.基于EKF的PMSM无位置传感器矢量控制系统性能研究.湖南工业大学硕士论文.2009:39~41
    [97]李波.基于扩展卡尔曼滤波的无位置传感器PMSM系统研究.哈尔滨工业大学博士论文.2007:95~98
    [98]贺觅知.基于卡尔曼滤波的电力系统动态状态估计算法研究.西南交通大学硕士论文.2004:56~58
    [99]汪玮.基于UKF的天然气管道的泄漏检测与定位.上海交通大学硕士论文.2008:62~65
    [100]鲁忠沂.基于RBF神经网络和小波变换的管道泄漏检测技术研究.东北大学硕士论文.2010:47~51
    [101]余熳烨.基于Matlab的某电厂汽轮机振动故障诊断系统的研究.华南理工大学硕士论文.2011:11~15
    [102]王雷.基于小波变换的雷达信号降噪及其FPGA实现.中国舰船研究院硕士论文.2011:8~10
    [103]许姜严.基于小波的岩石节理裂隙图像处理.电子科技大学博士论文.2010:35~41
    [104]张勇,国景星,袭著纲,许丽丽.小波变换在饶阳凹陷层序地层格架建立中的应用.2010,22(6):49~54
    [105] S.M.Daud, J.Yunus. Classfication of Mental Tasks Using De-noising EEGSignals, Signal Processing,2004,3:2206~2209
    [106] D.L.Donoho, I.M.Johostone. Ideal Spatial Adaptation Via Wavelet Shrinkage,Biomertrika,1994,81:425~455
    [107] P.D.Agoris, S.Meijer, E.Gulski et al. Threshold selection for wavelet de-noisingof partial discharge data Electrical Insulation,2004Conference Record of the2004IEEE International Symposium on19~22,2004(9):62~65
    [108] A.B.Sergey, F.L.Oleg, Energoavtomatika Ltd. Waves attenuation and thepressure surge method performance. PSIG Annual Meeting,2007, Calgary,Alberta, Canada
    [109] C.H.Ge, G.Z.Wang, H.Ye. Analysis of the smallest detectable leakage flow rateof negative pressure wave based leak detection systems for liquid pipelines,Computers and Chemieal Engineering,2008,32(8):1669~1680
    [110] J.Li, Q.Z.He. Detection Technology and Instrumentation, Beijing: China LightIndustry Press,1989
    [111]马爱平.基于小波理论的输电线路故障信号检测的研究.兰州交通大学硕士论文.2011:71~89
    [112]金锥,姜乃昌,汪兴华,关兴旺.停泵水锤及其防护.中国建筑工业出版社.2003:35~36
    [113]邢永忠.最小二乘支持向量机的若干问题与应用研究.南京理工大学博士论文.2009:32~38
    [114]雷翠红.供热管网泄漏故障诊断的研究.哈尔滨工业大学博士论文.2010:92~93
    [115]王东波,苏新宁,朱丹浩,年洪东.基于支持向量机的医学期刊文章自动分类研究.情报理论与实践.2011,34(4):115~118
    [116]肖娇.晶硅太阳能电池电致发光研究及缺陷电池的Matlab数字图像识别.上海交通大学硕士论文.2011:56~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700