用户名: 密码: 验证码:
特高含水期剩余油滴可动条件及水驱油效率变化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着注水开发进入特高含水阶段,剩余油分布形态及大小发生了巨大的变化,微观孔隙结构中的剩余油如何移动,移动动力条件是什么,水驱油效率如何发生变化等问题已经成为特高含水期油田开发无法回避的关键问题。特高含水期剩余油滴可动条件及水驱油效率变化机理研究对提高油田开发经济效益,保持油田的稳产、增产具有十分重大的意义。
     第一、论文考察了特高含水期剩余油受力状态影响因素。研究发现孔隙中剩余油滴主要受到浮力、重力、毛细管力、注入压力、摩擦阻力、黏滞力、贾敏效应阻力及附加阻力的作用;从孔隙结构研究现状、孔隙结构的分类、孔隙结构对剩余油受力状态的影响、不同孔隙结构剩余油受力差异四个方面定性分析孔隙结构与剩余油受力状态的关系;依据剩余油滴受力原理,分析了低角度油藏、高角度油藏、正韵律性油藏、反韵律性油藏等油藏类型对剩余油滴受力状态的影响;
     第二、分析了不同含水期剩余油分布特征。对比分析中低含水期、高含水期、特高含水期剩余油分布特征;
     第三、分析剩余油滴微观受力特征,结合数学建模方法,提出了特高含水期剩余油滴移动动力条件。研究特高含水期简化孔隙结构下剩余油受力状态,建立特高含水期简化孔隙结构中油滴微观受力状态方程;分析三类简化孔隙结构模型下剩余油滴运动状态;确定不同油藏类型及孔隙结构条件中,单层及多层情形下剩余油滴孔道选择机理;开展三类简化孔隙结构模型下(平行毛管束模型、变截面毛管模型、孔隙网络模型)剩余油滴可动条件研究,确定剩余油滴移动动力条件;
     第四、开展特高含水期极限水驱油效率室内实验研究。设计实验方案、实验目的、实验内容、实验流程,开展水驱油实验及相渗实验;引入非稳态法对实验数据进行处理分析;研究特高含水期剩余油饱和度分布规律;对比分析现有的剩余油饱和度研究方法,从渗流的角度研究剩余油饱和度分布规律,确定剩余油饱和度随时间及位置变化的新方程;从微观参数入手,研究特高含水期剩余油饱和度分布,确定含水饱和度随微观孔道半径、最大毛管半径等微观参数变化的方程;
     第五、从不同角度研究特高含水期水驱油效率预测方法。确定特高含水期驱油效率内、外影响因素;统计现有的驱油效率表征方法,主要包括水驱特征曲线法、经验公式法、递减曲线法、现金流法;研究特高含水期基于新型水驱特征曲线、物质平衡原理及GM(1,n)神经网络功能模拟的驱油效率预测方法;
     第六、开展特高含水期水驱油效率变化机理研究。从油藏工程、实验与数模(牛顿插值原理、灰色神经网络模型)的角度研究特高含水期驱油效率变化机理。
When entering the ultra high water cut period, the distribution and size of the remaining oil have been greatly changed. In ultra high water cut oilfield development, the problems, such as what is the moving characteristic of the remaining oil in micro pore structure, what is the dynamic condition of the moving remaining oil, how water flood efficiency changes, etc., play a new and core role and become unavoidable. Study on remaining oil droplet dynamic conditions and water flood efficiency changing mechanisms in the ultra-high water cut period is meaningful to improve economic efficiency and keep stable and high production of oil field.
     Firstly, influencing factors of remaining oil droplet micro-force status in ultra-high water cut period have been investigated. Study shows the main forces of remaining oil droplet in pore network structure are buoyancy, gravity, capillary force, injection pressure, the frictional resistance force of the rock, viscous force, the resistance force of Jamin effect, etc.; the influences of pore structure related parameters (study status of pore structure, classification and analysis of pore structure models, influences of pore structure on remaining oil force state, force difference in different pore structure) on the micro force status of remaining oil droplet have been qualitatively analyzed; the influences of different reservoir types (low angle pore structure oil reservoir, high angle pore structure oil reservoir, oil reservoir with positive rhythm and anti-rhythmic oil reservoir) on the micro force status of remaining oil droplet have been studied;
     Secondly, remaining oil distribution characteristics in different water cut period have been compared and analyzed, including typical characteristics of remaining oil distribution in low-middle water cut stage, high water cut stage and ultra high water cut stage.
     Thirdly, according to the micro forces analysis of remaining oil droplet and establishment of mathematical models, dynamic conditions of moving remaining oil droplet in ultra high water cut stage have been proposed, including micro force status of remaining oil droplet in three different types of pore structure models; establishment of micro force status equation of remaining oil droplet in simplified pore structures; description of moving status of remaining oil droplet in three different types of pore structure models; capillary selecting mechanism of remaining oil droplet in different reservoir types and simplified pore structures; dynamic conditions and Threshold conditions of moving oil droplet in three simplified pore structures-parallel, variable cross-section and pore network capillary model.
     Fourthly, indoor experiments have been running to study the limited water flood efficiency in ultra high water cut period, including experimental design, purpose, content and process; running water flooding experiment and relative permeability experiments; processing and analysis of the experimental data with transient method. Remaining oil saturation during ultra high water cut stage has been studied, including comparisons of present calculation methods of remaining oil saturation; study of remaining oil saturation distribution pattern from the perspective of seepage and establishment of remaining oil saturation distribution equation with time and place change; study of remaining oil saturation distribution adapted to ultra high water cut stage from the perspectives micro parameters and establishment of remaining oil saturation distribution equation with micro parameters like capillary radius and maximum capillary radius change.
     Fifthly, predicting methods of water flood efficiency in ultra high water cut stage have been studied from different perspectives:internal and external influencing factors of water flood efficiency in ultra high water cut stage have been studied; present oil displacement efficiency predicting methods, including Water drive characteristic curve method, Empirical formula method, Decline curve method and Cash flow method, have been investigated; four kinds of new water flood efficiency predicting methods in ultra high water cut stage based on new type of water drive characteristic curve, material balance equation, and GM(l,n) and ANN functional simulation separately have been discussed in-depth.
     Sixthly, changing mechanisms of water flood efficiency in ultra high water cut period have been studied. For one thing, studying of changing mechanisms of water flood efficiency in ultra high water cut period from the perspective of reservoir engineering; for another, studying of changing mechanisms of water flood efficiency in ultra high water cut period from the perspective of experiments and numerical simulations, such as Newton interpolation principle and GM (1, n)-Neural network model.
引文
[1]张光明,许昌杰,周晓俊,赵英.高30断块油藏剩余油分布研究[J].江汉石油学院学报,2013,25(4):102-104.
    [2]丁圣.特高含水期剩余油形成与分布研究[D].北京:中国石油大学,2010,3-15.
    [3]王延章.特高含水期油藏剩余油分布规律及控制因素研究[D].东营:中国石油大学(华东),2007,12-14.
    [4]孙玉青.微纳米弹性微球启动剩余油及提高采收率机理研究[D].北京:中国石油大学,2011,1-7,26-29.
    [5]李玉梅.水驱砂岩油藏高含水期剩余油综合潜力评价方法研究[D].成都:西南石油学院,2003.
    [6]李阳,王端平,刘建民.陆相水驱油藏剩余油富集区研究[J].石油勘探与开发,2005,32(3):91-95.
    [7]栾虎,黄战卫,李书静.安塞油田高含水期剩余油分布规律[J].西安石油大学学报(自然科学版),2012,27(1):53-56.
    [8]李志鹏.利用油气势能预测油藏开发后期剩余油富集区[J].特种油气藏,2012,19(2):69-72.
    [9]郭耀清,张建.胜利油田特高含水期电脱水工艺发展方向的探讨[J].油气田地面工程,1996,15(6):12-15.
    [10]邴绍献.高含水期相渗关系表征研究[J].石油天然气学报,2012,34(10):118-120.
    [11]邴绍献.水驱油藏单井可采储量响因素权重定量[J].石油天然气学报,2011,33(3):107-110.
    [12]王滨.胜利油田特高含水期改善水驱开发效果的主要技术及做法[R].东营:中石化胜利油田分公司地质科学研究院,2007:1-51.
    [13]王延忠.埕东油田东区二次开发潜力及措施探讨[J].油气地质与采收率,2010(001):86-89.
    [14]曾显香.孤东油田七区西小砂体薄油层开发方式综合研究硕士论文[D].华东:中国石油大学,2005:5-8.
    [15]顾岱鸿,何顺利,田冷,等.特高含水期油田剩余油分布研究[J].断块油气田,2004,11(6):37-39.
    [16]李精忠.濮城油田特高含水期剩余油分布的描述[J].内蒙古石油化工,2004,30(3):115-116.
    [17]刘荣和.特高含水期剩余油分布及挖潜研究硕士论文[D].成都:成都理工大学,2007.
    [18]王元博.特高含水期水驱剩余油挖潜技术研究[J].中国石油和化工标准与质量,2011,6:146.
    [19]杜伟.特高含水期井网综合利用方法研究[J].油气田地面工程,2008,27(6):21-22.
    [20]孙焕泉,孙国,程会明,等.胜坨油田特高含水期剩余油分布仿真模型[J].石油勘探与开发,2002,29(3):66-68.
    [21]苏娜.微观水驱油实验及剩余油形成机理研究[J].断块油气田,2007,(06).
    [22]魏丽影,孙先达.喇萨杏油田特高含水期厚油层微观剩余油分布[J].大庆石油地质与开发,2011,30(4):1-4.
    [23]傅波.鄂尔多斯盆地西北部三叠系储层微观渗流特征研究[J].石油化工应用,2012,(09).
    [24]刘桂平.油藏剩余油精细描述技术在文16块的研究及应用效果[J].中国石油和化工标准与质量,2012,(11).
    [25]赵辰军.16块特高含水期剩余油分布规律研究[J].石油地质与工程,2011,(06).
    [26]汪超,何芬,刘超.断块油田高含水期提高开发效果研究[J].石油知识,2005(3):12-13.
    [27]张高,王新海,赵金玲.BMH油田北区角15块油藏剩余油分布研究[J].Journal of Oil and Gas Technology,2006,28(6).
    [28]刘玉娟,陈建波.高含水期油田井网优化组合—以下二门油田下层系为例[J].断块油气田,2006,3:10.
    [29]廖春,史玉成,徐珊珊,张煜,杜晓炜.尕斯库勒油田E_3-1油藏剩余油分布特征影响因素与挖潜对策[J].青海石油,2010,(02).
    [30]纪丽娜.潜山剩余油分布的控制因素及分布类型研究[J].内蒙古石油化工,2011,20:069.
    [31]胡云亭,杨永利,周金兰.断块油田高含水期剩余油分布模式及挖潜对策—以泌阳凹陷下二门油田为例[J].石油地质与工程,2011,25(4):61-64.
    [32]宋考平,杨二龙,王锦梅,等.聚合物驱提高驱油效率机理及驱油效果分析[J].石油学报,2004,25(3).
    [33]侯健,杜庆军,束青林,等.聚合物驱宏观剩余油受效机制及分布规律[J].石油学报,201O(001):96-99.
    [34]俞启泰,李文兴等.论注水砂岩油田高含水期的调整原则[M].北京:石油工业出版社,1999:136-153.
    [35]俞启泰.水油藏“大尺度”未波及剩余油开采技术[J].新疆石油地质2002,23(02):134-136.
    [36]孙全力,冯文光,姚昌宇.半封闭边水油藏特高含水期剩余油分布特征[J].西南石油大学学报(自然科学版),2011,33(3).
    [37]李彦平,罗东红,邹信波,等.陆丰凹陷块状砂岩油藏特高含水期剩余油分布研究[J].石油天然气学报,2009,31(3):115-118.
    [38]鞠秀梅,苏运玲,梁辉.孤岛油田中二北特高含水期剩余油分布规律研究[J].中国石油和化工标准与质量,2011,1:075.
    [39]米冬玲.萨北特高含水期厚油层内部构型及剩余油预测硕士论文[D].秦皇岛:东北石油大学,2012:6-8.
    [40]聂丛.喇嘛甸油田南块特高含水期综合治理研究硕士论文[D].秦皇岛:东北石油大学,2010:5-7.
    [41]赵红兵,徐玲.特高含水期油藏剩余油分布影响因素研究[J].石油天然气学报,2006,28(2):110-113.
    [42]侯健,高达,李振泉,等.储层微观参数对宏观参数影响的网络模拟研究[J].计算力学学报,2011,28(1):78-83.
    [43]赵磊,刘景兰等.特高含水油藏剩余油分布及开发技术研究[J].内蒙古石油化工,2002,28(1):94-98.
    [44]冯海船.孤东油田聚合物驱油技术发展现状及展望[J].胜利油田职工大学学报,2006,(2).
    [45]束青林,张本华,毛卫荣,王宏.孤岛油田特高含水期提高采收率技术措施及效果[J].工程技术,2009,6(5):52-55.
    [46]杜建辉.复杂断块油藏剩余油潜力分析研究硕士论文[J].中国石油大学(华东),2006:2-12.
    [47]张明霞,翟春玲,王进峰.浅谈卫10块层间挖潜及高效开发[J].内蒙古石油化工,2011,(20).
    [48]陶国秀.韵律段精细划分与水平井层内挖潜—以高尚堡油田高104-5区块为例[J].石油地质与工程,2006,(2).
    [49]盖丽鹏,王宏,吴丽文.孤岛油田中一区Ng3聚合物驱后提高采收率研究方法[J].中国石油和化工标准与质量,2012,(2).
    [50]卢祥国,高振环,赵小京等.聚合物驱油之后剩余油分布规律研究[J].石油学报,1996,(04).
    [51]王延忠.埕东油田东区二次开发潜力及措施探讨[J].油气地质与采收率,2010,17(1),86-88.
    [52]何佳,贾碧霞,徐海涛,等.调剖堵水技术最新进展及发展趋势[J].青海石油,2011,29(3):59-63.
    [53]冯其红,齐俊罗,尹晓梅,等.大孔道形成与演化过程流固耦合模拟[J].石油勘探与开发,2009,36(4):498-453.
    [54]Romashkino field. Field Evaluation Report-Former Soviet Union Romashkino Field[R]. Volga:Field Analogs,1997.
    [55]Loppinet, A., Lakovlet, S., Glenat, P. Five years of injection of hydroxyethy lcellulose-an ecological pure product for enhanced oil recovery in the field of Romashkino[C]. Proceedings of SPE Offshore Europe Conference Aberdeen, 1997,39-43.
    [56]Chao, H.Q. Romashkino Field, in Geology and Development of Large and Giant Oil Gas Fields in Russia[M]. Beijing:Petroleum Industry Press,1998,46-74.
    [57]Abdulmazitov, R. G., Blinov, A. F., etc. Reservoir modeling for giant Romashkino field (problems and solutions)[C]. Proceedings SPE European Petroleum Conference,2000,653-655.
    [58]温希娟,李发荣.罗马什金油田开发综述[J].国外油田工程,2010,26(12):3-6.
    [59]宋秋生,张劲松.罗马什金油田的二次开发[J].国外油田工程,2001,17(5):31-35.
    [60]ArlanField. Russia lower middle carnoniderous reservoirs[R]. Russian:Last modified,2004.
    [61]沈永祥.阿尔兰油田油水带油藏的井网密度对石油采收率的影响[M].北京:油气田开发工程译丛,1986.
    [62]张宏逵.阿尔兰油田注硅酸盐一碱溶液提高注水波及效率[M].北京:油气田开发工程译丛,1993.
    [63]Chao, H. Q. Arlan Field, in Geology and Development of Large and Giant Oil Gas Fields in Russia[M]. Beijing:Petroleum Industry Press,1998,193-212.
    [64]Chernousov, V.D. Conditions of formation of oil pools in the Arlan field[J]. Petroleum Geology,1964,162-166.
    [65]Cook, H. E., Zhemchuzhnikov, V. G., etc. Devonian and Carboniferous passive margin carbonate platform of southern Kazakhstan[J]. Canadian Society of Petroleum Geologists Memoir,1993,363-381.
    [66]Rovnin, L. I..Nesterov, I. I., etc. Laws governing oil and gas accumulations in West Siberia[C]. Proceedings of 9th World Petroleum Congress,1975,141-146.
    [67]Sagers, M. J. West Siberia oil production in the mid-1990s[J]. International Geology Review,1994,997-1018.
    [68]Sokolova, T. N. Factors determining environment of sedimentation of Achimov beds of West Siberia [J].Petroleum Geology,1994,28(5)182-184.
    [69]Svarovskaya, L. I.,Altunina,L. K., etc. Microbiological aspects of enhanced oil recovery employing IKhN compositions in oil fields of West Siberia[C]. Proceedings of Hungarian Chemical Society et al:Microbiology in the Oil Industry and Lubrication Conference,1991,246-251.
    [70]Tull, S. J. The diversity of hydrocarbon habitat in Russia[J]. Petroleum Geo-science,1997,3:315-325.
    [71]Van, A. K., Dronkert, H. Geological analysis and production history of the Samotlor Field, West Siberia[C]. European Association of Geoscientists and Engineers 58th Conference and Technical Exhibition,1996,584.
    [72]Ulmishek, G. F. Petroleum Geology and Resources of the West SiberianBasin, Russia:U.S. [J]. Geological Survey Bulletin,2003,53.
    [73]李元萍.萨玛特洛尔油田开发后期用电动离心泵进行开采的特点[J].国外油田工程,2002,18(12):18-19.
    [74]UzenField. Field Evaluation Report-Former Soviet Union Uzen Field[R]. Field Analogs,2008.
    [75]Effimov, I., Downey, M. W.,etc. Future hydrocarbon potential of Kazakhstan [M]. Petroleum provinces of the 21st Century.AAPG Memoir,2001,243-258.
    [76]Ulmishek, G. Petroleum Geology and Resources of the Middle Caspian Basin Former Soviet Union[J].US Geological Survey,2001,2201-a.
    [77]Kazhegeldin,A. M. Oil and Gas Fields of Kazakhstan[J]. Ministry of Ecology and Natural Resources, Almaty,1997,318
    [78]温希娟.乌津油田开发综述[J].国外油田工程,2010,26(10):1-6.
    [79]马翠.乌津油田产层增产方法效果分析[J].国外油田工程,2010,26(1):11-15.
    [80]Erickson, J. W., Sneider,R. M. Structural and hydrocarbon histories of the Ivishak(Sadlerochit)reservoir-Prudhoe Bay Field[J]. SPE Reservoir Engineering, 1997,18-22.
    [81]McGuire, P. L., Holt, B. M. Unconventional miscible EOR experience at Prudhoe Bay: a project summary[C]. SPE Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur,2001,1-19.
    [82]Panda,M. N., Zaucha, D. E., Perez, G., etc. Application of neural networks to modeling fluid contacts in Prudhoe Bay[C]. Proceedings SPE 70th Annual Technical Conference, Dallas,1996,755-770.
    [83]Rupp, K. A..Belson, W. C., Christian, L. D., etc. Design and implementation of a miscible water-alternating-gas flood at Prudhoe Bay[C]. Proceedings 59th Annual Technical Conference,Houston,1984,1-12.
    [84]Schuldt, D.M..Suttles, D. J., etc. Post-fracture production.performance and waterflood management at Prudhoe Bay[C]. Proceedings Western Regional Meeting, Anchorage,1993,71-81.
    [85]吴富强.普鲁德霍湾油田伊维沙克产层构造及烃类史研究[J].世界地质,1997,16(3):42-44.
    [86]朱莉婷,孙效群,王新刚.普鲁德霍湾油田开发方法及效果[J].大庆石油地质与开发,1999,18(1):50-51.
    [87]Texas Almanac. Texas history highlights[DB/OL]. www. texasalmanac. com/ history/highlights/oil,2007.
    [88]White, G. W., Blanks, S. J., Clawson, C. F. Evolutionary model of the Jurassic sequences of the East Texas Basin-implications for hydrocarbon exploration[C]. Gulf Coast Association of Geological Societies 49th Annual& SEPM Gulf Coast Section 46th Annual Convention,1999,49:488-498.
    [89]刘新,陈弘,刘颖.美国东得克萨斯油田开发状况及具体措施[J].国外油田工程,2010,26(12):17-20.
    [90]王小林,常毓文,窦宏恩.东得克萨斯油田对我国大型油田开发的启示[J].国外油田工程,2010,26(9):15-19.
    [91]Kuleshov Field. Field Evaluation Report-Kuleshov Field[R]. Russia:Volga-Ural Basin,2004.
    [92]Tavson Russia. Petroleum geology and exploration potential in the Former Soviet Republics[M]. Gustavson Associates,1992,37-49.
    [93]Terson, J. A., Clarke, J. W. Geology of the Volga-Ural Petroleum Province and detailed description of the Romashkino and Arlan Oil Fields[J]. US Geological Survey open-file report,1983,83(7):71-90.
    [94]Ulmishek, G. F. Upper Devonian-Tournaisian facies and oil resources of the Russian craton's eastern margin[J]. Canadian Society of Petroleum Geologists Memoir,1988,14:527-549.
    [95]Zerapolich, W. G., Cook, H. E., Zhemchuzhnikov, V. G., etc. Biotic and abiotic influence on the stratigraphic architecture and diagenesis of Middle to Upper Paleozoic carbonates of the Bolshoi Karatau Mountains, Kazakhstan and the southern Urals, Russia:implications for the distribution of early marine cements and reservoir quality in subsurface reservoirs[J]. SEPM special publication,2002,74:123-180.
    [96]巢华庆.俄罗斯大型特大型油气田地质与开发[M].北京:石油工业出版社,2001,193-212.
    [97]Ford-Geraldine Field. Field Evaluation Report, North America, Ford-Geraldine Field[R].U. S. A:Texas,2005.
    [98]Pittaway, K., Runyan, E. The Ford Geraldine Unit C02 Flood:Operating History [J]. SPE Production Engineering,1990,5(3):333-337.
    [99]Ruggiero, R. W. Depositional history and performance of a Permian Bell Canyon sandstone reservoir,Ford-Geraldine Field,West Texas, in Rhodes, E. G.,and Moslow, T. F., eds., Marine Clastic Reservoirs,Examples and Analogues[M]. New York:Springer-Verlag,1993,201-229.
    [100]Dutton,S.P.,Flanders,W.A., Barton, M. D. Reservoir characterization of a Permian deep-water sandstone, East Ford field, Delaware basin, Texas[J]. AAPG Bulletin,2003,87:609-627.
    [101]Dutton, S. P., Kim, E. M., BroaJhead, R. F., etc. Play analysis and digital portfolio of major oil reservoirs in the Permian Basin:application and transfer of advanced geological and engineering technologies for incremental production opportunities[R]. The University of Texas at Austin, Bureau of Economic Geology, final report prepared for the U. S. Department of Energy,2004,408.
    [102]William, G. W. In homogeneities of the Ramsey Member of the Permian Bell Canyon Formation, Geraldine Ford Field, Culberson and Reeves Counties, Texas, in Sullivan, N. M., ed., Guadalupe Delaware Mountain Group of West Texas and Southeast New Mexico[C].1979Symposium and Field Conference Guidebook:Permian Basin Section-SEPM, Publication no,1979,79(18):2-38.
    [103]Fischer,A.G.,Sarnthein, M. Airborne silts and dune-derived sands in the Permian of the Delaware basin[J]. Journal of Sedimentary Petrology, 1988,58:637-643.
    [104]Hawk field. Field Evaluation Report-Hawk Point,Maysdorf and Rourke Gap Fields[R]. Field Analogs,2001.
    [105]Wyoming Oil and Gas Conservation Commission. Production histories of the Hawk Point, Maysdorf and Rourke Gap fields[DB/OL]. http://wogcc. state, wy. us/., 2007.
    [106]Chateaurenard Field. Field Evaluation Report-Chateaurenard Field Complex[R]. French:Paris Basin,2008.
    [107]Fitzgerald, M. J., Mousset, E. Triton France-the evolution of a successful exploration venture in theParis Basin[J].oil and Gas Journal, 1987,85(12):69-72.
    [108]DGEMP. Rapport Annuel 2000-Recherche et production petrolieres en France: Service de Conservation des Gisements D'Hydrocarbures[R]. Paris,2001.
    [109]Foxonet, F., Bruckert, L. Enhanced oil recovery by a horizontal well located inside a polymer flood pi lot[J]. Revue de 1'Institut Francais de Petrole,1990,45:39-50.
    [110]Katz, B. J. The Schistes Carton-the Lower Toarcian of the Paris Basin, in Katz, B. J. [M]. Petroleum source rocks:Springer-Verlag,1999,51-65.
    [lll]Lamiraux, C., Mascle, A. Petroleum exploration and production in France[J]. First Break,1998,16(4):109-117.
    [112]Leonard, A. Wine isn't the only production in France[J]. American Oil& Gas Reporter,2005.
    [113]Putz, A. G., Pedron, B.,Bazin,B. Commercial polymer injection in the Courtenay Field,1993 update, in de Haan, H. J., ed., New developments in improved oil recovery[M]. Geological Society, London, Special Publication,1995,84: 239-249.
    [114]Sunao Takaqi等著,张宏逵译.Chateaurenard油田一个成功的聚合物驱的模拟[M].油气田开发工程译丛,1993:10-17.
    [115]胡胜男,王帅.利用密闭取心井资料对贝中次凹地区南一段储层特征研究[J].国外测井技术,2012(1):41-43.
    [116]刘昊娟,王震亮,任战利,等.志丹延安组下部储层特征与物性影响因素[J].西北大学学报(自然科学版),2011,41(3).
    [117]鲁国明.济阳坳陷碳酸盐岩油藏储层评价及有效厚度研究[J].石油实验地质,2011,33(2):155-159.
    [118]门吉华.长岭断陷登娄库组成岩作用及储层评价[J].特种油气藏,2011,18(3):24-26.
    [119]谭仲平,商国庆,杨渭.利用密闭取心井资料建立饱和度解释模型研究[J].断块油气田,1999,7(4):42-44.
    [120]胡学军,杨胜来,李辉.密闭取心降压脱气对岩心含水饱和度的影响[J].西安石油大学学报(自然科学版),2004,19(6):27-30.
    [121]陈宁宁,杨少春,黄建廷.胜坨油田沙河街组二段复杂断块油藏水淹层测井解释研究[J].地球科学与环境学报,2010,(04).
    [122]姜言里.毛管数与残余油饱和度关系的预测[J].大庆石油地质与开发,1987,(1).
    [123]陈彬,王艺景等.注水剖面资料确定吸水层动态残余油饱和度[J].测井技术,2003,27(2),159-161.
    [124]闫伟.驱油体系对采收率和残余油饱和度的影响硕士论文[D].大庆石油学院,2007.
    [125]刘萍,郝以岭,唐荣等.岔河集砂岩油田水淹层剩余油饱和度计算方法研究[J].测井技术,2006,30(4):306-309.
    [126]张树宝,姚光明,董志清.关于剩余油饱和度分布的研究方法[J].断块油气田,1999,7(3):19-22.
    [127]蔡军,李茂文,何胜林.海水注入开发中剩余油饱和度评价研究[J].石油钻采工艺,2007,29(6):77-79.
    [128]龚春辉.利用侧钻井电阻率减小率计算剩余油饱和.度[J].特种油气藏,2005,12(4):44-46
    [129]蒲红军,缪定云.生产测井资料评价产层剩余油饱和度方法[J].江汉石油学院学报,2003,25(4):91-93.
    [130]刘文辉,章成广,杨天荣.中子寿命求剩余油饱和度影响因素探讨[J].工程地球物理学报,2008,5(6):691-695.
    [131]焦霞蓉,江山,杨勇,杨永智.工程方法定量计算剩余油饱和度[J].特种油气藏,2009,16(4):48-51.
    [132]杨普华.提高采收率研究的现状及近期发展方向[J].油气采收率技术,1999,6(4):1-5.
    [133]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,(1).
    [134]沈平平,袁士义,邓宝荣,等.化学驱波及效率和驱替效率的影响因素研究[J].石油勘探与开发,2004,31(1):4.
    [135]张绍东,王绍兰,李琴,等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学版),2002,26(3):47-53.
    [136]郭尚平,田根林.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报,1997,18(4):49-53.
    [137]田乃林,张丽华.高凝油驱油效率的室内实验研究[J].大庆石油地质与开发,1997,16(3):53-55.
    [138]刘柏林,李治平,匡松远,等.低含油饱和度油藏油水渗流特征[J].油气地质与采收率,2007.
    [139]俞启泰,赵明,林志芳.水驱砂岩驱油效率和波及系数研究[J].石油勘探开发,1989,16(2):48-52.
    [140]黄学斌,鲁国甫.预测水驱砂岩油田驱油效率的方法[J].河南石油,1997,11(4):15-16.
    [141]何贤科,陈程.用动态资料预测注水开发油田驱油效率[J].XINJIANG PETROLEUM GEOLOGY,2005,26(3).
    [142]杨胜来.油层物理学[M].北京:石油工业出版社,2004.
    [143]Dullien, F. A. New network permeability model of porous media[J]. AICRE, 1975,21:299-307.
    [144]Kozeny, J. Uber Kapillare Leitung des wasser in Bodn, Sitzungber[J]. Akad. Wiss. Wien,1927,136(2a):271.
    [145]张立娟,岳湘安.黏弹型和幂律型驱油剂的等效渗透率[J].石油学报,2007:87-92.
    [146]Fatt,I. The network model of porous media:Capillary pressure characteristics[J].Trans AIME,1956,207:144-159.
    [147]M. J. Blunt. Flow in porous media pore-network models and multiphase flow[J]. Current Opinion in Colloid Interface Science,2001(6):197-207.
    [148]Garrison, J. R., Pearn, W. C., Rosenberg, D. U., etc. The Fractal Nature of Geological Data Sets:Power Law Processes Everywhere[C]. SPE Annual Technical Conference and Exhibition,1991.
    [149]姚娜.油田开发中后期剩余油宏观赋存模式及挖潜对策研究硕士论文[D].中国石油大学,2010:7-15.
    [150]冯仁鹏,何同均,周兴等.高含水期剩余油分布及挖潜技术研究[J].重庆科技学院学报(自然科学版),2009,11(6):26-29.
    [151]贾振歧,吴景春,高英等.特高含水期提高原油采收率的方法[C].全国三次采油提高采收率技术交流研讨会,2010,13-18.
    [152]李响.孤岛油田剩余油分布规律研究[J].内将科技,2008,29(7):31-32.
    [153]董顶琴.低渗透窄条状油藏低部位剩余油分布获新认识[J].复杂油气藏, 2010,(04):618:621.
    [154]刘斌.地层倾角对窄屋脊油藏剩余油富集规律影响研究[J].内江科技,2012,(03).
    [155]刘魁元,康仁华.高角度层状不整合油藏勘探开发方法:以水平油田为例[J].复式油气田,1998,1:43-46.
    [156]郝晓玉.薄差油层水淹层的计算机识别方法研究硕士论文[D].中国海洋大学,2008,14-17.
    [157]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-55.
    [158]俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,(2).
    [159]许书堂,杨玉娥,王志萍,刘荣华.一种新的海绵取心技术[J].断块油气田,1998,(03).
    [160]马汝耕.新型压力取心筒[J].大庆油田,1982,(z1).
    [161]郭清生,罗正权,张爱娟.碳氧比测井仪器原理及应用[M].石油工业出版社,2012.
    [162]郑于文,张国平,亢俊健.相位介电测井的原理及其在水文测井中的应用[J].河北地质学院学报,1987,(04).
    [163]尚立志.核磁测井的现状与发展趋势[J].江汉石油学院学报,1995,(04).
    [164]杨曦.基于单井示踪剂的地层非均质性解释方法研究硕士论文[D].西南石油大学,2012.
    [165]董伟.尕斯库勒E_3-1油藏相控建模与剩余油分布研究硕士论文[D].成都理工大学,2008.
    [166]汤春云,杨斌,王敏,谭春兰.油田高含水期剩余油饱和度研究方法及应用[J],江汉石油职工大学学报,2004,14(2):4-7.
    [167]郭腾明,赵永强,王勤田,等.油藏数值模拟法预测剩余油分布及调整挖潜措施—以临南油田夏32块油藏为例[J].断块油气田,2002,9(3):29-31.
    [168]Buckley,S. E., Leverett, M. C. Mechanism of fluid displacements in sands[J]. Transactions of the AIME,1942,146:107-116.
    [169]Archie,G. E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Petroleum Transactions of AIME,1942,146:54-62.
    [170]Poupon, A., Loy, M. E., et al. A contribution to electric log interpretation in shaly sands[J].AIME,1954,201:138-145.
    [171]Simandoux,P. Dielectric measurements of porous media:Application to measurement of water saturations-study of the behavior of argillaceous formations[J].Revue de L'Institut Franais du Petrole 18(SI):1963,193-215.
    [172]Fertl, W. H., Hammack,G. W. A comparative look at water saturation computation in shaly pay sands[J]. The log Analyst,1982,23(2):12-20.
    [173]Dewan, J. Essential of modern open-hole log interpretation[M]. Oklahoma:Penn Well Publishing Company,1998.
    [174]姚恒申,向开理,李治平.油藏含水饱和度的泊松过程分析方法[J].系统工程理论与实践,1993,3:137-142.
    [175]张占松,张超谟.气体介质钻井条件下测井资料分析与数值模拟[J].2008,22(2):151-156
    [176]李进,黄敏,赵宇.威布尔分布的极大似然估计的精度分析[J].北京航空航天大学学报,2006,32(8):930-932.
    [177]邵创国,高永利,林光荣等.特低渗透储层提高水驱油效率实验研究[J].西安石油大学学报(自然科学版),2004,19(3):23-25,28.
    [178]孙卫、付晓燕.姬塬延安组储层水驱油效率及影响因素[J].石油与天然气地质,1999,20(1):26-29.
    [179]任晓娟、曲志浩,等.西峰油田特低渗弱亲油储层微观水驱油特征[J].西北大学学报(自然科学版),2005,35(6):766-769.
    [180]朱玉双,曲志浩等.靖安油田长6、长12油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335.
    [181]STOSUR, G. J..SINGER, M. I., etc. Enhanced Oil Recovery in North America:Status and Prospects[J].Energy Sources,1990,12(4):429-437.
    [182]Juttner, I., Rajkovic, D. Economic and Environmental Aspects of Enhanced Oil Recovery Implementation[J]. Minerals& Energy-Raw Materials Report,2001, 16(1):32-37.
    [183]Al Shalabi,E. W., Ghosh, B., Haroun,M.,etc. The Application of Direct Current Potential to Enhancing Water flood Recovery Efficiency[J]. Petroleum Science and Technology,2012,30(11):2160-2168.
    [184]童宪章.天然水驱和人工注水油藏统计规律探讨[J].石油勘探与开发,1978,6(4):38-64.
    [185]俞启泰.几种重要水驱特征曲线的油水渗流特征[J].石油学报,1999,20(1):56-60.
    [186]邓聚龙.灰色系统基本方法(第一版)[M].湖北:华中工学院出版社,1987:38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700