用户名: 密码: 验证码:
基于Frenkel-Kontorova模型的控制系统设计与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Frenkel-Kontorova模型是一类非线性耦合动态系统,有着广泛的应用价值与理论指导意义。结合目前FK模型广泛的实际应用,阐明了研究FK模型的重要意义。对国内外关于FK模型的研究现状和本文的研究问题进行了分析与总结。分别从定量和定性两种角度,对非线性系统的研究方法进行了总结。给出了本文需要用到的理论工具。
     从实际应用背景和制约条件出发,提出控制问题并针对该问题设计输出反馈控制律。在所设计的输出反馈控制律作用下,分目标速度等于零与不等于零两种情况,分别分析了系统的平衡点的稳定性和状态有界的充分条件,并讨论了在摩擦系数足够大这一特殊情况下系统的状态。并通过Matlab仿真说明本章所得结论的有效性和正确性。
     针对Morse型Frenkel-Kontorova模型的缺陷进行改进以确保粒子序列的不变性。在原设计的输出状态反馈控制律作用下,分别利用庞加莱影射和李雅普诺夫直接方法对改进后的Morse型Frenkel-Kontorova模型进行研究。分析了状态混沌与系统摩擦系数及目标速度之间的关系,并分目标速度等于零、不等于零两种情况,分别讨论了平衡点的稳定性、状态有界的充分条件以及运动状态轨迹的估计等问题。并通过数值算例验证了所得结果的有效性和正确性。
     利用李雅普诺夫直接方法和鲁棒控制的思想,设计了非线性输出反馈控制律,使得系统的平均速度精确收敛于目标值。分别给出了在该非线性输出反馈控制律的作用下,改进后的Morse型Frenkel-Kontorova模型中粒子运动状态有界与经典Frenkel-Kontorova模型中粒子运动状态同步的充分条件。通过仿真实例,将所设计的非线性输出反馈控制律与以往的进行比较以说明本控制律的优势,并分别验证在该非线性输出反馈控制律的作用下,改进后的Morse型Frenkel-Kontorova模型中粒子运动状态有界与经典Frenkel-Kontorova模型中粒子运动状态同步的充分条件。
Frenkel-Kontorova model is a class of nonlinear coupled dynamical system and has broadened applications. With the broadened applications of Frenkel-Kontorova model, the importance of research for this model is stated. Current research of Frenkel-Kontorova model and the problem studied here are summarized and analyzed. Different methods for researching nonlinear dynamical systems are summarized, including both numerical and analytical methods. Theory tools used in this research are given.
     According to the background of applications and constraints, a control problem is proposed and an output feedback control law is designed to solve this control problem. Under the designed output feedback control law, the dynamical system is divided into two cases; targeted velocity is zero and non-zero, to study the stability of equilibrium and sufficient conditions for boundedness of states, respectively. Moreover, for the special case that damping coefficient is sufficiently large, the states of the researched dynamical system are studied. Simulations are given to show the effectiveness and validity of the derived results with Matlab.
     To conquer a drawback of Morse-type Frenkel-Kontorova model, a modification for this model is proposed, which assures the sequence of particles in the model is unchanged. Under the designed output feedback control law, dynamical features of the modified model are studied using Poincare mapping and Lyapunov methods, respectively. The relationship between friction coefficient and range of chaos in targeted velocity is revealed. And the modified dynamical system is divided into two cases, which are zero targeted velocity and non-zero targeted velocity, to study the stability of equilibrium, sufficient conditions for the boundedness of states and the estimation of states. Computer simulation shows the validity of derived results.
     For Frenkel-Kontorova model, a continuous nonlinear output feedback control law is designed, using the idea of robustness control and direct Lyapunov method, such that average velocity tends to targeted value precisely. Under the continuous nonlinear output feedback control law, the sufficient conditions for bounded states of modified Morse-type Frenkel-Kontorova model and synchronization of classical Frenkel-Kontorova model are studied, respectively. Numerical examples show the effectiveness and advantage of the designed continuous nonlinear control law and derived sufficient conditions for bounded states of modified Morse-type Frenkel-Kontorova model and synchronization of classical Frenkel-Kontorova model.
引文
[1]S. H. Strogatz. From kuramoto to crawford:exploring the onset of synchronization in populations of coupled oscillators [J]. Physica D.2000.143: 1-20.
    [2]A. T. Winfree. Biological rhythms and the behavior of populations of coupled oscillators [J]. Journal of Theoretical Biology,1967,16(1):15-42,.
    [3]Y. Kuramoto. Chemical oscillations, waves, and turbulence [M]. Springer-Verlag, Berlin,1984.
    [4]C. M. Breder. Equations descriptive of fish schools and other animal aggregations [J]. Ecology,1954,35:361-370,.
    [5]V. Gazi and K. M. Passino. Stability analysis of swarms [J]. IEEE Transactions on Automatic Control,2003,48(4):692-696,.
    [6]C. Wu and L. O. Chua. A simple way to synchroniza chaotic applications to secure communication system [J]. International Journal of Bifurcation and Chaos, 1993,3(6):1619-1627.
    [7]F. M. Gardner. Phaselock Technique [M]. Wiley,1979.
    [8]M. Kumom and N. Adachi. Contour-error based tracking control method for robots [C]. In:Proceedings of International Symposium on Intelligent. Bangarole, INDIA,1998.
    [9]N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Huyakawa, and M. Sano. Collective motion in a system of motile elements [J]. Physical Review Letters, 1996,76(20),3870-3873.
    [10]N. Wiener. Nonlinear Problems in Random Theory. MIT Press, Cambridge, MA, 1958.
    [11]R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
    [12]K. M. Cuomo and A. V. Oppenheim. Circuit implementation of synchronized chaos with applications to communications [J]. Physical Review Letters,1993, 71 (1):65-68.
    [13]M. Gorman, P. J. Widmann and K. A. Robbins. Nonlinear dynamics of a convection loop:A quantitative comparison of experiment with theory [J]. Physica D,1986,19 (2):255-267.
    [14]N. Hemati. Strange attractors in brushless DC motors [J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1994,41 (1): 40-45.
    [15]Hilborn R C. Chaos and Nonlinear Dynamics:An Introduction for Scientists and Engineers [M]. Oxford University Press,2000.
    [16]Hirsch M W, Smale S, Devaney R. Differential Equations, Dynamical Systems, & An Introduction to Chaos [M]. Academic Press,2003.
    [17]Poland D. Cooperative catalysis and chemical chaos:a chemical model for the Lorenz equations [J]. Physica D,199365 (1):86-99.
    [18]Tucker W. A Rigorous ODE Solver and Smale's 14th Problem [J]. Foundations of Computational Mathematics,2002,2 (1):53-117.
    [19]Rossler O E. An Equation for Continuous Chaos [J]. Physics Letters,1976,57A (5):397-398.
    [20]Rossler O E. An Equation for Hyperchaos [J]. Physics Letters,1979,71A (2,3): 155-157.
    [21]Peitgen H O, Jurgens H, Saupe D. The Rossler Attractor. Chaos and Fractals: New Frontiers of Science [M], Springer,2004.
    [22]Letellier C, Dutertre P, Maheu B. Unstable periodic orbits and templates of the Rossler system:toward a systematic topological characterization [J]. Chaos, 1995,5(1):272-281.
    [23]Letellier C, Messager V. Influences on Otto E. Rossler's earliest paper on chaos [J]. International Journal of Bifurcation & Chaos,2010,20(11):3585-3616.
    [24]Lorenz E N. Deterministic nonperiodic flow [J]. Journal of the Atmospheric Sciences,1963,20 (2):130-141.
    [25]Rossler O E. Chaotic behavior in simple reaction system [J]. Zeitschrift fur Naturfoschung A,1976,31:259-264,
    [26]M.L. Cartwright, Balthazar van der Pol [J]. Journal of London Mathematical Society,1960,35:367-376.
    [27]B Van der Pol.. On relaxation-oscillations [J]. The London and Edinburgh philosophical magazine and journal of science,1927.2(7):978-992.
    [28]Van der Pol B, Van der Mark J. Frequency demultiplication [J]. Nature.1927, 120:363-364.
    [29]Kanamaru T. Van der Pol oscillator [J]. Scholarpedia,2007,2(1):2202.
    [30]R FitzHugh. Impulses and physiological states in theoretical models of nerve membranes [J]. Biophysics Journal,1961.1:445-466.
    [31]Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceedings of the Institute of Radio Engineers,1962,50: 2061-2070.
    [32]Cartwright J, Eguiluz V, Hernandez-Garcia E, Piro O. Dynamics of elastic excitable media [J]. International Journal of Bifurcation and Chaos,1999,9: 2197-2202.
    [33]Kaplan D, Glass L. Understanding Nonlinear Dynamics [M], Springer,1995.
    [34]Grimshaw R. Nonlinear ordinary differential equations [M], CRC Press,1993.
    [35]Tomita K. "Periodically forced nonlinear oscillators". In:Chaos, Ed. Arun V. Holden. Manchester University Press,1986.
    [36]Gleick J. Chaos:Making a New Science. New York:Penguin Books,1987.
    [37]许磊,陆明万,曹庆杰Van der Pol-Duffing方程的非线性动力学分叉特性研究[J].应用力学学报,2002,19(4):131-133.
    [38]Braun O M, Kivshar Y S. The Frenkel-Kontorova Model [M]. Spring, Berlin Herdelberg,2004.
    [39]Braiman Y, Barhen J, Protopopescu V. Control of friction at the nanoscale [J]. Physical Review Letters,2003,90(9):094301.
    [40]Braiman Y, Family F, Hentschel H G E. Nonlinear friction in the periodic stick-slip motion of coupled oscillators [J]. Physical Review B,1997,55(5): 5491-5504.
    [41]Chitra R N, Kuriakose V C. Phase synchronization in an array of driven josephson junctions [J]. Chaos,2008,18:013125.
    [42]Landau A I, Kovalev A S. Kondratyuk, A.D. Model of Interacting Atomic Chains and Its Application to the Description of the Crowdion in an Anisotropic Crystal [J]. Physica Status Solidi (B),1993,179(2):373-381.
    [43]Dudko O K, Kovalev A S. Influence of dislocations on the magnetic structure of two-dimensional anisotropic antiferromagnets [J]. Low temperature physics. 2000,26(8):603-608.
    [44]Kovalev A S, Kondratyuk A D. Kosevich, A.M., Landau, A.I., Theoretical Description of the Crowdion in an Anisotropic Crystal Based on the Frenkel-Kontorova Model Including and Elastic Three-Dimensional Medium [J]. Physica Status Solidi (B),1993 177:117-127.
    [45]Kovalev A S, Zhang Fei, Yu S. Kivshar. Asymmetric impurity modes in nonlinear lattices [J]. Physical Review B,1995,51:3218-3221.
    [46]Savin A V, Gendelman O V. Heat conduction in one-dimensional lattices with on-site potential [J]. Physical Review E,2003,67:41205.
    [47]Bonilla L L, Malomed B A. Motion of kinks in the ac-driven damped frenkel-kontorova chain [J]. Physical review B, vol 43, no 13,1991.
    [48]Winfree A T. The Geometry of Biological Time [M]. Springer, New York,2001.
    [49]Persson B N J. Sliding friction [M]. Springer,2nd edition,2000.
    [50]Bhushan B. Introduction to tribology [M]. John Wiley and Sons.2002.
    [51]Gnecco E, Meyer E. Fundamentals of friction and wear on the nanoscale. Springer,2007.
    [52]Gao J P, Luedtke W D, Landman U. Friction control in thin-film lubrication [J]. Journal of Physical Chemistry B,1998,102:5033-5037,.
    [53]Zheng Z, Hu B, Hu G. Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings [J]. Physical review E,1998,57(1).
    [54]Coppersmith N, Fisher D. S. Pinning transition of the discrete sine-Gordon equation [J]. Physical Review B,1983,28:2566-2581.
    [55]Levi M. Dynamics of discrete frenkel-Kontorova models [M]. Academic Press. 1990.
    [56]Katriel G. Existence of travelliIlg waves in discrete sine-Gordon rings [J]. SIAM Journal of Mathematical Analysis,2005,36:1434-1443.
    [57]Mirouo R, Rosen N. Existence, uniqueness, and nonuniqueness of Single-wave-form solutions to Josephson junction systems [J]. SIAM Journal of Applied Mathematics,2000,60:1471-1501.
    [58]Watanabe S, H. S. J. van der Zant, Strogatz S H, and Orlando T P. Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation [J]. Physica D,1996,97:429-470.
    [59]Baese C, MacKay R S. A novel preserved partial order for cooperative networks of units with overdamped second order dynamics, and application to tilted Frenkel-Kontorova chains [J]. Nonlinearity,2004,17:567-580.
    [60]Hu B, Qin W, Zheng Z. Rotation number of the overdamped Frenkel-Kontora model with ac-driving [J]. Physica D,2005.208:172-190.
    [61]Massera J L. The existence of periodic solutions of differential equations [J]. Duke Mathematical Joural,1950,17:457-475.
    [62]Vanossi A. Bishop A R, Franchini A, Bortolani V. Modelling study of microscopic sliding on irregular substartes [J]. Surface science,2004,566: 816-820,
    [63]李晓礼,刘锋,林麦麦,陈建敏,段文山.Frenkel-Kontorova模型中垫底势对 最大静摩擦力的影响[J]。物理学报,2010,59(4).
    [64]Xu A, Wang G, Chen S. A generalized frenkel-kontorova model with morse potentials [J]. Chinese Physical Lettter,1997,14(11):820-822.
    [65]Chou C, Ho, Hu B, Lee H. Morse-type Frenkel-Kontorova model [J]. Physical review E,1998,57(3):2747-2756.
    [66]Lin B, Hu B. Frenkel-Kontorova model with Toda interaction [J]. Journal of Statical Physics.1992,69:1047.
    [67]Chou C I, Ho C L, Hu B. Universality in the Frenkel-Kontorova model with a cosh interaction [J]. Physical Review E,1997,55:5092.
    [68]Feng G, Ouyang B, Chen S. Frenkel-Kontorova model with alternant coupling potential. Commun [J]. Theorem Physics,2002,27(6):751-754.
    [69]Byrne J E and Miller M D. Ground-state phase diagrams for one-dimensional chains with nonlinear interactions [J]. Physical Review B,1989,39:374-380.
    [70]Bassler K E, Griffiths R. B. Numerical study of a new type of nonconvex frenkel-kontorova model [J]. Physical Review B,1994,49(2):904-915.
    [71]Chou W, Griffiths R. B. Ground states of one-dimensional systems using effective potentials [J]. Physical Review B,1986,34(9):6219-6234.
    [72]Marchand M, Hood K, Caille A. Nonconvex interactions:A mechanism for the occurrence of modulated order in condensed matter [J]. Physical Review B,1988, 37:1898-1921.
    [73]Markov I, Trayanov A. Epitaxial interfaces with realistic inter-atomic forces [J]. Journal of Physics C,1988,21:2475.
    [74]A Vanossi, Roder J, Bishop A R and Bortolani V. Unerdamped commensurate dynamics in a driven frenkel-kontorova model [J]. Physical review E,2003,67: 016605.
    [75]Roder J, Hammerberg J. E, Holian B L, Bishop A R. Multichain frenkel-kontorova model for interfacial slip [J]. Physical review B,1998,57(5): 2759-2766.
    [76]Hammerberg J E, Holian B L, Roder J, Bishop A R, Zhou S J. Nonlinear dynamics and the problem of slip at material interfaces [J]. Physica D,1998,123: 330-340.
    [77]Kawaguchi T, Matsukawa H. Numerical study of nanoscale lubrication and friction at solid interface [J]. Molecular Physics,2002,100(19):3161-3166,.
    [78]Li H, Zhao H, Wang Y. The static properties of multi-chain frenkel-kontorova model:ground state and static friction [J]. Physics letter A,2002,298:361-368.
    [79]Granto E, Ying S C. Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model [J]. Physical review B,1999,59(7): 5154-5161.
    [80]Yuan X P, Zheng Z G. Ground-state transition in a two-dimensional Frenkel-Kontorova model [J]. Chinese Physical Lettter,2011,28(10):100507.
    [81]Kulic I M, H. Schiessel. Chromatin dynamics:Nucleosomes go mobile through twist defects [J]. Physical Review Letter,2003,91(14):8103.
    [82]J. B. Sokoloff. Sliding charge-density waves in periodic and disordered lattices [J]. Physical Review B,1977,16:3367-3372.
    [83]D.W. Jordan and P. Smith. Non-Linear Ordinary Differential Equations: Introduction for Scientists and Engineers (4th edition) [M]. Oxford University Press,2007.
    [84]Alligood K T, Sauer T D and Yorke J A.. Chaos:An Introduction to Dynamical Systems [M]. Springer,1996.
    [85]W.E. Boyce and R.C. Diprima. Elementary Differential Equations and Boundary Value Problems (4th edition) [M]. John Wiley & Sons,1986.
    [86]Fuller A.T. The General Problem of the Stability of Motion, Taylor & Francis, 1992.
    [87]Grimm G, Messina M J, Tuna S and Teel A R. Model Predictive Control:For Want of a Local Control Lyapunov Function, All is Not Lost. IEEE Transactions on Automatic Control,2005,50(5):546-558.
    [88]Letov A.M. Stability of Nonlinear Control Systems (Russian) Moscow 1955 (Gostekhizdat); English tr. Princeton 1961.
    [89]Kalman R. E. and J Bertram F. Control System Analysis and Design via the Second Method of Lyapunov [J]. J. Basic Engrg,1960,88:371-394.
    [90]LaSalle J. P. and Lefschetz S. Stability by Lyapunov's Second Method with Applications [M]. New York (Academic),1961.
    [91]Parks P. C. Liapunov's method in automatic control theory. Control 1 Nov II Dec 1962.
    [92]Kalman R. E. Lyapunov functions for the problem of Lurie in automatic control [J]. Proceedings of the National Academy of Sciences of the United States of America,1963,49(2):201-208.
    [93]Smith M. J. and Wisten M. B. A continuous day-to-day traffic assignment model and the existence of a continuous dynamic user equilibrium [J]. Annals of Operations Research,1995,60(1):59-79.
    [94]Tsypkin Y Z. Relay Control Systems. Cambridge:Univ Press,1984.
    [95]Leonov G A, Kuznetsov N V. Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems [J]. Doklady Mathematics 2011,84 (1): 475-481.
    [96]Bragin V O, Vagaitsev V I, Kuznetsov N V, Leonov G A. Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J]. Journal of Computer and Systems Sciences International,2011,50 (4):511-543.
    [97]陈立群,吴哲民。多自由度非线性振动分析的平均法[J]。振动与冲击,2002,21(3),.
    [98]Mshmeul G M. Periodic solution of strongly nonlinear Mathieu oscillators [J]. Int. J. Nonlinear mechanics.1997,32(6):1177-1185,.
    [99]K. Khorasani and P. V. Koktovic. A corrective feedback design for nonlinear systems with fast actuators [J]. IEEE transactions on automatic control,1986, AC-31(1).
    [100]Champetier C and Mouyon P. About the local linearization of nonlinear systems [C]. Proceeding of 24th conference on decision and control.1985.
    [101]Hunt L R, Su R and Meyer G. Global transformations of nonlinear systems [J]. IEEE transactions on automatic control.1983,28(1),.
    [102]Liu S, Davidson A and Lin Q. Simulating nonlinear dynamics and chaos in a mems cantilever using Poincare mapping [C]. The 12th Intemational Conference on Solid State Sensors. Actuators and Microsystems,2003.
    [103]Wang S, Cai L and Li Q. The Lyapunov exponents and Poincare maps of nonlinear chaotic characteristic in three-cell coupled quantum cellular neural networks [C]. Proceedings of the 3rd IEEE int. Cont. on nano/Micro engineered and molecular systems.2008.
    [104]Strumillo P and Ruta J. Poincare mapping for detecting abnormal dynamics of cardiac repolarization. IEEE engineering in medicine and biology,2002.
    [105]Basu A. Construction of Poincare return maps for Rossler flow [M]. ChaosBook.org/projects,2007.
    [106]Flashner H and Guttalu R. Analytical stability analysis of periodic systems by Poincare mappings with application to rotorcraft dynamics [J]. Mathematical problems in enginnering,1997,3:329-371.
    [107]Hsu C S. A theory of cell-to-cell mapping dynamical system [J]. ASME Journal of Applied Mechanics.1980,47:931-139.
    [108]Hsu C S and Guttalu R S. An unrevalling algorithm for cell-to-cell mapping [J]. ASME Journal of Applied Mechanics,1980,47:941-946,.
    [109]Guo Y and Qu Z. Control of frictinal dynamics of one-dimensinal particle array [J]. Automatica,2008,44:2560-2569,.
    [110]Guo Y and Qu Z. Stabilization and tracking control of friction dynamics of a one-dimensional nanoarray [C]. In Proceedings of the American Control Conference,2005,2487-2492.
    [111]Guo Y, Qu Z and Zhang Z. Lyapunov stability and precise control of the friction dynamics of a one-dimensional nanoarray [J]. Physical Review B,2006, 73(9):094118,.
    [112]Guo Y, Qu Z, Braiman Y, Zhang Z and Barhen J. Smooth sliding through feedback control [J]. IEEE control magazine,2008.
    [113]Qu Z. Cooperative Control of Dynamical Systems [M]. Springer,2009.
    [114]Wu C. Synchronization in coupled chaotic circuits and systems [M]. Singapore, World Scientific,2002.
    [115]Godsil C and Royle G. Algebraic graph theory [M]. New York, Springer, 2001.
    [116]P. Lancaster and M. Tismenetsky. The theory of matrices with applications [M] (2nd ed.). Acadamic Press,1985.
    [117]D. Poole. Linear algebra:a modern introduction [M]. Brook/Cole-Thomson learning, Australia,2003.
    [118]Cuminato J A and Mckee S. A note on the eigenvalues of a special class of matrices [J]. Journal of computational and applied mathematics,2010. 234:2724-2731.
    [119]Khail H. Nonlinear systems [M]. Prentice Hall,3rd edition,2002.
    [120]Landau L D and Lifshiz E M. Mechanics. Pergamon Press,1976.
    [121]Helman J S and Baltensperger W. Simple model for dry friction [J]. Physical review B,1994,49(6):3831-3838.
    [122]Coullet P, Gilli J M, Monticelli M and Vandenberghe N. A damped pendulum forced with a constant torque [J]. American Journal of Physics,2005, 73(12):1122-1128.
    [123]Qu Z. Robust control of nonlinear uncertain systems [M]. John wiley and sons,1998.
    [124]W. Qin. Dynamics of the Frenkel-Kontorova model with irrational mean spacing [J]. Nonlinearity,2010,23:1873-1886,.
    [125]B. Hu, W. Qin and Z. Zheng. Rotation number of the overdamped Frenkel-Kontorova model with ac-driving [J]. Physica D,2005,208,:172-190,.
    [126]Floria L M and Mazo J J. Dissipative dynamics of the Frenkel-Kontorova model [J]. Advaned Physics,1996,45:505-98,
    [127]Qin W and Peng Z. Dynamics of the overdamped coupled Josephson junctions with an interference term [J]. J. Nonlinear Sci.2009,19:375-98,.
    [128]Qin W, Xu C and Ma X. Stability of single-wave-form solutions in the underdamped Frenkel-Kontorova model [J]. SIAM Journal of Mathematical Analysis,2008,40:952-67.
    [129]Forcadel N, Imbert C and Monneau R. Homogenization of fully overdamped frenkel-Knotorova models [J]. Differential equations,2009,246(3),1057-1097.
    [130]Chakrabarti B and Das T K. Analytic superpotential for Yukawa potential by perturbation of the Riccati equation [J]. Physics letters A,2001,285,11-16.
    [131]Xie B, Li H and Hu B. Heat conduction in a one-dimensional Yukawa chain [J]. Europhysics letters,2005,69(3),358-364.
    [132]Garavelli S L and Oliveira F A. Analytical solution for a Yukawa-type potential [J]. Physical review letters,1991,66(10):1310-1313.
    [133]Tang W, Qu Z, Guo Y and Kwon Y. Analysis of Controlled Morse Type Frenkel-Kontorova Model [C]. The 11th IEEE conference on nanotechnology. Portland, Oregon, USA,2011.
    [134]Protopopescu V and Barhen J. Non-Lipschitzian control algorithms for extended mechanical systems [J]. Chaos,2004,14(2),400-407.
    [135]Qu Z. and Dawson D. M.. Continuous state feedback control guaranteeing exponential stability for uncertain dynamical systems [C]. Proceedings of the 30th conference on decision and control,1991.
    [136]Dawson D. M., Qu Z and Carroll J. C. On the state observation and output feedback problems for nonlinear uncertain dynaic systems [J]. System and control letter,1992,18:217-222.
    [137]Park J H. Controlling chaotic systems via nonlinear feedback control [J]. Chaos, Solitons and Fractals 2005,23:1049-1054.
    [138]Wang Z, Duan Z and Cao J. Impulsive synchronization of coupled dynamical networks with nonidentical duffing oscillators and coupling delays [J]. Chaos,2012,22,013140,.
    [139]Wen G, Duan Z, Yu W and Chen G. Consensus in multi-agent systems with communication constraints [J]. International journal of robust and nonlinear control,2012,22:170-182.
    [140]Pecora L M and Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letter,1990,64(8):821-824.
    [141]Rosenblum M G, Pikovsky A S and Jurgen Kurths. Phase Synchronization of Chaotic Oscillators [J]. Physical Review Letter,1996,76 (11):1804-1807.
    [142]Schmidl T M and Donald C C. Robust Frequency and Timing Synchronization for OFDM [J]. IEEE transactions on communications,1997, 45(12):1613-1621.
    [143]Barahona M and Pecora L M. Synchronization in Small-World Systems [J]. Physical Review Letter,2002,89(5):054101.
    [144]Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos Ledeczi. The Flooding Time Synchronization Protocol [C]. Proceedings of the 2nd international conference on Embedded networked sensor systems. MD, USA-November 03-05,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700