用户名: 密码: 验证码:
三维Lorenz-like系统的动力学分析与超混沌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌普遍存在于自然现象之中,引起了各个领域的广泛关注,从而混沌的理论与应用研究成为了非线性科学最重要的前沿内容之一.在这些研究之中Lorenz系统作为第一个被提出的混沌数理模型,成为了现代混沌理论研究的出发点和基石.它的提出在混沌研究过程中具有里程碑的意义.因而在S.Smale提出的21世纪18个著名的数学问题中,第14个问题就是关于Lorenz系统的研究.
     在对Lorenz系统的研究过程中,也促使人们去深入研究混沌的机理.由此引发了一个深刻的问题:哪些三维自治连续系统与Lorenz系统是拓扑共轭,而哪些却不是?从而激发了人们对Lorenz系统及其更广类型的三维混沌系统进行研究,Lorenz-like混沌系统族就是其中一类重要的系统.所谓的Lorenz-like混沌系统族是指基于Lorenz系统而提出的一大类混沌系统族,它包括Lorenz系统、Chen系统、Lu系统、统一混沌系统.以及Yang和Chen发现的新型混沌系统.本论文将考虑三维Lorenz-like混沌系统族以及在与Lorenz系统密切相关的著名Rabinovich混沌系统基础上构造的一类受控超混沌系统.
     本文的主要研究工作如下.
     第一章为绪论,主要阐述本文的研究背景和意义.简单介绍混沌的发展历史、混沌理论基本知识、分析混沌系统的基本研究方法和相关预备知识,介绍三维Lorenz-like混沌系统的研究简况及其同宿轨、异宿轨存在性研究的近况,也包括具有不变代数曲面的三维Lorenz-like混沌系统的研究现状以及超混沌的研究情况.
     第二章考虑Lorenz-like混沌系统族.研究内容有系统奇点(包括双曲与退化非双曲奇点)性质、闭轨性质和奇异闭轨(同宿轨和异宿轨)的性质.细致分析系统的局部分岔和稳定性,给出局部稳定流和不稳定流的代数近似表达式.借用中心流形和极坐标变换,精细地分析退化非双曲奇点的局部稳定性,结合数值模拟呈现系统在各临界状态下的复杂动力学行为.也运用三维空间二次曲面的分类和判别的方法讨论了系统闭轨(包括极限环)的性质.研究表明,系统闭轨的定性性质是非常复杂的.同时,本章深入讨论了系统的同宿轨和异宿轨的存在性问题.所得结果改进和推广了已有的相关成果.
     第三章考虑具有不变代数曲面的三维Lorenz-like系统族及其在曲面上的动力学性质.在简单介绍已有相关成果的基础上,给出三维Lu系统的所有不变代数曲面.进一步,分析其在不变代数曲面上的动力学性质,从而给出在不变代数曲面上拓扑结构,完全解决了这类具有不变代数曲面系统的动力学性质.这些工作对探讨三维Lu混沌系统的混沌机理和吸引子结构具有很大的帮助意义.
     第四章在三维Rabinovich系统的基础上,通过引入一个线性状态反馈控制器构建一个新的四维Rabinovich超混沌系统,分析其基本动力学行为.在保证系统有界的前提下,通过计算Lyapunov指数值和研究其分岔的途径,证实其超混沌的特性.特别是,巧妙地构造Lyapunov函数,给出四维Rabinovich超混沌系统的指数吸引域和正向不变集等.结合数值实验,分析混沌吸引子和超混沌吸引子的几何结构.研究表明,由于反馈控制器的引入使得在双曲鞍点附近的Lienard-like振子发生震荡,激励成Rabinovich混沌吸引子.通过严格的数学分析和符号计算,运用高维Hopf分岔定理,给出了Hopf分岔的精细代数特征.应用混沌电路理论,设计实现四维Rabinovich超混沌吸引子的实际电路,验证了理论分析的结果.所得结果对超混沌信号源的设计都具有指导意义.
Chaos that exists in natural phenomena, has attracted the great interest of scholars in various fields. Chaos theory and applied research is also one of the most important front content in the nonlinear science. The Lorenz system is the first mathematical and physical model of chaos, thereby becoming a touchstone for the modern chaos theory. The Lorenz chaotic system having been proposed is a landmark in the course of the study chaos. In the 18 famous mathematical problem for the 21st century which have been proposed by S. Smale., the 14th issue is about study of the Lorenz system.
     The study of the Lorenz system encourages people to study in depth the mechanism of chaos. This raises a profound question. Which three dimensional autonomous continuous systems are the topological conjugate with the Lorenz system, which are not it? It attracts people to study the Lorenz system and the general type of three dimensional chaotic systems. The Lorenz-like chaotic system is such an important class of systems. The Lorenz-like chaotic system family is proposed a class of chaotic systems family based on the Lorenz system. It includes the Lorenz chaotic system, the Chen chaotic system, the Lii chaotic system, the unified Lorenz-type system, and a new chaotic system that Yang and Chen found. This paper will consider the three dimensional Lorenz-like chaotic systems and a class of hyperchaotic systems which is structured based on the famous Rabinovich chaotic system, which is closely related with the Lorenz system.
     The main research work are as follows.
     In Chapter 1, the research background and the significance of this paper are pre-sented. The research developments, main methods and achievements of chaos theory are briefed. The advanced studies for three dimensional Lorenz-like chaotic systems, their ho-moclinic orbits and heteroclinic orbits and the hyperchaos are also introduced simply. The prior knowledge associated with three dimensional chaotic systems having the invariant algebraic surfaces are presented.
     In Chapter 2, the dynamical entities for the Lorenz-like chaotic system are consid-ered, which include the properties of the singular points, the properties of the closed orbit and the singular closed orbit (homoclinic orbits and heteroclinic orbits). First, the local dynamical entities, such as the number of equilibria, the stability of hyperbolic equilibria and the stability of the non-hyperbolic equilibrium obtained by using the center mani-fold theorem and the technique of the polar transformation, the pitchfork bifurcation and the degenerate pitchfork bifurcation, Hopf bifurcations and the local stable and unsta- ble manifold character, are all analyzed when the parameters are varied in the space of parameters. Based on the theoretic analysis and numerical simulations, the dynamics of the system are discussed subtly under all kind of the critical state. Second, all the closed orbits of the Lorenz-like system are proven not to be planar but only to be curves in space. Third, the existence of homoclinic and heteroclinic orbits for the system is also rigorously studied. Some related works are extended and improved.
     In Chapter 3, the Lorenz-like systems having an invariant algebraic surfaces and their the dynamical entities on the surface are considered. After the related results which have been obtained are briefed, the global topological structure of orbits of the Lii system having an invariant algebraic surfaces is characterized, and the classification of dynamics of it is completed. These study are the significance of great help understanding the chaotic attractor structure and the essence of chaos for the Lii chaotic system.
     In Chapter 4, a new four dimensional continuous autonomous hyperchaotic system is presented, which is constructed by adding a linear controller to the famous three dimen-sional Rabinovich system. Some basic dynamical behaviors of the hyperchaotic system are further investigated. The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified through investigating phase trajectories, Lyapunove exponents, bifurcation path, analysis of power spectrum and Poincare projections. Furthermore, by employed generalized Lyapunov function, the global exponential attractive set and pos-itive invariant set are found for the four dimensional Rabinovich system, and the strict mathematical proofs are given. By theoretic analysis and numerical simulations, its basic dynamics and properties are investigated, such as the stability of the system and the ge-ometry of the attractor. The fact that chaos and hyper chaos are created via a Lienard-like oscillatory motion around a hypersaddle stationary point at the origin is shown by nu-merical experiments. The four dimensional system preserves some properties of the three dimensioanl system, such as the z-axis symmetry and the attractor's double-lobe struc-ture. With the help of rigorous maths analysis and symbol computation, two complete mathematical characterizations for Hopf bifurcation are derived and studied, by means of the high Hopf bifurcation theorem. Moreover, it is implemented via an electronic circuit and tested experimentally in our laboratory, showing very good agreement with the simu-lation results and confirming this new four dimensional chaotic and hyperchaotic system. The obtaining outcomes have the guiding significance for the design of the hyperchaotic signal source.
引文
[1]Lorenz E.N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963,20:130-141
    [2]Li T, Yorke J.A. Period three implies chaos[J]. American Mathematical Monthly, 1975,8(10):985-992
    [3]Guckenheimer J., Williams R.F. Structrual stability of Lorenz attractors[J]. Publi-cations Mathematiques de L'IHES,1979,50:59-72
    [4]Devaney R.L. An introduction to Chaotic Dynamical Systems[M]. Menlo Park, CA: Addison-Wesley,1990:49-53
    [5]Wiggins Stephen. Introduction to Applied Nonlinear Dynamaical Systems and Chaos[M]. Second Edit. New York:Springer.1990:608-615
    [6]Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifur-cation of Vector Field[M]. New York:Springer.1983:150-156
    [7]Guckenheimer J. A Strange Attractor in the Hopf Bifurcation and Its Application[M]. Springer-Verlag,1976.
    [8]Hirsch M.W., Smale S., Devaney R.L. Differential Equantions, Dynamical Systems & An Introduction to Chaos [M]. Scond Published. Elsever (Singapore) Pte Ltd.2007: 304-324
    [9]Hirsch M.W., Smale S., Devaney R.L.微分方程,动力系统与混沌导论[M].甘少波译.北京,人民邮电出版社:2008:244-261
    [10]Stewart I. The Lorenz attractor exists[J]. Nature,2002,406:948-949
    [11]Sparrow C. The Lorenz equations:Bifurcations, Chaos, and Strange Attractors[M]. Springer-Verlag, NY,1982:6-191
    [12]Vanecek A., Celikovsky S. Control Systems:From Linear Analysis to Synthesis of Chaos[M]. London:Prentice-Hall; 1996:238-257
    [13]Ott E., Grebogi C., Yorke J.A. Controlling chaos[J]. Physical Review Letters.1990, 64(11):1196-1199
    [14]Pecora L.M., Carroll T.L. Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8):821-824
    [15]Leonov G.A. Lyapunov Exponents and Problems of Linearization:From Stability to Chaos[M]. Russia:St. Petersburg University Press,1997:6-62
    [16]Lissauer J.J. Chaotic motion in the solar system[J]. Reviews of Modern Physics,1999, 71(3):835-845
    [17]Laskar J. On the spacing of planetary systems[J]. Physical Review Letters.2000,84: 3240-3243
    [18]Laskar J. A numerical experiment on the chaotic behaviour of the solar system[J]. Nature,1989,338:237-238
    [19]Laskar J. Large scale chaos and the spacing of the inner planets[J]. Astronomy and Astrophysics,1997,317:75-78
    [20]陈关荣.天体运行在混沌中[R].中国,沈阳:东北大学,2009
    [21]Ford J. Chaos:Solving the Unsolvable, Predicting the Unpredictable, in Chaotic Dynamic and Fractal[M]. America:Academic Press,1985:1-135
    [22]Henon M. A two dimensional mapping with strange attractor[J]. Communication of Mathematics Physics,1976,50(1):69-77
    [23]刘宗华.混沌动力学基础及其应用[M].北京:高等教育出版社,2006,1-4
    [24]May R.M, Oster G.F. Bifurcations and dynamic complexity in simple ecological mod-els[J]. The American Naturalist,1976,110(974):573-599
    [25]Feigenbaum M.J. Quantitative universality for a class of non-linear transforma-tions[J]. Journal of Statistical Physics,1992,19(1):25-52
    [26]Mandelbrot B.B. Fractal Geometry of Nature[M]. California:W.H.Freeman Com-pany,1982
    [27]Grassberger Peter, Procaccia Itamar. Measuring the strangeness of strange attrac-tors[J]. Physica D:Nonlinear Phenomena,1983,9(1-2):189-208
    [28]Matsumoto T. A chaotic attractor from Chua's circuit[J]. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Applications,1984 CAS-31 (12):1055-1058. http://www.eecs.berkeley.edu/chua/papers/Matsumoto84.pdf
    [29]Chua L.O., Matsumoto T., Komuro M. The double scroll family[J]. IEEE Transac-tions on Circuits & Systems I-Fundamental Theory & Applications,1985, CAS-32 (8):798-818. http://ieeexplore.ieee.org/iel5/31/23571/01085791.pdf
    [30]Aulbach B., Kieninger B. On three definitions of chaos[J]. Nonlinear Dynamics and Systems Theory,2001,1(1):23-37
    [31]May R.M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976,261(5560):459-467
    [32]Morotto F.R. Snap-back repellers imply chaos in (?)n[J]. Journal of Mathematical Analysis and Applications,1978,63:199-223
    [33]Morotto F.R. On redefining a snap-back repeller[J]. Chaos Solitons and Fractals, 2005,25:25-28
    [34]Huang W., Ye X. Devaney's chaos or 2-scattering implies Li-Yorke's chaos[J]. Topol-ogy and its Applications,2002,117:259-272
    [35]Shi Y. Chaotic Dynamical Behaviors of Coupled-expanding Map[R]. China, Guangzhou:2009
    [36]Chen G., Dong X. From Chaos to Order:Methodologies, Perspectives and Applica-tions[M]. Singapore:World Scientific Publishing Company,2002
    [37]黄润生,黄浩.混沌控制及其应用[M].武汉:武汉大学出版社,2003:1-50
    [38]张琪昌,王洪礼等.分岔与混沌理论及应用[M].天津:天津大学出版社,2005:1-188
    [39]Feigenbaum M.J. Quantitative universality for a class of nonlinear transformation[J]. Journal of Statistical Physics,1978,19:25-33
    [40]Feigenbaum M.J. The universal metric properties of nonlinear transformations[J]. Journal of Statistical Physics,1979,21:669-675
    [41]Langford L.D. A computer-assisted proof of the Feigenbaum conjectures[J]. Bulletin of the American Mathematical Society,1982,6:427-430.
    [42]Vul E.B., Sinai Y.G., Khanin K.M. Universality of Feigenbaum and thermodynamic formulism[J]. Usp Mat Nauk-Uspekhi Matematicheskikh Nauk,1984,39:3-8
    [43]Crutchfield J.P., Farmer J.D., Heberman B.A. Fluctuations and simple chaotic dy-namics[J]. Physics Reports,1982,92:45-51
    [44]Crutchfield J.P, Nanuburg M., Rudnick J. Scaling for external noise at the onset of chaos[J]. Physical Review Letters,1981,46:933-1002
    [45]Mannevville P., Pomeau Y. Different ways to turbulence in dissipative dynamical systems[J]. Physica D:Nonlinear Phenomena,1980,23:219-227
    [46]Geisel T., Nierwetberg J. Intermittent diffusion:a chaotic scenario in unbounded systems[J]. Physical Review Letters,1984,48(3):2305-2309
    [47]Feigenbaum M.J, Kadanoff L.P., Shenker S.J. Quasiperiodicity in dissipative systems: a renormalization group analysis[J]. Physica D:Nonlinear Phenomena,1982,5:370-180
    [48]张伟年.动力系统基础[M].北京:高等教育出版社.2001:15-66
    [49]Wiggins Stephen. Global Bifurcation and Chaos:Analytical Methods[M]. Springer-Verlag,1988:75-333
    [50]刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994:1-165
    [51]刘曾荣.混沌研究中的解析方法[M].上海:上海大学出版社,2002:1-201
    [52]Deng B. Homoclinic bifurcation mith nonhyperbolic equilibria[J]. SIAM Journal on Mathematical Analysis,1990,21:693-720
    [53]Troll G. A hyperbolic scenario to chaotic scattering:horseshoe truncation by poten-tial deformation[J]. Physica D:Nonlinear Phenomena,1995,83(4):355-373.
    [54]陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学出版社,1992:10-200
    [55]张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,1987:206-237
    [56]冯贝叶,李继斌.稳定性、分支与混沌[M].云南:云南科技出版社,1995:1-60
    [57]Hassard B., Kazarinoff N., Wan Y. Theory and Applicaton of Hopf Bifurcation[M]. Cambridge:Cambridge University Press.1982:14-70
    [58]Kuznetsov Y.A. Elements of Applied Bifurcation Theory[M], Springer-Verlag, New York,1998:138-165
    [59]Rossler O.E. An equation for continuous chaos. Physics Letters A,1976,57(5):397-398
    [60]Chen G., Ueta T. Yet another chaotic attractor[J]. International Journal of Bifurca-tion and Chaos,1999,9:1465-1466
    [61]Lu J., Chen G. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos,2002,12(3):659-661
    [62]Lu J., Chen G., Cheng D., et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos,2002,12:2917-2926
    [63]Yang Q., Chen G., Zhou T. A unified Lorenz-type system and its canonical form[J]. International Journal of Bifurcation and Chaos,2006,16:2855-2871
    [64]Yang Q., Chen G., Huang K. Chaotic attractors of the conjugate Lorenz-type sys-tem[J]. International Journal of Bifurcation and Chaos,2007,17:3929-3949
    [65]Yang Q., Chen G. A chaotic system with one saddle and two stable node-foci[J]. International Journal of Bifurcation and Chaos,2008,18:1393-1414
    [66]Yang Q., Zhang K., Chen G. A modified generalized Lorenz-type system and its canonical form[J]. International Journal of Bifurcation and Chaos,2009,19(6):1931-1949
    [67]Yang Q., Wei Z., Chen G. A chaotic system with two stable node-foci[J]. International Journal of Bifurcation and Chaos, Accepted
    [68]Sprott J.C. Some simple chaotic flows[J]. Physical Review E,1994,50(2):R647-R650
    [69]Tang K.S, Man K.F. Zhong G.Q., et al. "Some new circuit design for chaos generation" in Chaos in Circuits and Systems, ed.by Chen G. and Ueta T.(World Seientifie Pub. Co., SingaPore),2002:171-190
    [70]Chen G., Lai D. Feedback anticontrol of discrete chaos[J]. International Journal of Bifurcation and Chaos,1998,8:1585-1590
    [71]Chen G., Yang L., Liu Z. Anticontrol of chaos for continuours-time systems[J]. IEEE Transactions Fundamentals.2002, E85-A(6):1333-1335
    [72]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社,2003:1-12,33-70,98-180
    [73]Yu P., Liao X.X., Xie S.L., et al. A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family[J]. Communications in Nonlinear Science and Numerical Simulation,2009,14:2886-2896
    [74]Tucker W. The Lorenz attractor exists[J]. C.R.Acad.Sci. Pairis,1999,328:1197-1202
    [75]Bykov V.V., Shil'nikov A.L. On the boundaries of the domain of existence of the Lorenz attractor[J]. Selecta Mathematica Sovietica,1992,11(4):375-382
    [76]Galias Z., Zgliczyniski p. Computer assisted proof of chaos in the Lorenz equations[J]. Physica D:Nonlinear Phenomena,1998,115:165-188
    [77]Mischaikow K., Mrozek M., Szymczak A. Chaos in the Lorenz equations:a com-puter assisted proof Part Ⅲ:Classical Parameter Values[J]. Journal of Differential Equations,2001,169:17-56
    [78]Magnitskii N.A., Sidorov S.V. A new view of the Lorenz attractor[J]. Differential Equations,2001,37(11):1568-1579
    [79]Kaloshin D.A. On the construction of the homoclinic buttery bifurcation surface for the Lorenz System[J]. Differential Equations,2003,39(11):1648-1650
    [80]Zhou T, Liao H, Zuohuan Zheng, et al. The complicated trajectory behaviors in the Lorenz equation[J]. Chaos Solitons and Fractals,2004,19:863-873
    [81]Foiasa C., Jolly M.S. On the behavior of the Lorenz equation backward in time[J]. Journal of Differential Equations,2005,208:430-448
    [82]Sanchez L.A. Convergence to equilibria in the Lorenz system via monotone meth-ods[J]. Journal of Differential Equations,2005,217:341-362
    [83]Barrioa R., Serrano S. A three-parametric study of the Lorenz model[J]. Physica D: Nonlinear Phenomena,2007,229:43-51
    [84]Roberto B., Sergio S. Bounds for the chaotic region in the Lorenz model[J]. Physica D:Nonlinear Phenomena,2009,238:1615-1624
    [85]Vadasz P. Analytical prediction of the transition to chaos in Lorenz equations[J]. Applied Mathematics Letters, (2010), doi:10.1016/j.aml.2009.12.012
    [86]Hou Z., Kang N., Kong X., et al. On the non-equivalence of Lorenz system and Chen system[J/OL]. http://cn.arxiv.org/abs/0904.3594v1
    [87]Celikosky S., Chen G. On a generalized Lorenz canonical form of chaotic systems[J]. International Journal of Bifurcation and Chaos,2002,12(8):1789-1182
    [88]Celikovsky S., Chen G. On a generalized Lorenz canonical form of chaotic systems[J]. International Journal of Bifurcation and Chaos,2002,12:1789-1812
    [89]Celikovsky S, Chen G. Hyperbolic-type generalized Lorenz system and its canonical form, in Proceedings of the 15th Triennial World Congress of IFAC, Barcelona, Spain, July 2002, CD ROM; available at http://www.ee.cityu.edu.hk/gchen/chaos-bifur-conferences2.html
    [90]Robbins K.A. Periodic solutions and bifurcation structure at a high R in the Lorenz model[J]. SIAM Journal on Applied Mathematics,1979,36:457-472
    [91]Robinson C. Homoclinic bifurcation to a transitive attractor of Lorenz type[J]. Non-linearity,1989,2:495-518
    [92]Hastings S.P, Troy W.C. A shooting approech to the Lorenz equations[J]. Bulletin of the American Mathematical Society,1992,27:298-303
    [93]Li J., Zhang J. New treatment on bifurcations of periodic solutions and homoclinic orbits at high γ in the Lorenz equations[J]. SIAM Journal on Applied Mathematics, 1993,53(4):1059-1071
    [94]Joseph G. The existence of transverse homoclinic solutions for higher order equa-tions[J]. Journal of Differential Equations 1996,130:307-320
    [95]KaloshinD. A. On the construction of a bifurcation surface of existence of heteroclinic saddle-focus contours in the Lorenz system[J]. Differential Equations,2004,40 (12): 1790-1793
    [96]Hiroshi K., Robert R. Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences:Part Ⅰ[J]. Journal of Dynamics and Differential Equations,2004,16(2):513-557
    [97]Leonov G.A. Estimation of loop-bifurcation parameters for a saddle-point separatrix of a lorenz system[J]. Differential Equations,1988,24(6):634-638 (Translated from Differential'nya Uravneniya)
    [98]Leonov G.A. On Estimates of the bifurcation values of the parameters of a Lorenz system[J]. Russian Mathematical Surveys,1988,43(3):216-217
    [99]Leonov G.A. On homoclinic bifurcation in the Lorenz system[J]. Vestnik St.Petersburg University, Mathematics,1999,32(1):13-15
    [100]Leonov G.A. Bounds for attractors and the existence of homoclinic orbits in the Lorenz system[J]. Journal of Applied Mathematics and Mechanics,2001,65(1):19-32
    [101]Leonov G.A. Strange attractors and classical stability theory[J]. Nonlinear Dynam-ics and Systems Theory,2008,8(1):49-96
    [102]Hassard B., Zhang J. Existence of a homoclinic orbit of the Lorenz system by precise shooting[J]. SIAM Journal on Applied Mathematics,1994,25:179-196
    [103]Hastings S.P, Troy W.C. A proof that the Lorenz equations have a homoclinic orbit[J]. Journal of Differential Equations,1994,113:166-188
    [104]Hastings S.P, Troy W.C. A shooting approach to chaos in the Lorenz equations[J]. Journal of Differential Equations,1996,127:41-53
    [105]Chen X. Lorenz equations. Part Ⅰ:Existence and nonexistence of homoclinic or-bits[J]. SIAM Journal on Applied Mathematics,1996,27:1057-1069
    [106]Zhou T., Chen G., Tang Y. Complex dynamical behaviors of the chaotic Chen's system[J]. International Journal of Bifurcation and Chaos,2003,13:2561-2574
    [107]Liu C., Liu T., Liu L., Liu K. A new chaotic attractor[J]. Chaos Solitons and Fractals,2004,22:1031-1038
    [108]Pikovski A.S., Rabinovich M.I., Trakhtengerts V.Y. Onset of stochasticity in decay confinement of parametric instability[J]. Soviet Physics-JETP,1978,47:715-719
    [109]Boichenko V.A., Leonov G.A., Reitmann V. Dimension Theory for Ordinary Dif-ferential Equations[M]. Teubner,2005
    [110]Krishchenko A., Starkov K. Estimation of the domain containing all compact in-variant sets of a system modelling the amplitude of a plasma instability[J]. Physics Letters A,2007,367:65-72
    [111]Neukirch S. Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability[J]. Physical Review E,2001,63,036202:1-8
    [112]Giacomini H.J., Repetto C.E, Zandron O.P. Integrals of motion for three dimen-sional non-Hamiltonian dynamical systems[J]. Journal of Physics A:Mathematical and General,1991,24:4567-4574
    [113]Zhang X. Integrals of motion of the Rabinovich system[J]. Journal of Physics A: Mathematical and General,2000,33:5137-5155
    [114]Xie F., Zhang X. Invariant algebraic surfaces of the Rabinovich sgstem[J]. Journal of Physics A:Mathematical and General,2003,36:499-516
    [115]Chen C., Cao J., Zhang X. The topological structure of the Rabinovich system having an invariant algebraic surface[J]. Nonlinearity,2008,21:211-220
    [116]Llibre J., Messias M., Silva P. On the global dynamics of the Rabinovich system[J]. Journal of Physics A:Mathematical and Theoretical,2008,41,275210:1-21
    [117]Kokubu H., Nighiura Y., Oka H. Heteroclinic and homoclinic in bistable reaction diffusion[J]. Journal of Differential Equations,1990,86:260-341
    [118]冯贝叶.同宿轨及异宿轨的研究近况[J].数学研究与评论,1994,14(2):299-311
    [119]余澍祥.联结轨线的存在性问题[J].数学进展,2009,38(6):641-648
    [120]Shil'nikov L.P. A contribution to the problem of the structure of an extended neigh-borhood of a rough equilibrium state of saddle-focus type[J]. Math USSR, Sbornik, 1970,10:91-102
    [121]Swinnerton-Dyer H.P.F. The method of averaging for some almost-conservative dif-ferential equations[J]. Journal of the London Mathematical Society,1980,22:534-542
    [122]Mees A.I, Chapman P.B. Homoclinic and heteroclinic orbits in the doubie scroll attractor[J]. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Applications,1990,34(9):589-593
    [123]Li Z., Chen G., Wolfgang A., et al. Homoclinic and heteroclinic orbits in a modified Lorenz system[J]. Information Sciences,2004,165:235-245
    [124]Tigan G., Constantinescu D. Heteroclinic orbits in the T and the Lii systems[J]. Chaos Solitons and Fractals,2009,42:20-23
    [125]Liu Y., Yang Q. Dynamics of a new Lorenz-like chaotic system[J]. Nonlinear Anal-ysis:Real World Applications,2010,11:2563-2572
    [126]Zhou T, Chen G, Yang Q. Constructing a new chaotic system based on the Shil'nikov criterion[J] Chaos Solitons and Fractals,2004,19:985-993
    [127]Zhou T., Chen G., Tang Y. Chen's attractor exists[J]. International Journal of Bifurcation and Chaos,2004,14:3167-3178
    [128]Zhou T., Chen G., Celikovsky S. Shil'nikov chaos in the generalized Lorenz canonical form of dynamics system[J]. Nonlinear Dynamics,2005,39:319-334
    [129]Zhou T., Chen G. Classification of chaos in 3-D autonomous quadratic systems-I. basic framework and methods[J]. International Journal of Bifurcation and Chaos, 2006,16(9):2459-2479
    [130]Zheng Z., Chen G. Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system[J]. Journal of Mathematical Analysis and Ap-plications,2006,315:106-119
    [131]Jiang Y., Sun J. Shil'nikov homoclinic orbits in a new chaotic system[J]. Chaos, Solitons and Fractals,2007,32:150-159
    [132]Wang J., Zhao M., Zhang Y., et al. Shil'nikov-type orbits of Lorenz-family sys-tems[J]. Physica A:Statistical Mechanics and its Applications,2007,375:438-446
    [133]Zhou L, Chen F. Shil'nikov chaos of the Liu system[J]. Chaos.2008,18(1):013113
    [134]Tigan G., Dumitru O. Analysis of a 3D chaotic system[J]. Chaos Solitons and Frac-tals,2008,36:1315-1319
    [135]Wang J., Chen Z., Yuan Z. Existence of a new three-dimensional chaotic attractor[J]. Chaos Solitons and Fractals,2009,42:3053-3057
    [136]李艳会.复杂系统建模及分析[D].广东:中山大学,2004
    [137]Shang D., Han M. The existence of homoclinic orbits to saddle-focus[J]. Applied Mathematics and Computation.2005,163:621-631
    [138]Li T., Chen G. On homocilinic and heteroclinic orbits of Chen's system[J]. Interna-tional Journal of Bifurcation and Chaos,2006,16:3035-3041
    [139]陈诚.可积Hamilton系统和具有不变代数曲面的三维系统的动力学[D].上海:上海交通大学,2008
    [140]Moulin-Ollagnier J., Polgnomial first integrals of the Lotha-Volterra system[J]. Bul-letin des Sciences Mathematiques,1997,121:463-476
    [141]Moulin-Ollagnier J. Rational integration of the Lotha-Volterra system[J]. Bulletin des Sciences Mathematiques,1999,123:437-466
    [142]Llibre J., Zhang X. Invariant algebraic surfaces of the Rikitake system[J]. Journal of Physics A:Mathematical and General,2000,33:7613-7635
    [143]Llibre J., Zhang X. Invaraint algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics,2002,43:1622-1645
    [144]Llibre J., Valls C. Formal and analytic integrability of the Lorenz system[J]. Journal of Physics A:Mathematical and Theoretical,2005,38:2681-2686
    [145]Lu T., Zhang X. Darboux polynomials and algebraic integrability of the Chen sys-tem[J]. International Journal of Bifurcation and Chaos,2007,17(8):2739-2748
    [146]Cao J., Zhang X. Dynamics of the Lorenz system having an invariant algebraic surface[J]. Journal of Mathematical Physics,2007,48:082702
    [147]Cao J., Chen C., Zhang X. The Chen system having an invariant algebraic surface[J]. International Journal of Bifurcation and Chaos,2008,18(12):3753-375
    [148]Rossler O.E. An equation for hyperchaos[J]. Physics Letters A,1979,71:155-157
    [149]Periz G., Cerdeira H.A. Extraeting messages masked by chaos[J]. Physical Review Letters,1995,74:1970-1973
    [150]Rulkov N.F, Sushehik M.M., Tsimring L.S., et al. Digital communieation using chaotic-pulse-position modulation[J]. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Applications,2001,48(12):1436-1444
    [151]Matsumoto T., Chua L.O., Kobayashi K. Hyperchaos:laboratoryex periment and numerieal confirmation. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Applications,1986,33:1143-1147
    [152]Pecora L. Hyperchaos harnessed[J]. Physics World,1996,9:17.
    [153]Peng J.H, Ding E.J., Ding M. Synehronizing hyperchaos with a scalar transmitted signal[J]. Physical Review Letters,1996,76:904-907
    [154]Goedgebuer J.P., Larger L., Port H. Optical cryptosystem based on synchroniza-tion of hyper-chaos generated by a delayed feedback laser diode[J]. Physical Review Letters,1998,80:2249-2254
    [155]Goedgebuer J., Levy P., Larger L., et al. Optical communications with synchronized hyperchaos generated electro-optical[J]. IEEE Journal of Quantum Electronics,2002, 38:1178-1183
    [156]Udaltsov V.S., Goedgebuer J.P., Larger L., et al. Communicating with hyper-chaos: the dynamics of a DNLF emitter and recovery of transmitted information[J]. Optics and Spectroscopy,2003,95:114-118
    [157]Cenys A., Tamasevicius A., Baziliauskas A., et al. Hyperchaos in coupled colpitts oscillators[J]. Chaos Solitons and Fractals 2003,17:349-353
    [158]Cafagna D., Grassi G. New 3D-scroll attractors on hyperchaotic Chua's circuits forming a ring[J]. International Journal of Bifurcation and Chaos,2003,13:2889-2903
    [159]Thamilmaran K., Lakshmanan M., Venkatesan A. A hyperchaos in a modified canonical Chua's circuit[J]. International Journal of Bifurcation and Chaos,2004, 14:221-243
    [160]Li Y., Tang W.K.S., Chen G. Hyperchaos evolved from the generalized Lorenz equation[J]. International Journal of Circuit Theory and Applications,2005,33:235-251
    [161]Li Y., Tang W.K.S, Chen G. Generating hyperchaos via state feedback control[J]. International Journal of Bifurcation and Chaos,2005,15:3367-3375
    [162]Chen A., Lu J., Lu J., et al. Generating hyperchaotic Lu attractor via state feedback control[J]. Physica A:Statistical Mechanics and its Applications,2006,364:103-110
    [163]Wang G., Zhang X., Zheng Y., et al. A new modified hyperchaotic Lu system[J]. Physica A:Statistical Mechanics and its Applications,2006,371:260-272
    [164]Li Y., Chen G, Tang W.K.S. Controlling a unified chaotic system to hyperchaotic[J]. IEEE Transactions on Circuits & Systems Ⅱ-Analog & digital signal processing,2005, 52:204-207
    [165]Kapitaniak T., Chua L.O., Zhong G.Q. Experimental hyperchaos in coupled Chua's circuits[J]. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Ap-plications,1994,41(7):499-503
    [166]Kapitaniak T., Popovych S., Maistrenko Y. Chaos-hyperchaos transition in coupled Rossler systems[J]. Physics Letters A,2001,290:139-144
    [167]Grygiel K., Szlachetka P. Chaos and hyperchaos in coupled Kerr oscillators Optics Communications[J].2000,177(1-6):425-431
    [168]李玉霞.连续系统超混沌反控制的研究[D].广东:广东工业大学,2005
    [169]王杰智,陈增强,张青,等.超混沌生成研究进展[J].数学、力学、物理学、高新技术研究进展,2008,12:122-127
    [170]Li D., Wu X., Lu J. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system[J]. Chaos Solitons and Fractals,2009,39: 1290-1296.
    [171]Yang Q., Liu Y. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci[J]. Journal of Mathematical Analysis and Applications,2009, 360:293-306
    [172]Liu Y., Yang Q., Pang G. A hyperchaotic system from the Rabinovich system[J]. Journal of Computational and Applied Mathematics,2010,234:101-113
    [173]Rubinger R.M., Nascimento A.W.M., Mello L.F., et al. Inductorless Chua's circuit: experimental time series analysis[J]. Mathematical Problems in Engineering,2007 doi:10.1155/2007/83893. [Article ID 83893]
    [174]Mello L.F., Messias M., Braga D.C. Bifurcation analysis of a new Lorenz-like chaotic system[J]. Chaos Solitons and Fractals,2008,37:1244-1255
    [175]Krishchenko A.P. Estimations of domains with cycles[J]. Computers & Mathematics with Applications,1997,34:325-332
    [176]Babloyantz A., Krishchenko A.P., Nosov A. Analysis and stabilization of nonlinear chaotic systems[J]. Computers & Mathematics with Applications,1997,34:355-368
    [177]Yang S.P., Zhu K.Q., Zhou X.Z. Limit cycles near stationary points in the Lorenz system[J]. Chinese Physics Letters,2005,22(11):2780-2783
    [178]Liao X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[J]. Science in China Series E Information Sciences,2004,34:1404-1419
    [179]Liao X., Fu Y., Xie S., et al. Globally exponentially attractive sets of the family of Lorenz systems[J]. Science in China, Series F:Information Sciences,2007,37: 757-769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700