用户名: 密码: 验证码:
猪圆环病毒-Ⅱ型抗体检测免疫层析试纸的研制及单克隆抗体的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒-Ⅱ型(Porcine Circovirus2, PCV2)是引起断奶仔猪多系统衰竭综合征(Postweaning multisystemic wasting syndrome, PMWS)主要及原发病原。由于此病在世界范围内流行,同时能对猪的生长造成严重危害,极大地降低了饲料利用率,对养猪工业造成了重大影响。PCV2基因组大小为1767bp或1768bp,包含11个开放阅读框,其中ORF1、ORF2、ORF3为主要的阅读框。ORF1编码的Rep蛋白主要与病毒的复制相关,ORF3编码蛋白与病毒的致病性相关。ORF2编码的Cap蛋白为病毒的主要结构蛋白,蛋白上存在多个优势抗原表位,具有良好的免疫原性,试验证实Cap蛋白能区分PCV1和PCV2临床血清。
     目前,PCV2诊断方法主要为PCR、免疫组化、原位杂交、免疫过氧化物酶单层试验(IPMA)、间接免疫荧光(IFA),这些方法主要用于抗原检测。PCV2抗体检测主要手段为ELISA,目前已有基于Cap蛋白的商品化ELISA试剂盒,但是ELISA检测方法需要专业人员和专门仪器,只适用于实验室检测。当前已经有商品化的猪圆环病毒疫苗用于猪群免疫,且免疫范围较大,因此急需一种简便、快速、敏感的检测方法用于免疫后抗体水平评价。
     胶体金免疫层析技术是在胶体金标记技术和免疫层析技术基础上发展而来的,该技术具有简便、快捷的特点,同时不需要任何仪器和专业人员,因此被广泛应用于疫病及药物残留检测。本研究成功制备了PCV2抗体检测试纸,为PCV2抗体临床快速检测提供了有力工具。同时筛选并鉴定了数株PCV2单克隆抗体。
     1.猪圆环病毒-Ⅱ型Cap蛋白的原核表达及功能鉴定
     为获得具有免疫原性的PCV2Cap蛋白,本试验以含有PCV2ORF2基因的重组质粒PMD18T-ORF2为模板,利用PCR技术扩增得到PCV2ORF2基因片段,将此基因片段与原核表达载体pET28a连接,构建重组表达载体,命名为pET28a-ORF2,经PCR和测序鉴定后,用IPTG诱导ORF2基因的表达,收集诱导的菌液进行SDS-PAGE电泳分析。结果显示在分子量约为26KD处有一条明显的蛋白条带。表达产物上清用Ni柱纯化并透析,Western-Blot鉴定该蛋白能被PCV2阳性血清识别,ELISA检测结果显示蛋白具有较高的活性。研究表明PCV2Cap蛋白在大肠杆菌中得到高效表达,纯化获得的蛋白具有较高生物活性,为开发诊断试剂和亚单位疫苗奠定了基础。
     2.猪圆环病毒-Ⅱ型抗体检测免疫层析试纸的研制及性能评价
     将胶体金标记猪圆环病毒-Ⅱ型(PCV2)Cap蛋白喷涂于玻璃纤维膜上作为检测探针,金黄色葡萄球菌A蛋白(SPA)和PCV2多克隆抗体IgG固定在硝酸纤维膜上分别作为检测线和质控线,制备组装成免疫层析试纸。运用PCV2标准阳性、阴性血清及猪瘟病毒、蓝耳病病毒、细小病毒、伪狂犬病毒、PCV1阳性血清,对试纸进行特异性、敏感性评价。免疫层析试纸与进口商品化ELISA试剂盒对田间血清样品同时进行检测,评价试纸与ELISA试剂盒的符合率。试验结果显示,该试纸的特异性、敏感性良好,与进口ELISA试剂盒符合率为94.00%(470/500),灵敏度与ELISA试剂盒相当。表明该试纸具有快速、特异、敏感等优点,操作简便,不需要专业人员与专门仪器,适合田间推广运用。
     3.猪圆环病毒-Ⅱ型单克隆抗体的制备及鉴定
     用纯化的PCV2免疫Balb/c小鼠,使小鼠对PCV2产生免疫反应并产生抗体,取血清效价较高的小鼠脾细胞与NS0瘤细胞融合。使用基于Cap蛋白的抗体检测试纸对大量杂交瘤细胞培养上清进行检测和鉴定,同时采用病毒阻断方法评价抗体与病毒的反应情况。最终筛选出5株分泌高亲和力单克隆抗体的杂交瘤细胞:3C9、6A5、8F9、9F4、15E4,其中6A5、8F9、9F4三株能与病毒反应。结果表明,该单抗的腹水能很好地识别PCV2病毒及其Cap蛋白,效价分别为:1:4×105、1:3×105、1:4×105。具有高度的特异性,与其他病毒和蛋白无交叉反应性。该单抗的成功制备,为PCV2抗原快速检测试纸条的制备奠定了基础。
Porcine circovirus type2(PCV2) is the main and primary causative agent ofPostweaning Multisystemic Wasting Syndrome (PMWS), which has causedsignificant economic losses in the swine industry. The genome of PCV2is1767bp or1768bp in length and consists of11ORFs. Three major ORFs have beencharacterized for PCV2: ORF1, ORF2, and ORF3. ORF1encodes a replication-associated protein (Rep), while ORF2encodes a major structural protein (Cap), themain antigenic determinant of the virus, and ORF3is involved in PCV2pathogenesis.Cap protein contains several immune-dominant epitopes and is confirmed to be type-specific.
     To date, several commercial PCV2vaccines were under use in the market for theprevention and control of PCV2. Therefore, a method for specific serologic detectionin routine field practice to monitor PCV2antibody titers induced by vaccines isessential. Immunoperoxidase monolayer assay (IPMA), indirect immunofluorescentassay (IFA), and enzyme linked immunosorbent assay (ELISA) are the mostcommonly diagnostic methods for detecting PCV2antibodies. However, thesemethods require specialized equipment and technical expertise, and are suitable forlaboratory use only. Furthermore, IPMA and IFA require the cultivation of PCV2onPK-15cell, which is time-consuming and labor-intensive.
     The membrane-based immunochromatographic lateral flow strip test represents awell-established and appropriate technique for a variety of point-of-care andfield-use applications, which is used in the detection of pathogen and durgs. Thistechnology has several advantages over traditional immunoassays, such as simplicityof procedure, rapid operation and immediate results, low cost, no requirements fortechnical expertise or specialized equipment. In this study, a simple and rapidimmunochromatographic strip was developed for the detection of PCV2antibodies inswine. And several mAbs were screened and identificated.
     1. Prokaryotic expression and characterization of Cap protein
     The ORF2gene, truncated nuclear localization signal (NLS) sequence, wasamplified by PCR from the recombinant plasmid pMD18T-ORF2. The purified PCRproduct was digested with BamHI and HindIII, and cloned into the pET28a vector.Then the recombinant plasmid was transformed to Escherichia coli (E. coli) BL21competent cells. The positive clone was grown at37℃in Luria-Bertani (LB)medium supplemented with100μg/mL kanamycin to the optical density of0.6at600nm, and then isopropyl-β-D-thiogalactopyranoside was added to a final concentrationof1mM. After8h of induction at30℃, cells were harvested by centrigugation(8000rpm for30min) and resuspended in20mL100mM Tris-HCl (pH8.0). Thecells were disrupted by ultra-sonication on ice and centrifuged at12000rpm for25min. The supernatant were collected and purified using nickel-nitrilotriacetic acid(Ni-NTA) resin following the manufacturer’s protocol. SDS-PAGE showed a newprotein band with a molecular weight of26KD. Western blot indicated that it couldreact specifically with PCV2positive sera. In ELISA, the protein was demonstrated tobe of high bioactivity. Thus, Cap protein successfully expressed in E. coli could beused as a diagnostic reagent and provides a basis for the study of subunit vaccine.
     2. Development and evaluation of an immunochromatographic strip for therapid detection of antibodies against Porcine circoviurs2
     A rapid (less than5min) immunochromatographic strip using gold-antigen probewas successfully developed and applied in the detection of porcine circovirus2(PCV2) antibodies in swine. Recombinant Cap protein truncated nuclear localizationsignal of PCV2was expressed and labeled with colloidal gold. This conjugate wasdispensed on conjugate pad as the detector. The staphylococcal protein A (SPA) andpurified PCV2antibodies (porcine origin) were blotted on the nitrocellulosemembrane for the test and control lines, respectively. Sensitivity and specificity of thestrip was evaluated using PCV2antisera as well as other antisera from pigs infectedwith different swine viruses.500clinical swine serum samples were detected both by strip and the commercial ELISA kit. The agreement of immunochromatographic stripand ELISA kit was94.00%. It showed that this strip possesses high sensitivity andspecificity and may be useful for clinical laboratories and rapid diagnosis in the field.
     3. Preparation and characterization of monoclonal antibody against PCV2
     Antibodies against PCV2were elicited by immunizing Balb/c mice with purifiedPCV2. MAbs were prepared routinely by cell fusion. The above-developed strip wasused to screen hybirdoma lines. Five positive hybridoma lines of3C9,6A5,8F9,9F4,15E4were screened out. Yet only6A5,8F9,9F4could react with PCV2. The striptiter for these hybridoma lines were1:4×105,1:3×105,1:4×105, respectively. ThesemAbs possess high-specificity, show on cross reaction with other proteins or virusesand lay the foundation for the development of strip test for the rapid detection ofPCV2.
引文
1. Tischer I, Mields W, Wolff D, Vagt M, Griem W. Studies on epidemiology and pathogenicityof porcine circovirus[J]. Arch. Virol.1986,91(3-4):271-6.
    2. Tischer I, Gelderbolm H, Vettermann W, et al. A very small porcinevirus with circularsingle-stranded DNA[J]. Nature.1982,295:64-66.
    3. Allen GM, Ellis JA. Porcine circoviruses: A review[J]. J. Vet. Diagn. Invest.2000,12:3-14.
    4. Harding JC. Postweaning multisystemic wasting syndrome: Preliminary epidemiology andclinical findings[J]. Ptoc. West. Can. Asspc. Swome. Pract.1996:21.
    5. Allan GM, McNEilly F, Meehan BM, et al. Isolation and characterization of circovirusesfrom pigs with wasting syndromes in Spain,Denmark and Northern Ireland[J]. Vet. Microbiol.1999,66:115-123.
    6. Fenaux M, Halbur PG, Gill M, et al. Genetic characterization of type2porcine circovirus(PCV-2) from pigs with postweaning multisystemic wasting syndrome in differentgeographic regions of North America and development of a differential PCR-restrictionfragment length polymorphism assay to detect and differentiate between infections withPCV-1and PCV-2[J]. J. Clin. Microbiol.2000,38:2494-2503.
    7. Ellis J, Clark E, Haines D, et al. Porcine circovirus-2and concurrent infections in the field[J].Vet. Microbiol.2004,98:159-163.
    8. Segales J, Allan GM, Domingo M. Porcine circovirus diseases[J]. Anim. Health. Res. Rev.2005,6:119-142.
    9. Allan G, McNeilly F, Meehan B. Isolation and characterization of circoviruses from pigs withwasting syndrome in Spain, Denmark, and Northern Ireland[J]. Vet. Microbiol.1999,66:115-123.
    10. Grierson SS, King DP, Sandvik T, et al. Detection and genetic typing of type2porcinecircoviruses in archived pig tissues from the UK[J]. Arch. Virol.2004,149:1171-1183.
    11.郎洪武,吴发权.断奶猪多系统衰弱综合征血清抗体检测[J].中国兽医科技.2000,30(3):3-5.
    12. Rosell C, Segales J, Ramos-Vara JA, et al. Identification of porcine circovirus in tissues ofpigs with porcine dermatitis and nephropathy suydrome[J]. Vet. Rec.2000,146:40-43.
    13. West KH, Bystrom JM, Wojnarowicz, et al. Myocarditis and abortion associated withintrauterine infection of sows with porcine circovirs2[J]. J. Vet. Diagn. Invest.1999,11:530-532.
    14. Allan G, Krakowka S, Ellis J. PCV2: Ticking time bomb[J]. Pig Progress.2002,18:14-15.
    15.陆承平.最新动物病毒分类简介[J].中国病毒学.2005,20(6):682-688.
    16. Allen GM, Phenix K, Todd D, et al. Some biological and physico-chemical properties ofporcine circovirus[J]. J. Vet. Med. B.1994,41:17-26.
    17. Hattermann K., Roedner C., Schmitt C., et al. Infection studies on human cell lines withporcine circovirus type1and porcine circovirus type2[J]. Xenotransplantation.2004,11:284-294.
    18. Ile Tischer, D. Peters, R. Rasch, S. Pociuli. Replication of porcine circovirus: induction byglucosamine and cell cycle dependence[J]. Arch. Virol.1987,96:39-57.
    19. Yu Zhu, Adeline Lau, Jennifer Lau, Qiang Jia, Anbu K. Karuppannan, Jimmy Kwang.Enhanced replication of porcine circovirus type2(PCV2) in a homogeneous subpopulationof PK15cell line[J]. Virology.2007,369(2):423-430.
    20. Sanchez R E J r, Meert s P, Nauw ynck H J, et al. Change of porcine circovirus2target cellsin pigs during development from fetal toearly postnatal life[J]. Vet. Microbiol.2003,95(12):15-25.
    21. Stevenson G W, Kiupel M, Mittal S K, et al. Tissue distribution and genetic typing of porcinecircoviruses in pigs with naturally occurring congenital tremors [J]. J. Vet. Diagn. Invest.2001,13(1):57-62.
    22. Gerald M, Peter L D, Hans J N. Inhibition of endosomelyso some system acidificationenhances porcine circovirus2infection of porcine eithelial cells [J]. J. Virol.2008,82(3):1128-1135.
    23. Boisseson C, Beven V, Bigarre L, et al. Molecular charact erizat ion of Porcine circovirustype2isolates from post weaning multisystemic wasting syndrome-affected and non-affectedpigs[J]. J. Gen. Virol.2004,85(Pt2):293-304.
    24. Hamel A L, Nayar G P. Nucleotide sequence of porcine circovirus associated withpostweaning multisystemic wasting syndrome in pigs[J]. J. Virol.1998,(72):5262-5267.
    25. Mankert z A, Mankert z J, Wolf K, et al. Identification of a protein essential for replication ofporcine circovirus[J]. J. Gen. Virol.1998,79(2):381-384.
    26. Florence Faurez, Daniell Dory, Beatrice Grasland, Andre Jestin. Replication of porcinecircoviruses[J]. Virology Journal.2009,6:60.
    27. Mankert z A, Hillenbranda B. Analysis of transcription of Porcine circovirus type1[J]. Soc.Gen. Microbiol.2002,2743-2751.
    28. Mankertz A, Caliskan R, Hatt ermann K, et al. Molecular biology of porcine circovirus:analyses of gene expression and viral replication [J]. Vet. Microbiol.2004,98(2):81-88.
    29. Liu Q., Tikoo S.K., Babiuk L.A., et al. Nuclear localization of the ORF2protein encoded byporcine circovirus type2[J]. Virology,2001a,285:91-99.
    30. Fenaux M, Opriessnig T, Halbur P G, et al. Two amino acid mutations in the capsid protein oftype2porcine circovirus (PCV2) enhanced PCV2replication in vitro and attenuated thevirus in vivo[J]. J. Virol.2004,78(24):13440-13446.
    31. Mahe D, Blanchard P, Truong C, et al. Differential recognition of ORF2protein from type1and type2porcine circoviruses and identificat ion of immuno relevant epitopes[J]. J.Gen.Virol.2000,81:1815-1824.
    32. Lekcharoensuk P, Morozov I, Paul P S, et al. Epitope mapping of the major capsid protein oftype2porcine circovirus (PCV2) by using chimeric PCV1and PCV2[J]. J. Virol.2004,78(15):8135-8145.
    33. Shang S B, Jin Y L, Jiang X T, et al. Fine mapping of antigenic epitopes on capsid proteins ofporcine circovirus, and antigenic phenotype of porcine circovirus type2[J]. Mol. Immunol.2009,46(3):327-334.
    34. Khayat R., Brunn N., Speir J.A., et al. The2.3-Angstrom structure of Porcine circovirus2[J].J. Virol.2011,85(15):7856-7862.
    35. Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcinecircovirus type2infected cells and its role in virus induced apoptosis[J]. J. Virol.2005,79(13):8262-8274.
    36. Liu J, Chen I, Du Q, Chua H, Kwang J. The ORF3protein of porcine circovirus type2isinvolved in viral pathogenesis in vivo[J]. J. Virol.2006,80(10):5065-5073.
    37. Liu J, Zhu Y, Chen I, et al. The ORF3protein of porcine circovirus type2interacts withporcine ubiquit in E3ligase Pirh2and facilitates p53expression in viral infection[J]. J. Virol.2007,81(17):9560-9567.
    38. Fenaux M., Opriessnig T., Halbur P.G., Elvinger F., Meng X.J. A chimeric porcine circovirus(PCV) with the immunogenic capsid gene of the pathogenic PCV type2(PCV2) cloned intothe genomic backbone of the nonpathogenic PCV1induces protective immunity againstPCV2infection in pigs[J]. J. Virol.2004a,78(12):6297-6303.
    39. Mark Chaiyakul, Karolynn Hsu, Rkia Dardari, Frank Marshall, Markus Czub. Cytotoxicity ofORF3-proteins from a non-pathogenic and a pathogenic Porcine circovirus[J]. J. Virol.2010,84(21):11440-11447.
    40.李增魁,陈婷飞,李益飞.猪圆环病毒2型ORF4基因编码蛋白的体外表达[J].中国兽医科学.2008,38(10):837-841.
    41. Cheung A K. Transcriptional analysis of porcine circovirus type2[J]. Virology.2003,305(1):168-180.
    42. Manker tz A, Persson F, Mankertz J, et al. Mapping and characterization of the origin ofDNA replication of porcine circovirus[J]. J. Virol.1997,71(3):2562-2566.
    43. Tim Finsterbusch, Annette Mankertz. Porcine circoviruses-Small but powerful[J]. VirusRsearch.2009,143(177-183).
    44. Steinfeldt T, Finsterbusch T, Mankertz A. Rep and Rep’ protein of porcine circovirus type1bind to the origin of replication in vitro [J]. Virology.2001,291(1):152-160.
    45. Cheung A K. Identification of an octanucleotide motif sequence essential for viral protein,DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirustype2[J]. Virology.2004,324(1):28-36.
    46. Mankertz A, Caliskan R, Hatt ermann K, et al. Molecular biology of Porcine circovirus:analyses of gene expression and viral replication[J]. Vet. Microbiol.2004,98(2):81-88.
    47. Cheung A K. The essential and nonessential transcription units for viral protein synthesis andDNA replication of porcine circovirus type2[J]. Virology.2003,313(2):452-459.
    48. Stenger D C, Revington G N, Stevenson M C, Bisaro D M. Replicational release ofgeminivirusgenomes from tandemly repeated copies: evidence for rolling-circle replicationof a plant viral DNA[J]. Proc. Natl. Acad. Sci. USA.1991,88(18):8029-33.
    49. Cheung A K. Palindrome regeneration by template strand-switching mechanism at the originof DNA replication of porcine circovirus via the rolling-circle melting-pot replication model[J]. J. Virol,2004,78(17):9016-29.
    50. Gilpin DF, McCullough K, Meehan BM, et al. In vitro studies on the infection andreplication of porcine circovirus type2in cells of the porcine immune system[J]. Vet.Immunol. Immunopathol.2003,94:149-161.
    51. Mateusen B, Sanchez RE, Van Soom A, et al. Susceptibility of pig embryos to porcinecircovirus type2infection. Theriogenology.2004,61:91-101.
    52. Misinzo G, Meert s P, Bublot M, et al. Binding and entry characteristics of porcine circovirus2in cells of the porcine monocytic line3D4/31[J]. J. Gen. Virol.2005,86:2057-2068.
    53. Gerald M, Peter L D, Peter M, et al. Porcine circovirus2uses heparan sulfate andchondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells[J]. J.Virol.2006,4:3487-3494.
    54. Steiner E, Balmelli C, Herrmann B, et al. Porcine circovirus type2displays pluripotency incell targeting. Virology.2008,378(2):311-22.
    55. Finsterbusch T, Steinfeldt T, Doberst ein K, et al. Interaction of the replication proteins andthe capsid protein of porcine circovirus type1and2with host proteins[J]. Virology.2009,386:122-131.
    56. Wei, L., J. Kwang, Jin Wang, Lei Shi, Bing Yang, Yongqing Li, Jue Liu. Porcine circovirustype2induces the activation of nuclear factor kappa B by IκBα degradation. Virology.2008,378(1):177-184.
    57. Wei, L. and J. Liu. Porcine circovirus type2replication is impaired by inhibition of theextracellular signal-regulated kinase (ERK) signaling pathway. Virology.2009,386(1):203-209.
    58. Wei, L., Z. Zhu, Jing Wang, Jue Liu. JNK and p38mitogen-activated protein kinasepathways contribute to porcine circovirus type2infection. J Virol.2009,83(12):6039-6047.
    59. Misinzo, G., P. L. Delputte, D. J. Lefebvre, H. J. Nauwynck. Porcine circovirus2infection ofepithelial cells is clathrin-, caveolae-and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus. Res.2009,139(1):1-9.
    60. Segales J, Domingo M, Chianini F, et al. Immuonsuppression in postweaning multisystemicwasting syndrome aff ected pigs[J]. Vet. Microbiol.2004,98(2):151-158.
    61. Mandrioli L, Sarli G, Panarese S, et al. Apoptosis and proliferative activity in lymphnodereaction in postweaning multisystemic wasting syndrome (PMWS)[J]. Vet. Immunol.Immunopathol.1997(1-2):25-37.
    62. Resendes A R, Majo N,Segales J,Mateu E,Calsaminglia M,Domingo M. Apoptosis inlymphoid organs of pigs naturally infected by porcine circovirus type2[J]. J. Gen. Virol.2004,85:2837-2844.
    63. Segales J, Domingo M, Chianini F, et al. Immuonsuppression in postweaning multisystemicwasting syndrome afected pigs[J]. Vet. Microbiol.2004,98(2):151-158.
    64. Vincen t I E, Carrasco C P, Herrmann B, et al. Dendritic cells harbor infectious porcinecircovirus type2in the absence of apparent cell modulation or replication of the virus[J]. J.Virol.2003,77(24):13288-13300.
    65. Ladekjaer-Mikkelsen A S, Nielsen J. A longitudinal study of cell mediated immunity in pigsinfected with porcine parvovirus[J]. Viral. Immunol.2002,15(2):373-384.
    66. Darwich L, Segales J, Domingo M, et al. Changes in CD4(+), CD8(+), CD4(+) CD8(+), andimmunoglobulin M positive peripheral blood mononuclear cells of postweaningmultisystemic wasting syndrome affected pigs and age matched uninfected wasted andhealthy pigs correlate with lesions and porcine circovirus type2load in lymphoid tissues[J].Clin. Diagn. Lab. Immunol.2002,9(2):236-242.
    67.施旅娟,韩惠利,张书霞. PCV2感染仔猪淋巴结中的病毒定位与细胞凋亡[J].中国农业科学.2008,41(1):237-242.
    68. Rosell C, Segales J, Plana-Duran J, et al. Pathological, immunohistochemical andinsituhybridization studies of natural cases of postweaning multisystemic wasting syndrome(PMWS) in pigs[J]. J. Comp. Pathol.1999,120(1):59-78.
    69. Darwich, Sandrine Pie, Albert Rovira, Joaquim Segales, Mariano Domingo, Isabelle P.Oswald, Enric Mateul. Cytokine mRNA expression profiles in lymphoid tissues of pigsnaturally affected by postweaning multisystemic wasting syndrome[J].J. Gen. Virol.2003,84:2117-2125.
    70. Kekarainen T, Montoya M, Mateu E, et al. Porcine circovirus type2induced interleukin-10modulates recall antigen responses[J]. J. Gen. Virol.2008(89):760-765.
    71. Vincent I E, Balmelli C, Meehan B, et al. Silencing of natural interferon producing cellactivation by porcine circovirus type2DNA[J]. Immunology.2007,120(1):47-56.
    72. Frida C. Hasslung, Mikael Berg, Gordon M. Allan, Brian M. Meehan, Francis McNeilly,Caroline Fossum. Identification of a sequence from the genome of porcine circovirus type2with an inhibitory effect on IFN-α production by porcine PBMCs[J]. J. Gen. Virol.2003,(84):2937-2945.
    73. Wikstr m F., Meehan B.M., Berg M., Timmusk S., Elving J., Fuxler L., Magnusson M.,Allan G.M., McNeilly F., Fossum C. Structure-dependent modulation of alpha interferonproduction by Porcine Circovirus2oligodeoxyribonucleotide and CpG DNAs in porcineperipheral blood mononuclear cells[J]. J. Virol.2007,81(10):4919-4927.
    74. Allan G.M., Meehan B., Todd D., et al. Novel porcine circovirus from pigs with wastingdisease syndromes[J]. Vet.Rec.1998,142:467-468.
    75. Allan G.M., McNeilly F., Kennedy S., et al. Isolation of porcine circovirus-like viruses frompigs with a wasting disease in USA and Europe[J]. J. Vet. Diagn. Investig.1998,10:3-10.
    76. Clark, E.G. Post-weaning multisystemic syndrome[J]. In: Proceedings of the AmericanAssociation of Swing Practitioners.1997, p.499-501.
    77. Madec F., Eveno E., Morvan P., et al. Post-weaning multisystemic wasting syndrome(PMWS) in pigs in France: clinical observations from follow-up studies on affected farms[J].Livest. Prod. Sci.2000,63:223-233.
    78. Quintana J., Segalés J., Rosell C., et al. Clinical and pathological observations on pigs withpostweaning multisystemic wasting syndrome[J]. Vet. Rec.2001,149:357-361.
    79. Harding J C, Clark E G. Recognizing and diagnosing postweaning multisystemic wastingsyndrome (PMWS)[J]. Swine Health Prod.1997,5:201-203
    80. Spillane P, Kennedy S, Meehan B. Porcine circovirus infection in the Republic of Ireland[J].Vet Rec.1998,142:495-496.
    81. Harms P A. Post-waning multisystemic wasting syndrome-case studies[C]. In: Proceedingsof the Seventh Annual Iowa Swine Disease Conference on Swine Practitioner.1999,43-47.
    82. Kennedy S, Allan G, McNeilly F, et al. Porcine circovirus infection in Northern Ireland[J].Vet. Rec.1998,142:495-496.
    83. Jake W. Where circovirus is suspected[J]. Pig Inter.2000,4:19-22.
    84. Plana-Duran J, Balash M, Segales J. Post-weaning multisystemic wasting syndrome inspain[J]. Vet. Rec.1999,142:495-496.
    85. Harms P.A., Halbur P.G., Sorden S. D. There cases of porcine respiratory disease complexassociated with porcine circovirus type2infection[J]. Journal of Swine Health andProduction.2002,10:27-30.
    86. Allan G.M., Ellis J.A. Porcine circoviruses: a review[J]. Journal of Veterinary DiagnosticInvestigation.2000,12:3-24.
    87. Kim J., Chung H.K., Chae C. Association of porcine circovirus2with porcine respiratorydisease complex[J]. The Veterinary Journal.2003b,166:251-256.
    88. Smith W.J., Thomson J.R., Done S. Dermatitis/nephropathy syndrome of pigs[J]. VeterinaryRecord.1993,132,47.
    89. Duran C.O., Ramos-Vara J.A., Rendr J.A. Porcine dermatitis and nephropathy syndrome: anew condition to include in the differential diagnosis list for skin discoloration in swine[J].Swine Health and Producntion.1997,5:241-245.
    90. Ramos-Vara J.A., Duran O., Render J.A., et al. Porcine dermatitis and nephropathysyndrome in the USA[J]. Veterinary Record.1997,141:479-480
    91. Choi C., Chae C. Colocalization of porcine reproductive and respiratory syndrome virus andporcine circovirus2in porcine dermatitis and nephropathy syndrome by double-labelingtechnique[J]. Veterinary Pathology.2001,38:436-441.
    92. Thibault S., Drolet R., Germain M.C., et al. Cutaneous and systemic necrotizing vasculitis inswine[J]. Veterinary Pathology.1998,35:108-116.
    93. Rosell C., Segales J., Ramos Vara J.A., et al. Indentification of porcine circovirus in tissuesof pigs with porcine dermatitis and nephropathy syndrome[J]. Veterinary Record.2000,146:40-43.
    94. Segales J., Rosell C., Domingo M. Pathological findings associated with naturally acquiredporcine circovirus type2associated disease[J]. Veterinary Microbiology.2004,98:137-149.
    95. Halbur P. G. Porcine respiratory disease[C]. Proceedings of the International Pig VeterinarySociety Congress.1998,15:1-10.
    96. Thacker E.l. Porcine respiratory disease complex-what is it and why does it remain aproblem?[J]. The Pig Journal.2001,48:66-70.
    97. Kim J., Chung H.K., Chae C. Association of porcine circovirus2with porcine respiratorydisease complex[J]. The Veterinary Journal.2003b,166:251-256.
    98. West K.H., Bystrom J.M.,Wojnarowicz C.,et al. Myocarditis and abortion assocated withintrauterine infection of sows with porcine circovirus2[J]. Journal of Veterinary DiagnosticInvestigation.1999,11:530-532.
    99. O Connor B., Grauvreau H., West K., et al. Multiple porcine circovirus2-associated abortionand reproductive failure in a multisite swine production unit[J]. Canadian Veterinary Journal.2001,42:551-553.
    100. Ladekjaer-Mikkelsen A.S., Nielsen J., Storgaard T., et al. Transplacental infections withPCV2associated with reproductive failure in a gilt[J]. Veterinary Record.2001,148:759-760.
    101. Josephson G., Charbonneau G. Case report of reproductive problems in a new startupoperation[J]. Journal of Swine Health and Production.2001,9:258-259.
    102. Kim J., Ha Y., Jung K., et al. Enteritis associated with porcine circovirus2in pigs[J]. Can. J.Vet. Res.2004,68(3):218-219.
    103. Hines R.K., Lukert P.D. Porcine circovirus as a cause of congenital tremors in newbornpigs[C]. In: Proceedings of the American Association on Swine Practitioners.1994, pp.344-345.
    104. Stevenson G. Distribution of porcine circovirus in neonatal pigs with congenital tremors[C].In: Proceedings of the CRWAD.1999, p.217.
    105. Wellenberg G.J., Pesch S., Berndsen F.W., et al. Isolation and characterization of porcinecircovirus type2pigs showing signs of post-weaning multisystemic wasting syndrome in theNetherlands[J]. Vet. Quart.2000,22:167-172.
    106. Stevenson GW, Kiupel M, Mittal SK, et al. Ultrastructure of porcine circovirus in persistentlyinfected PK-15cells[J]. Vet. Pathol.1999,36(5):368-378.
    107.崔尚金,李滟平,李曦等.猪圆环病毒多重PCR诊断方法的建立[J].中国预防兽医学报.2006,5:581-584.
    108. Junghyun Kim, Dong Un Han, Changsun Choi, et al. Differentiation of porcine circovirusPCV1and PCV2in boar semenusing a multiplex nested polymerase chain reaction[J]. J.Virol. Methods.2001,98:25-31.
    109. Kim J, Han DU, Chio C, et al. Simultaneous detection and differentiation between porcinecircovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chainreaction[J]. J. Vet. Med. Sci.2003,65(6):741-744
    110. Lin CM, Jeng CR, Hsiao SH, et al. Development and evaluation of an indirect in situpolymerase chain reaction for the detection of porcine circovirus type2in formalin-fixedand paraffin-embedded tissue specimens[J]. Vet. Microbiol.2009,138(3-4):225-234.
    111. Brunborg IM, Moldal T, Jonassen CM. Quantitation of porcine circovirus type2isolatedfrom serum/plasma and tissue samples of healthy pigs and pigs with postweaningmuhisystemic wasting syndrome using a TaqMan based realtime PCR[J]. J. Virol. Methods.2004,122(2):171-178.
    112. Fenaux M, Patrick G H, Gill M. Genetic characterization of type2porcine circovirus (PCV2)from pigs with postweaning multisystemic wasting sysdrome in different geographic regionsof North America and development of a differential PCR restrict ion fragment lengthpolymorphism assay to detect and differentiate between infections with PCV1and PCV2[J].Journal of Clinical Microbiology.2000,38(7):2494-2503.
    113. Chen H T, Zhang J, Sun D H, et al. Rapid detection of porcine circovirus type2by loop-mediated isothermal amplification[J]. J. Virol. Methods.2008,149(2):264-268.
    114. Zhao K, Shi W, Han F, et al. Specific, simple and rapid detection of porcine circovirus type2using the loop-mediated isothermal amplification method[J]. Virol. J.2011,18(8):126.
    115.崔尚金,李滟平,李曦等.猪圆环病毒间接免疫荧光方法的建立[J].中国预防兽医学报.2007,1:63-66.
    116. Chio C, Chae C. In-situ gybridization for the detection of porcine circovirus in pigs withpostweaning multisystemic wasting syndrome[J]. J. Comp. Pathol.1999,121(3):265-270.
    117. Sirinarumitr T, Sorden SD, Morozov I, et al. Double in situ hybridization for simultaneousdetection of porcine reproductive and respiratory syndrome virus(PRRSV) and porcinecicovirus (PCV). J. Vet. Diagn. Invest.2001,13(1):68-71.
    118. Nawagitgul P, Morozov I, Sirinarumitr T, et al. Development of probes to differentiateporcine circovirus types1and2in vitro by in situ hybridization. Vet Micruobiol.2000,75(1):83-89.
    119.郎洪武,王力,张广川,等.猪圆环病毒分离鉴定及猪断奶多系统衰弱综合征的诊断[J].中国兽医科技.2001,31(3):3-4.
    120. Dualc GC, Afshar A. Porcine circovirus antigens in PK-15cell line (ATCC CCL-33) andevidence of antibodies to circovirus in Canadian pigs[J]. Can. J. Vet. Res.1989,53:431-433.
    121.刘长明,张超范,危艳武等.猪圆环病毒型免疫过氯化物酶单层细胞试验抗体检测试剂盒的研制及应用[J].中国预防兽医学报.2007,29(8):621-624.
    122. Walker IW, Konoby CA, Jewhurst VA, et al. Development an application of a competitiveenzyme-linked immunosorbent assay for the detection of serum antibodies to porcinecircovirus type2[J]. J. Vet. Diagn. Invest.2000,12(5):400-405.
    123. Blanchard P, Mahe D, Cariolet R, et al. An ORF2protein-based ELISA for porcinecircovirus type2antibodies in post-weaning multisustemic wasting syndrome[J]. Vet.Microbiol.2003,94(3):183-194.
    124. Shang S Q, Guo H C, Sun D H, et al. Development and validation of an ELISA using aprotein encoded by ORF2antigenic domain of porcine circovirus type2[J]. Virol. J.2010,19(7):274.
    125. Wensvoort G,Terpstra C,Boonstra J,et al. Production of monoclonal antibodies againstswine fever virus and their use in laboratory diagnosis [J]. Vet. Microbiol.1986,12:101-108.
    126. Donald C A. A rapid one-step colored particle lateral-flow immunoassay for the detection ofgroup1streptococcal antigen extracted directly from throat swabs[C]. In Proceedings of the93rd General Meeting of American Society of Microbiology.1999.
    127. Cuzzubbo A J, Chenthamarakshan V, Vadivelu J, et al. Evaluation of a new commerciallyavailable immunoglobulin M and immunoglobulin G immunochromatographic test fordiagnosis of melioidosis infection [J]. Clin. Mierobiol.2000,38:1670-1671.
    128. Lou S C, Patel C, Ching S, et al. One-step competitive immunochromatogrphic assay forsemiquantitative determination of lipoprotein(a) in plasma[J]. Clin. Chem.1993,39:619-624.
    129. Chandler J,Gurmin T,Robinson N. The place of gold in rapid tests[J]. IVDT,2000,3:27.
    130. Fries B, Walinder G. Absorption of colloidal Au198from peritoneum and pleura and itsinhibition by polyphloretin phosphate[J]. Acta. radiol.1957,48(2):113–122.
    131. Feldherr CM, Marshall JM. The use of colloidal gold for studies of intracellular exchanges inthe ameba Chaos[J]. J. Cell Biol.1962,12:640-645.
    132. Faulk WP, Taylor GM. An immunocolloid method for the electron microscope[J].Immunochemistry.1971,8(11):1081-1083.
    133. Romano EL, Stolinski C, Hughes-Jones NC. An antiglobulin reagent labelled with colloidalgold for use in electron microscopy[J]. Immunochemistry.1974,11(8):521-522.
    134. Geoghegan WD, Scillian JJ, Ackerman GA. The detection of human B lymphocytes by bothlight and electron microscopy utilizing colloidal gold labeled anti-immunoglobulin[J].Immunol. Commun.1978,7(1):1-12.
    135. Fritz P, Hoenes J, Schenk J, Mischlinski A, Grau A, Saal JG, Tuczek HV, Multhaupt H,Pfleiderer G. Color development of immunogold-labelled antibodies for light microscopy[J].Histochemistry.1986,85(3):209-214.
    136. Spielberg F, Kabeya CM, Ryder RW, Kifuani NK, Harris J, Bender TR, Heyward WL, QuinnTC. Field testing and comparative evaluation of rapid, visually read screening assays forantibody to human immunodeficiency virus[J]. Lancet.1989,18(8638):580-584.
    137. Beggs M, Novotny M, Sampedro S, et al. A self-performing chromatographic immunpassayfor the qualitative determination of Hunan chorionic gonadotrophin (HCG) in urine andserum[J]. Clin. Chem.1990,36(4):1084-1085.
    138. Gaiping Zhang, Xuannian Wang, Jifei Yang, et al. Development of animmunochromatographic lateral flow test strip for detection of β-adrenergic agonistClenbuterol resides[J]. Journal of Immunological Methods.2006,312:27-33.
    139. Gaiping Zhang, Xuannian Wang, Aiming Zhi, et al. Development of a lateral flowimmunoassay strip for screening of sulfamonomethoxine residues[J]. Food Additives&Contaminants.2007,25(4):413-423.
    140. Yinli Zhao, Gaiping Zang, Qingtang Liu, et al. Development of a lateral flow colloidal goldimmunoassay strip for the rapid detection of enrofloxacin residues[J]. J. Agric. Food Chem.2008,56(24):12138-12142.
    141. Gaiping Zhang, Qingmei Li, Yanyan Yang, et al. Development of a one-step strip test for thediagnosis of chicken infectious bursal disease[J]. Avian Disease.2005,49:177-181.
    142. Gaiping Zhang, Junqing Guo, Xuannian Wang, et al. Development and evaluation of animmunochromatographic strip for trichinellosis detection[J]. Veterinary Parasitology.2006,137:286-293.
    143. Suzhen Yang, Jifei Yang, Gaiping Zhang, et al. Development of an immunochromatographicstrip for the detection of antibodies against foot-and-mouth disease virus serotype O[J].Journal of Virulogical Methods.2010,25.
    144. Suzhen Yang, Jifei Yang, Xuannian Wang, et al. Development of a peptide-basedimmunochromatographic strip for differentiation of serotype O Foot-and-mouth diseasevirus infected from vaccinated pigs[J]. Journal of Veterinary Diagnosis Investigation.2010,
    03.
    145. Sangeeta Bhaskar, Sarman Singh, Manoj Sharma. A single-step immunochromatographictest for the detection of Entamoeba histolytca antigen in stool samples[J]. Journal ofImmunological Methods.1996,196:193-198.
    146. Kameyama K., Sakoda Y., Tamai K., et al. Development of an immnochromatographic testkit for rapid detection of bovine viral diarrhea virus antigen[J]. Jounal of Virological Methods.2006,138:140-146.
    147. Kang J.H., Kwon D.H., Chung T.W., et al. Development of a simple and rapidimmunochromatographic strip test for diarrhea-causative porcine rotavirus in swine stool[J].Journal of Virological Methods.2007,146:74-79.
    148. Weerawan Sithigorngul, Sombat Rukpratanporn, Nusara Sittidilokratna, et al. A convenientimmunochromatographic test strip for rapid diagnosis of yellow head virus infection inshrimp[J]. Journal of virological methods.2007,140:193-199.
    149. Paisarn Sithigorngul, Sombat Rukpratanporn, Parin Chaivisuthangkura, et al. Simultaneousand rapid detection of white spot syndrome virus and yellow head virus infection in shrimpwith a dual immunochromatographic strip test[J]. Journal of Virological Methods.2011,173:85-91.
    150. Shangjin Cui, Shenghua Zhou, Changmu Chen, Ting Qi, Chaofan Zhang, JinSik Oh. Asimple and rapid immunochromatographic strip test for detecting antibody to porcinereproductive and respiratory syndrome virus[J]. Journal of Virological Methods.2008,152:38-42.
    151. Xuesong Li, Fang Fu, Yuekun Lang, et al. Development and preliminary application of animmunochromatographic strip for rapid detection of infection with porcine reproductive andrespiratory syndrome virus in swine[J]. Journal of Virological Methods.2011,176:46-52.
    152. Shangjin Cui, Changmu Chen, Guangzhi Tong. A simple and rapid immunochromatographicstrip test for monitoring antibodies to H5subtype Avian Influenza Virus[J]. Journal ofVirological Methods.2008,152:102-105.
    153. Eiji Miyagawa, Hiroyuki Kogaki, Yoshiaki Uchida, et al. Development of a novel rapidimmunochromatographic test specific for the H5influenza virus[J]. Journal of VirologicalMethods.2011,173:213-219.
    154. Atsuhiko Wada, Yoshihiro Sakoda, Takayoshi Oyamada, Hiroshi Kida. Development of ahighly sensitive immnochromatographic detection kit for H5influenza virus hemagglutininusing silver amplification[J]. Journal of Virological Methods.2011(Accept).
    155. Yaoming Li, Lidan Hou, Jing Ye, et al. Development of a convenientimmunochromatographic strip for the diagnosis of infection with Japanese encephalitis virusin swine[J]. Journal of Virological Methods.2010,168:51-56.
    156. Hualei Wang, Na Feng, Songtao Yang, et al. A rapid immunochromatographic test strip fordetecting rabies virus antibody[J]. Journal of virological Methods.2010,170:80-85.
    157. Junxing Yang, Qunyi Hua, Huanchun Chen, et al. Development and evaluation of animmunochromatographic strip for the detection of serum antibodies against bluetonguevirus[J]. Journal of Virological Methods.2010,163:68-73.
    158. Porntippa Nawagitgul, Igor Morozov, Steven R. Bolin, et al. Open reading frame2of porcinecircovirus type2encodes a major capsid protein[J]. Journal of General Virology.2000,81:2281-2287.
    159. Jiyong Zhou, Shaobin Shang, Hui Gong, et al. In vitro expression, monoclonal antibody andbioactivity for capsid protein of porcine circovirus type II without nuclear localizationsignal[J]. Journal of Biotechnology.2005,118:201-211.
    160. Zuzana Marcekova, Ivan Psikal, Eva Kosinova, et al. Heterologous expression of full-lengthcapsid protein of porcine circovirus2in Escherichia coli and its potential use for detection ofantibodies[J]. Journal of Virological Methods.2009,162:133-141.
    161. Sergio A. Bucarey, Jorge Noriega, Paulina Reyes, et al. The optimized capsid gene of porcinecircovirus type2expressed in yeast forms virus-like particles and elicits antibody responsein mice fed with recombinant yeast extracts[J]. Vaccine.2009,27:5781-5790.
    162. Roldao A, Mellado M C, Castilho L R, Carrondo M J, Alves P M. Virus-like particles invaccine development[J]. Expert. Rev. Vaccines.2010,9(10):1149-1176.
    163. Bendayan M. Protein A gold electron microscopic immunocytochemistry: methods,applications, and limitations[J]. Journal of Electron Microscope Technique.1984,1:243.
    164. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions[J]. Nature Physical. Science.1976,241(105):20.
    165. Bassab C, Syamal R. Manufacturing high quality goldsol[J]. IVD Technology.2001,8:46-54.
    166. Peng D, Hu S, Hua Y, Xiao Y, Li Z, Wang X, Bi D. Comparison of a new goldimmunochromatographic assay for the detection of antibodies against avian influenza viruswith hemagglutination inhibition and agar gel immunodiffusion assays[J]. Vet. Immunol.Immunopathol.2007,117.17-25.
    167. Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanningelectron microscopy[J]. J. Histochem. Cytochem.1977,25(4):295-305.
    168. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Elective colorimetricdetection of polynucleotides based on the distance-dependent optical properties of goldnanoparticles[J]. Science.1997,277(5329):1078-1081.
    169. Zhang MZ, Wang MZ, Chen ZL, Fang JH, Fang MM, Liu J, Yu XP. Development of acolloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection ofclenbuterol and ractopamine in swine urine[J]. Anal. Bioanal. Chem.2009,395(8):2591-2599.
    170. Shim WB, Dzantiev BB, Eremin SA, Chung DH. One-step simultaneousimmunochromatographic strip test for multianalysis of ochratoxin and zearalenone[J]. J.Microbiol. Biotechnol.2009,19(1):83-92.
    171. Nielsen K, Yu WL, Kelly L, Williams J, Dajer A, Gutierrez E, Ramirez Cruz G, Renteria T,Bermudez R, Algire J. Validation and field assessment of a rapid lateral flow assay fordetection of bovine antibody to Anaplasma marginale[J]. J Immunoassay Immunochem.2009,30(3):313-321.
    172. Gas F, Baus B, Pinto L, Compere C, Tanchou V, Quéméneur E. One step immunochro-matographic assay for the rapid detection of Alexandrium minutum[J]. Biosens. Bioelectron.2010,25(5):1235-1239.
    173. Kim S, Park J K. Development of a test strip reader for a lateral flow membrane-basedimmunochromatographic assay[J]. Biotechnology and Bioprocess Engineering.2004,9(2):127-131.
    174. Lin C S, Wu C Y, Hsu H C, et al. Rapid bio-test strips reader with image processingtechnology[J]. OPTIK.2004,115(8):363-369.
    175. Hansbrough JF, Gadd MA. Temporal analysis of murine lymphocyte subpopulations bymonoclonal antibodies and dual-color flow cytometry after burn and nonburn injury[J].Surgery.1989,106(1):69-80.
    176. Karsten U, Rudolph M. Monoclonal antibodies against tumour-associated antigens: myco-plasma as a major technical obstacle and its possible circumvention by azaserine selectionmedium[J]. Arch. Geschwulstforsch.1985,55(5):305-310.
    177. McMaster WR, Williams AF. Identification of Ia glycoproteins in rat thymus and purificationfrom rat spleen[J]. Eur. J. Immunol.1979,9:426-433.
    178. Lane RD, Crissman RS, Ginn S. High efficiency fusion procedure for producing monoclonalantibodies against weak immunogens[J]. Methods Enzymol.1986,121:183-192.
    179. Zhang GP. Bovine IgG Fc receptors.(Ph D thesis) University of Hertfordshire.1994.53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700