用户名: 密码: 验证码:
猪Gp96N增强PRRSV合成肽疫苗、亚单位疫苗及PCV2灭活疫苗免疫效应的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Gp96是热休克蛋白HSP90家族一员,具有多种免疫学效应,包括提高抗原呈递、刺激抗原呈递细胞(APCs)产生细胞因子、激发机体特异性免疫应答及细胞毒性T细胞(CTL)反应,以及免疫佐剂效应。本论文主要研究猪Gp96N对猪繁殖与呼吸综合征病毒(PRRSV)的B、T细胞表位合成肽疫苗、B细胞表位串联亚单位疫苗以及猪圆环病毒Ⅱ型(PCV2)灭活疫苗的免疫佐剂效应。首先建立了表达猪Gp96N的大肠杆菌和毕赤酵母p.pastoris-X33表达系统,利用纯化的猪Gp96N作为免疫佐剂,在小鼠和猪上,从细胞免疫、体液免疫和天然免疫角度,分析了猪Gp96N对上述三种疫苗的免疫增强效应。研究结果为猪Gp96N作为免疫佐剂在疫苗中的应用提供了科学依据。
     从猪肾脏中提取RNA,采用RT-PCR扩增得到猪Gp96N基因cDNA片段,分别插入载体pET-32a和pPICZαA中,构建出原核表达载体pET-32a/Gp96N和真核表达载体pPICZaA/Gp96N,分别转入大肠杆菌BL21和毕赤酵母p.pastoris-X33中,经抗性筛选获得重组大肠杆菌BL21/pET-32a/Gp96N和重组毕赤酵母p.pastoris-X33/pPICZaA/Gp96N。对表达产物进行纯化,获得猪Gp96N蛋白。
     根据文献报道,筛选出PRRSV的结构蛋白和非结构蛋白的高度保守B细胞和T细胞抗原表位,经化学合成表位多肽,与猪Gp96N联合免疫小鼠和猪。结果发现,猪Gp96N能够增强表位肽诱导的特异性体液免疫和细胞免疫应答;猪Gp96N能显著上调IL-12和TNF-a,下调IL-4和IL-10的表达水平;用PRRSV高致病性毒株JXwn06对免疫猪的攻毒试验结果表明,表位多肽+猪Gp96N (BT-Gp组)免疫猪在攻毒后第7天全部死亡,表位多肽免疫(BT组)猪在第5天全部死亡,而对照组(PBS组和猪Gp96N组)的猪在攻毒后第3天全部死亡。虽然BT-Gp组和BT组的免疫猪均不能抵抗JXwn06的攻击,但比较攻毒后猪体温、临床症状、血清中病毒滴度等发现,在PRRSV攻毒后7天内,猪Gp96N与表位多肽联合使用能在一定程度上缓解猪的临床症状,降低猪血清中的病毒载量。
     将一些PRRSV的结构蛋白和非结构蛋白Nsp2的高度保守B细胞抗原表位通过柔性linker连接,利用重叠PCR技术获得融合基因,并将其重组到原核表达质粒中,经过大量表达和纯化后得到串连多B细胞表位亚单位疫苗(Cpl、Cp2)。以猪Gp96N为免疫佐剂,与Cpl、CP2联合免疫小鼠和猪。经过三次免疫后,采用ELISA检测小鼠和猪血清中的抗体。结果表明,免疫小鼠和猪血清中均可检测到PRRSV特异性抗体,且猪Gp96N能提高抗体滴度3-4倍;从免疫小鼠血清中可检测到中和抗体,但在猪血清中未检测到中和抗体;ELISPOT及淋巴细胞增殖试验结果表明,猪Gp96N能显著提高疫苗诱导的细胞免疫。此外,定量ELISA检测发现,猪Gp96N能显著上调猪血清中IFN-γ, IL-12等Th1型细胞因子以及TNF-α的表达水平,同时能够下调IL-4和IL-10的表达水平。
     用不同剂量的猪Gp96N与PCV2灭活疫苗联合免疫猪,采用ELISA检测免疫前后各组血清中PCV2特异性抗体IgG以及IFN-γ、TNF-α、IL-1β、IL-6等细胞因子含量。结果发现,与单独免疫PCV2灭活苗及商业化的亚单位疫苗相比,猪Gp96N能够提高特异性抗体IgG水平,且随着Gp96N剂量增加,IgG水平呈递增趋势,表明猪Gp96N能够增强PCV2灭活疫苗的体液免疫。此外,与单独免疫疫苗相比,猪Gp96N+PCV2灭活疫苗联合免疫,能提高免疫猪的IFN-γ、TNF-α水平,但对1L-1β、IL-6没有影响。
     综上研究结果表明,猪Gp96N在一定程度上能够增强PRRSV亚单位疫苗的体液和细胞免疫应答,提升PCV2灭活疫苗的体液免疫效果,具有潜在的免疫佐剂效应。
The Gp96, a member of heat shock protein (HSP) family, displays various immunological functions includingstimulating the expression of cytokines by activating the antigen presentation cells in innate immunity, and eliciting an antigen-specific cytotoxic T lymphocyte (CTL) immune response to eliminate pathogens and tumors by facilitating antigen cross-presentation in adaptive immunity, as well as acting as immunological adhuvant. In this study, we focused on the immunological effects of Gp96N on synthetic peptides and subunit vaccinesof porcine reproductive and respiratory syndrome virus (PRRSV) and inactivated vaccine of porcine circovirus type2(PCV2). Porcine Gp96N was first expressed by two expression systems of E.coliBL21/pET-32a/Gp96N and p.pastoris-X33/pPICZaA/Gp96N.Then purified Gp96was used as adjuvant in combination with the three vaccines in mice and piglets in order toanalyze the immunoenhancement effect of porcine Gp96N. Our results provide theoretical basis for the application and development of Gp96in vaccines.
     RNA was extracted from porcine kidney to amplify the cDNA ofGp96gene-encoded N-terminal22-370amino acids (aa) with RT-PCR.The amplified product was cloned into the expression vector pET-32a and pPICZaA, and then the recombinant plasmids were transformed into E.coli/BL21and p.pastoris-X33, respeCtively.The transformants were screened on resistance plates and named E.coliBL21/pET-32a/Gp96N and p.pastoris-X33/pPICZaA/Gp96N.The expressed protein (termed Gp96N) was purified.
     Two B-cell epitopes and seven T-cell epitopes on nonstructural and structural proteins of PRRSV and a Pan DR T-helper cell epitope were synthesized and mixed with the Gp96N as an adjuvant, and then immune responses were evaluated in mice and piglets. The results showed that Gp96N could enhance the humoral and cellular immune effects of PRRSV synthetic peptides. Moreover, it could significantly up-regulate the expression levels of IL-12and TNF-α and down-regulate the levels of IL-4and IL-10. Following challenge with the virulent PRRSV isolate JXwn06, the piglets vaccinated with the mixture of Gp96N and synthenic peptides presented milder clinical symptoms, lower viremia, and less pathological lesions in their lungs compared with the piglets immuned with the peptides alone although all the vaccinated piglets in each group died, suggesting the Gp96N can alleviate the clinical symptoms of challenging piglets in some extent.
     Two multi-epitope subunit vaccines, named as Cpl and Cp2, were designed based on the conserved B cell epitopes of PRRSV proteins.The Gp96N was used as the adjuvant. Immune responses elicited by the different combinations of Cpl/Cp2and Gp96N were examined in mice and piglets. The results indicated that the group of Cpl/Cp2-Gp96N (CG) combination could induce3-4-fold higher titers of Cpl/Cp2-ELISA antibodies and neutralizing antibodies (NAs) in mice than the groups received Cpl/Cp2immunization alone or with Freund's adjuvant. Additionally, Gp96N significantly enhanced the levels of lymphocyte proliferative responses of splenocytes or peripheral blood mononuclear cells from the vaccinated mice or piglets. The production of IFN-y in mice splenocytes, TNF-a, IFN-y, and IL-12in sera of piglets were also remarkably increased with the treatment of Gp96N, while IL-4was reduced by half and IL-10was decreased to an undetectable level. These results suggest that the porcine Gp96N can effectively enhance the innate and adaptive immune responses of Cpl/Cp2with a Thl-type bias. Therefore, the multi-epitope subunit vaccine Cpl/Cp2co-administered with porcine Gp96N might potentially be a promising candidate vaccine for the prevention and control of PRRSV in pigs.
     Mice and piglets were immuned with different doses of Gp96N combined with inactivated vaccine of PCV2. The titer of PC V2-specific-IgG and the expression level of some cytokines in serum including IFN-y,TNF-a,IL-1β and IL-6were tested by ELISA kit. The results showed that Gp96N could significantly increase titers of IgG antibody compared to the groups immunized with the inactivated and commercial vaccines of PCV2alone. In addition, Gp96N could significantly elevate the levels of IFN-y and TNF-a, but had no effects on the levels of IL-1β and IL-6in sera of piglets.
     Taken together, all the findings indicate that Gp96N can enhance humoral and celluar responses of epitope peptide and subunit vaccines of PRRSV, and improve humoral immunological effect on inactivated vaccine of PCV2in some extent, suggesting that Gp96shares the potential immune effect for vaccines as an adjuvant.
引文
[1]Vogel,F.R.. Adjuvants in perspective.Development in Biological Standardization,1998,92:241-248.
    [2]Degen,W.G., Jansen,T., Schijns,V.E. Vaccine adjuvant technology:from mechanistic concepts topractical applications.Exp Rev Vaccines,2003,2:327-35.
    [3]Mccluskie,M.J., Weeratna,R.D.Novel adjuvant systems. Curr Drug Targets Infect Disord,2001,1: 263-271.
    [4]Gupta,R.K.,Relyveld,E.H.,Lindblad,E.B.,et al. Adjuvants-a balance between toxicity and adjuvanticity.Vaccine,1993, 11(3):293-306.
    [5]李丽杰.中链脂肪酸甘油三脂作为免疫佐剂的免疫效果的研究和应用:[博士学位论文].青岛:中国海洋大学,2013.
    [6]Strober,W., Murray,P.J., Kitani,A., et al. Signalling pathways and molecular interactions of NODI and NOD2. Nat Rev Immunol,2006,6:9-20.
    [7]Underhill,D.M., Ozinsky,A..Toll-like receptors:key mediators of microbe detection.Curr Opin Immunol,2002,14:103-110.
    [8]Yip,H.C, Karulin,A.Y., Tary-Lehmann,M., et al. Adjuvant-guidedtype-landtype-2 immunity: infectious/noninfectious dichotomy defines the class of response.JImmunol,1999,162(7):3942-3949.
    [9]Ouyang,P.H., Wang,L.H., Tao,M.H., et al. Co-delivery of GM-CSFgene enhances the immuneresponses of hepatitis C viral coreprotein-expressing DNA vaccine:Role of dendritic cells. JMed Virol,2002, 66(3):320-328.
    [10]Meier,W.A.. et al. Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus. Vetlmmunol Immunopathol, 2004,102(3):299-314.
    [11]Schoenhaut,D.S.,Chua,A.O.,Wolitzky,A.G. et al. Cloning and expression of murine IL-12. J Immunol, 1992,148(11):433-3440.
    [12]Gupta,R.K.,Siber,G.R. Comparison of adjuvant activities of aluminium phosphate,calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals,1994,22(1):53-63.
    [13]Duverger,A., Jackson,R.J., van Ginkel,F.W., et al. Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J Immunol,2006, 176:1776-1783.
    [14]Hou,W., Wu,Y., Sun,S., et al. Pertussis toxin enhances Th1 responses by stimulation of dendritic cells. J Immunol,2003,170:1728-1736.
    [15]Hornquist,E., Lycke,N.. Cholera toxin adjuvant greatly promotes antigen priming of T cells. Eur J Immunol,1993,23:2136-2143.
    [16]Talmadge,J.E., Chirigos,M.A. Comparison of immunomodulatory and immunotherapeutic properties of biologic response modifiers.Springer Seminars in Immunopathology,1985,8(4):429-433.
    [17]Morein,B., Bengtsson,K.L.. Immunomodulation by iscoms,immune stimulating complexes. Methods, 1999,19(1):94-102.
    [18]Akahashi,H., Takeshita,T., Morein,B., et al. Induction of CD8+cytotoxic T cells by immunizationwith purified HIV-1 envelope protein in ISCOMs. Nature,1990,334:873-875.
    [19]Harrison,W.T. Some observations on the use of alum precipitated diphtheria toxoid. J PublicHealth Nations Health,1935,25(3):298-300.
    [20]Morein,B., Villacre,E.M., Sjolander,A., et al. Novel adjuvants and vaccinedelivery systems. Vet Immunol Immunopathol,1996,54(1-4):373-384.
    [21]Coombes,A.G., Lavelle,E.C., Davis,S.S. Biodegradable lamellar particles of poly(latide) induce sustained immune responses to a single does of adsorbed protein. Vaccine,1999,17(19):2410-2422.
    [22]Vogel,F.R. Adjuvants in perspective.Development in Biological Standardization,1998,92:241-248.
    [23]Cox,J.C., Coulter,A.R. Advances in Adjuvant Technology and Application. Boca Raton:CRC Press, 1992:49-112.
    [24]Li,H.F., Nookala,S., Fabio,R.E., et al. Aluminum hydroxide adjuvant activate caspase-1 and induce IL-1 beta and IL-18release. J Immunol,2007,178(8):5271-5276.
    [25]Eisenbarth,S.C., Colegio,O.R., Connor,W., et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. J Nature,2008,453(7198):1122-1126.
    [26]李娜,周伟芳,刘慧敏,等.疫苗佐剂的研究现状和发展趋势.中国预防兽医学报,2013,35(1):81-86.
    [27]Baylor,N.W., Egan,W., Richman,P. Aluminum salts in vaccines:US perspective. Vaccine,2002, 20(Supp13):18-23.
    [28]Guy,B. The perfect mix:recent progress in adjuvant research. Nat Rev Microbiol,2007,5(7): 505-517.
    [29]Freund,J.,Casals,J., Hosmer,E.P. Sensitization and antibody formation after injection of turbecle bacili and paraffin oil. Proc Soc Exp Biol Med,1937,37:509-513.
    [30]Jansen,T.,Hofmans,M.P.,Theelen,M.J., et al. Structure-activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody response. Vaccine,2005,23(8):1053-1060.
    [31]Podda,A. The adjuvanted influenza vaccines with novel adjuvants:experience with the MF59-adjuvanted vaccine. Vaccine,2001,19(17-19):2673-2680.
    [32]Granoff,D.M., McHugh,Y.E., Raff,H.V., et al. MF59 adjuvant enhancesantibody responses of infant baboons immunized with Haemophilus influenza type b and Neisseriameningitidis group C oligosaccharide-CRM197 conjugate vaccine. Infect Immun,1997,65(5):1710-1715.
    [33]Traquina,P., Morandi,M., Contorni,M., et al. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis,1996,174(6):1168-1175.
    [34]谢国秀.多糖类提取物及MF59佐剂对流感灭活疫苗免疫增强的作用研究:[硕士学位论文].湖南:湖南师范大学,2008.
    [35]Audran,R., Cachat,M., Lurati,F., et al. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun,2005,73(12):8017-8026.
    [36]Strassburg,M.A., Greenland,S., Sorvillo,F.J., et al.Influenza in the elderly:report of an outbreak and a review of vaccine effectiveness reports. Vaccine,1986,4(1):38-44.
    [37]Banzhoff,A., Nacci,P., Podda,A. A new MF59-adjuvanted influenza vaccine enhances the immune response in the elderly with chronic diseases:results from an immunogenicity meta-analysis. Gerontology,2003,49(3):177-184.
    [38]Stephenson,I., Nicholson,K.G., Colegate,A., et al. Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population.Vaccine,2003, 21(15):1687-1693.
    [39]Ciudice,D.G. An MF59-adjuvanted inactivated influenza vaccine containg A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strainA/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine,2006,24(16):3063-3065.
    [40]Atma,R.L. Safety and immunogenicity of nonadjuvanted and MF59-adjuvanted influenza A/H9N2 vaccine preparations. Clin Infect Dis,2006,43(9):1135-1142.
    [41]Heineman,T.C. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine,1999,17(22):2769-2678.
    [42]Borkowsky,W.. Lymphoproliferative response to recombinant HIV-1 envelope antigens in neonates and infants receiving gp120 vaccines.AIDS Clinical Trial Group 230 Collaborators. J Infect Dis,2008, 181(3):890-896.
    [43]Mcfarland,E.J.. Human immunodeficiency virus type 1 (HIV-1) gp120-specific antibodies in neonates receiving an HIV-1 recombinant gp120 vaccine. J Infect Dis,2001,184(10):1331-1335.
    [44]Aguilar,J.C, Rodriguez,E.G. Vaccine adjuvants revisited. Vaccine,2007,25(19):3752-3762.
    [45]Hilleman,M.R.Critical appraisal of emulsified oil adjuvants applied to viral vaccines. Prog Med Virol, 1966,8:131-182.
    [46]Salk,J.E.,Laurent,A.M.,Bailey,M.L.Direction of research on vaccination against influenza; new studies with immunologic adjuvants. Am J Public Health,1951,41(6):669-677.
    [47]Edelman,R.. Vaccine adjuvants. Rev Infect Dis,1980,2(3):370-383.
    [48]Page,W.. Long-term follow up of army recruits immunized with Freund's incomplete adjuvanted vaccine. Vaccine Res,1993,2:141-149.
    [49]Aucouturier,J.,Dupuis,L.,Deville,S., et al. Montanide ISA 720 and 51:a newgeneration of water in oil emulsions as adjuvants for human vaccines.Expert Rev Vaccines,2002,1(1):111-118.
    [50]刘中原,李延平.细菌脂多糖的生物活性剂作用机制.医学综述,2010,1(16):166-168.
    [51]崔宏波,凌秋,李延平.细菌多糖治疗白细胞减少症的实验研究.哈尔滨医科大学学报,2002,36(2):123-125.
    [52]赵娟,刘扬,冯琳,等.细菌脂多糖诱导巨噬细胞NO信号分子释放的研究进展.黑龙江畜牧兽医,2011,2(3):30-32.
    [53]Kundi,M.. New hepatitis B vaccine formulated with an improved adjuvant system. J Expert Rev Vaccines,2007,6(2):133-140.
    [54]Geurtsen,J., Banus,H.A., Gremmer,E.R., et al. Lipopolysaccharideanalogs improve efficacy of acellular pertussis vaccine andreduce type I hypersensitivity in mice. J Clin Vaccine Immunol,2007, 14(7):821-829.
    [55]Bernstein,D.I., Aoki,F.Y., Tyring,S.K.,et al. Safety and immunogenicityof glycoprotein D-adjuvant genital herpes vaccine. J Clin Infect Dis,2005,40(9):1271-1281.
    [56]谢成彬,王跃,陈淑惠,等.双歧杆菌完整肽聚糖对重组乙肝表面抗原的佐剂效应.中华微生物学和免疫学杂志,2006,26(6):521-524.
    [57]双杰,张七斤,张和平,等.乳酸杆菌肽聚糖对鸡新城疫油苗和禽流感油苗的免疫增强的作用研究.试验研究,2008,2(6):41-43.
    [58]苏广伟.乳酸杆菌肽聚糖免疫调节作用极其机制初探:[硕士学位论文].无锡:江南大学,2006.
    [59]任学毅,金勇丰,朱成刚,等.霍乱毒素B亚单位的研究进展.中国药学杂志,2003,38(12):896-899.
    [60]Spander,B.D.. Structure and function of cholera toxin and related Escherichia coli heat-lable enterotoxin. J Microl Rew,1992,56:622.
    [61]Coombes,A.G., Lavelle,E.C., Davis,S.S.. Biodegradable lamellar particles of poly(lactide) induce sustained immune responses to a single dose ofadsorbed protein. Vaccine, 1999,17(19):2014-2422
    [62]Fang,J.Y., Fang,C.L., Liu,C.H., et al. Lipid nanoparticles as vehicles for topical psoralen delivery:Solid lipid nanoparticles(SLN)versus nanostructured lipid carriers(NLC). Eur J Pharm Biopharm,2008,70(2):633-640.
    [63]Wang,J.J., Sung,K.,Hu, O.Y.P., et al. YSubmicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. J Control Release,2006,115:140-149.
    [64]陈亮.以霍乱毒素B亚基为佐剂开发AO型口蹄疫双加粘膜多肽疫苗的研究:[硕士学位论文].厦门:厦门大学.细胞生物学,2007.
    [65]廖文勇,盛长忠,金永杰,等.CpG寡核苷酸链作为新型佐剂的研究进展.中国医药生物技术,2007,2(4):299-232.
    [66]范媛,谢光武,黎晓敏.免疫佐剂CpG-DNA的研究进展.中国动物保健,2009,10:44-49.
    [67]Krieg,A.M., Yi,A.K., Matson,S., et al. CpG motifs in bacterial DNA trigger direct B-cell activation.Nature,1995,374(6522):546-549.
    [68]Klinman,D.M., Yi,A.K., Beaucage,S.L., et al. CpG motifs present in bacterialDNA rapidly induce lymphocytes to secrete IL-6,IL-12,and IFN-y. Proc Natl Acad Sci USA,1996,93(7):2879-2883.
    [69]Hemmi,H., Takeuchi,O., Kawai,T., et al.A Toll-like receptor recognizes bacterial DNA. Nature,2000, 408(6813):740-745.
    [70]Ishii,K.J., Takeshita,F., Gursel.I. et al. Potential role of phosphatidylinositol 3 kinase,rather than DNA-dependent protein kinase,in CpG DNA-induced immune activation. J Exp Med,2002, 196(2):269-274.
    [71]Takeshita,F., Leifer,C.A., Gursel,I. et al. Cutting edge:Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol,2001,167(7):3555-3558.
    [72]Halpern,M.D., Kurlander,R.J., Pisetsky,D.S., et al. Bacterial-DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor-necrosisfactor-alpha. Cell Immunol,1996, 167(1):72-78.
    [73]Klinman,D.M.. Therapeutic applications of CpG-containing oligodeoxynucleotides.Antisense Nucleic Acid Drug Dev,1998,8(2):181-184.
    [74]Klinman,D.M.,Barnhart,K.M., Conover,J..CpG motifs as immune adjuvants. Vaccine,1999, 17(1):19-25.
    [75]Davis,H.L., Weeranta,R., Waldschmidt,T.J., et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol,1998, 160(2):870-876.
    [76]MoIdoveanu,Z.,Love,H.,L.,Huang,W.Q., et al.CpG DNA,a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine,1998,16(11-12):1216-1224.
    [77]Kovarik,J., Bozzotti,P., Love,H.L., et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol,1999,162(3):1611-1617.
    [78]Brazolot,B., Millan,C.L.,Weeratna,R., et al. CpG DNA can inducestrong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice.Proc Natl Acad Sci USA,1998,95(26):15553-15558.
    [79]Eastcott,J.W., Holmberg,CJ., Dewhirst,F.E., et al.Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine,2001, 19(13-14):1636-1642.
    [80]Klinman,D.M.,Xie,H.,Little,S.F., et al. CpG oligonucleotides improve the protective immune response induced by the anthrax vaccination of rhesus macaques.Vaccine,2004,22(21-22):2881-2886.
    [81]Branda,R.F., Moore,A.L., Lafayette,A.R. et al. Amplification of antibody production by phosphorothioate oligodeoxynucleotides. J Lab Clin Med,1996,128(3):329-338.
    [82]Payette,P.J., Ma,X., Weeratna,R.D. et al. Testing of CpG-optimized protein and DNA vaccine against the hepatitis B virus in chimpanzees for immunogenicity and protection from challenge. Intervirology,2006,49(3):144-151.
    [83]Jones,T.R., Obaldia,N., Gramzinski,R.A. et al. Synthetic oligodeoxynucleotides containg CpGmotifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine,1999, 17(23-24):3065-3071.
    [84]Allison,A.G., Gregoriadis,G.. Liposomes as immunological adjuvants. Nature,1974,252 (5480):252.
    [85]Kager,L., Potschger,U., Bielack,S.. Review of mifamurtide in the treatment of patients with osteosarcoma. J Ther Clin Manag,2010,6:279-286.
    [86]Rosalva,R.C.,Teresa,C.O., Itzel,D.R., et al. Cationic liposomes bearing IL-2 on their external surface induced mice leukocytes to kill human cervical cancer cells in vitro, and significantlyreduced tumor burden in immunodepressed mice. J Drug targeting,2010,18(9):1-7.
    [87]易学瑞,祖萍,袁有成,等.脂质体佐剂对增强HBsAg免疫原性的作用.上海免疫学杂志,2002, 22 (6):395-399.
    [88]陆书华,杨兴光.脂质体制剂在医疗中的应用现状.中国病原生物学杂志,2010,12(5):953-955.
    [89]Morein,B., Sundquist,B., Hoglund,S., et al. A novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature,1984,308(5958):457-460.
    [90]杨志刚,陈阿琴,孙红祥,等.免疫刺激复合物ISCOM疫苗的研究进展.中国兽医杂志,2005,39(2):24-28.
    [91]Morein,B., Bengtsson,K.L.. Functional aspects of iscoms. Immunol Cell Biol,1998,76(4):295-299.
    [92]Iosef, C., Van,N., Trang,J., et al. Systemic and int est inal antibody secreting cell responses and prot ection in gnot obiotic pigs immunized orally with att enuated Wa human rot avirus and Wa 2/6-rot avirus-like particles associat ed with immunost imulating complexes. Vaccine,2002,20(13-14) 1741-1753.
    [93]Nguyen,T.V., Iosef,C., Jeong,K., et al. Prot ection and ant ibodyresponses t o oral priming by at tenuat ed human rotavirus f ollowed by oral boost ing with 2/6-rot avirus-like part icles w ith immunost imulating complexes in gnot obiot ic pigs. Vaccine,2003,21 (25-26):4059-4070.
    [94]Hu,K.F., Lovgren,B.K., Morein,B.. Immunost imulat ing complexes(ISCOMs) for nasal vaccination. Adv Drug Deliv Rev,2001,51(1):149-159.
    [95]Sanders,M.T., Brown,L.E. ISCOM-based vaccine:the second decade. J Immunol Cell Biol,2005, 83(2):119-128.
    [96]李建荣,于连,黄耀伟,等.免疫刺激复合物ISCOM介导的传染性法氏囊病毒多聚蛋白基因免疫的研究.病毒学报,2001,17(4):341-344.
    [97]Crouch,C.F., Daly,J., Hannant,D., et al. Immune responses and protectiveefficacy in ponies immunised with an equine influenza ISCOM vaccine containing an"American lineage"H3N8 virus.Vaccine,2004, 23(3):418-425.
    [98]Mumford,J.A., Jessett,D.M, Rollinson,E.A., et al. Duration of protective efficacy of equine influenza immunostimulating complex/tetanus vaccines. Vet Rec,1994,134(7):158-162.
    [99]Mumford,J.A., Jessett,D., Dunleavy,U., et al. Antigenicity and immunogenicity of experiment
    equine influenza ISCOM vaccines.Vaccine,1994,12(9):85-863.
    [100]O'Hagan,D.T.. Microparticles as oral vaccines.Boca Raton:CRC Press,1994:175-205.
    [101]Okada,H., Toguchi,H.. Biodegradable microspheres in drug delivery. Crit Rev Ther Drug Carrier Syst, 1995,12(1):1-99.
    [102]Eldridge,J.H., Staas,J.K., Meulbroek,J.A., et al. Biodegradable and biocompatible poly (dl-lactide-co-glycolide)microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun,1991,59(9):2978-2986.
    [103]Singh,M., Singh,A., Talwar,G.P.. Controlled delivery of diphtheria toxoid using biodegradable poly(d,l-lactide)microcapsules. Pharm Res,1991,8(7):958-961.
    [104]Lutsiak,M.E., Robinson,D.R., Coester,C., et al. Analysis of poly(d,l-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res,2002, 19(10):1480-1487.
    [105]O'Hagan,D.T., Rahman,D., McGee,J.P., et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology,1991,73(2):239-242.
    [106]张文彬,贾文祥.缓释微球疫苗的研究进展.微生物学免疫学进展.1998,26(2):76-78.
    [107]Maria,J.A.. Biodegradable m icrosph eres as cont rolledreleasetet anu s tox iod deivery sys t ems.Vaccine.1994,12(4):299-306.
    [108]贾成成.纳米微球新型佐剂对HPVL1五聚体蛋白的包埋及其免疫效应的研究:[硕士学位论文].广州:华南理工大学,2013.
    [109]Maloy,K.J.,Donachie,A.M., O'Hagan,D.T., et al. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) in polymicroparticles. Immunology,1994,81(4):661-667.
    [110]Nixon,D.F., Hioe,C, Chen,P.D., et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine,1996,14(16):1523-1530.
    [111]Kanke,M., Sniecinski.I., Deluca,P.P.. Interaction of microspheres with blood constitutes: uptake of polystyrene spheres by monocytes and granulocytes and effect on immune responsiveness of lymphocytes. J Parenter Sci Technol,1983,37(6):210-217.
    [112]Tabata,Y., Ikada,Y.. Macrophage phagocytosis of biodegradable microspheres composed of l-lactic acid/glycolic acid homo-and copolymers. J Biomed Mater Res,1988,22(10):837-858
    [113]Tabata,Y., Ikada,Y.. Phagocytosis of polymer microspheres by macrophages. Adv Polym Sci,1990, 94:107-141.
    [114]Weert,M., Hennink,W.E., Jiskoot,W.. Protein instability in poly(lactic-coglycolic acid) microparticles. Pharm Res,2000,17(10):1159-1167.
    [115]Ahlers,J.D., Belyakov,I.M., Berzofsky,J.A.. Cytokine,chemokine,and costimulatory moleculemodulation to enhance efficacy of HIV vaccines. Curr Mol Med,2003,3(3):285-301.
    [116]Janeway,C.A., Travers,P., Walport,M. et al. Immunobiology:the immune system inhealth and disease. New York:Garland Publishing,2001:510-715.
    [117]孙敬,洪杰华,郑世民.IL-12及其免疫调节作用.动物医学进展,2013,31(2):111-114.
    [118]Watford,W.T., Moriguchi,M., Morin,A., et al. T he biology of IL-12:coordinating innate and adaptive immune response. J Cytokine Growth Factor Rev,2003,14(5):361-368.
    [119]孙卫民,王惠琴.细胞因子研究方法学.北京:人民卫生出版社,1999:573.
    [120]周光炎.免疫学原理.上海:上海科学技术文献出版社,2000:87-88.
    [121]邢同京,章廉.Th类细胞极化群体的基础与临床.北京:军事医学科学出版社,2002:11-12.
    [122]王一平.细胞因子对PCV2-Cap蛋白免疫增强作用及Cap与FMDV-Vpl共表达产物免疫原性鉴定:[硕士学位论文].北京:中国农业科学院,2013.
    [123]Warren,T.L.,Weiner,G.J.Uses of granulocyte-macrophagecolony-stimulating factor in Vaccine development. CurrOpin Hematol,2000,7(3):68-173.
    [124]宋勤叶,温立斌,杨汉春,等猪 GM-CSF基因对猪圆环病毒2型DNA疫苗诱导仔猪免疫反应的调节作用.中国预防兽医学报.2007,29(2):121-125.
    [125]贾启恒,温洁霞,王利月,等.犬GM-CSF基因对犬细小病毒VP2DNA疫苗的免疫增强作用. 中国兽医学报,2013,33(5):664-668.
    [126]Ronnberg,B., Fekadu,M., Morein,B.. Adjuvant activity of non-toxic Quillaja saponaria Molinacomponents for use in ISCOM matrix. Vaccine,1995,13(14):1375-1382.
    [127]Ramon,G.. Sur I'augmentation anormale de 1'antitoxine chez les chevaux producteurs de serumantidiptherique. Bull Soc Centr Med Vet,1925,101:227-234.
    [128]Thibault,P.A..Immunite antitoxique influenceaddition diverses substances antigene (anatoxines diphteroque et tetanique). CR Soc Biol,1936,121(121)718-721.
    [129]Tadokoro.C.E., Macedo,M.S., Ubrahamsohn,I.A., et al. Saponin adjuvant primes for a dominantinterleukin-10 production to ovalbumin and to Trypanosoma cruzi antigen. Immunology, 1996,89:368.
    [130]James,M., Burns,J.R., Partrici,D.D., et al. Protective immunity against plasmodium yoelii malaria induced by immunization with pariculate blood-stage antigens.Infection and Immunity,1997, 65(8):3138-3145.
    [131]Newman,M.J., Wu,J.Y., Gardner,B.H., et al. Saponin adjuvant induction of ovablum-specific CD8+cytotoxic T lymphocyte-response. J Immunol,1992,148:2357.
    [132]Wu,J.Y., Gardner,B.H., Murphy,C.I., et al. Saponin adjuvant enhancement of antigen-specificimmune responses to an experimental HIV-1 Vaccine. J Immunol,1992,148(5): 1519-1525.
    [133]Espinet,R.G..Nuevo tipo de vacuna antiaftosa a complejo glucovirico. Gac Vet,1995,74(74) :1-13.
    [134]何宏虎,田仁位.免疫佐剂研究进展简介.天津畜牧兽医,1996,13(2):13.
    [135]谢印乾.PRRS蜂胶座机灭活疫苗的免疫效力研究:[硕士学位论文].西安:西北农林科技大学.2007.
    [136]邓旻,田燕,史亦谦.中药多糖的免疫调节作用研究进展.医学研究杂志,2007,36(4):26-28.
    [137]王道福.中药多糖免疫调节作用的研究进展.实用医药杂志.2007,24(2):235-237.
    [138]马建民,向双云,王振玲.中药免疫佐剂的研究进展.中国兽药杂志,2007,10(41):44-46.
    [139]柳钟勋,左增艳,林赴田,等ASDPASDE3作为乙型肝炎基因工程疫苗新型复合佐剂的效果及安全性.病毒学报,1992,8(4):309-313.
    [140]斯崇文,田庚善,巫善明.三种疗法对慢性乙型肝炎的疗效观察.中华内科志,1997,36(10):661-664.
    [141]王晓红,罗声香.香菇多糖联合乙肝疫苗治疗慢性乙肝疗效观察.实用中西医结合杂志,1998,11(2):1105.
    [142]高艳艳.黄芪多糖增强疫苗免疫效力及机理研究:[硕士学位论文].北京:中国农业科学院,2006.
    [143]张珂,翁群芳,付昊昊.昆虫热激蛋白90的研究进展.生物技术通报,2014,5(2):15-19.
    [144]陈才伟,贾晓娟,刘文军.Gp96蛋白的免疫学及其临床应用的研究进展.生物工程学报,2011,27(5):704-711.
    [145]Berwin, B., Rosser,M.F.,Brinker,K.G. et al.Transfer of GRP94 (Gp96)-associated peptides onto endosomal MHC class I molecules. Traffic,2002,3(5):358-366.
    [146]Liu,B., Dai,J., Zheng,H., et al. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci USA,2003,100(26):15824-15829.
    [147]Noriko,S., Tetsuya,Y.,Yuichi,S., et al. Involvement of heat-shockprotein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochemical and Biophysical Research Communications,2003,300(4):847-852.
    [148]Prodromou,C., Roe,S.M, O'Brien,R., et al. Identification and structural characterization of the ATP/ADP-binding site in the HsP90 molecular chaperone. Cell,1997,90(1)65-75.
    [149]Pakravan,P., Soleimanjahi,H., Hassan, Z.M.. GP96 C-terminal improves Her2/neu DNA vaccine. Gene Med,2010,12(4):345-353.
    [150]Tamura,Y., Peng,P., Liu,K., et al. Immunotherapy of tumors with antologus tumor-derived heat shock protein preparations. Science,1997,278(5335):117-120.
    [151]Linderoth,N.A., Popowicz,A., Sastry,S.. Identification of the peptide-binding sit in the heat shock chaperone/tumor rejection antigen Gp96 (Grp94). J Biol Chem,2000,275(8):5472-5477.
    [152]Pearl,L.H., Prodromou,C.. Structure and mechanism of the HsP90 molecular chaperone Machinery. Annual Review of Biochemistry,2006,75:271-294.
    [153]Young,J.C., Obermann,W.M., Hartl,F.U. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. Biological Chemistry,1998,273:18007-18010.
    [154]Bolhassani,A., Rafati,S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines,2008,7(8):1185-1199.
    [155]Dollins,D.E.,Warren,J.J., Immormino,R.M., et al. Structures of GRP94-nucleotidecomplexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell,2007,28(1):41-56.
    [156]Ding,F.X, Wang,F., Lu,Y.M., et al. Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology,2009,49(5):1492-1502.
    [157]Li,Y.,Song,H., Li,J., et al. Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol,2011,151(4):343-349.
    [158]徐亚星,王赛锋,张小俊,等.热休克蛋白gp96免疫学功能及其在主动免疫治疗肿瘤及传染病中的应用.生物工程学报,2012,28(3):261-266.
    [159]Arnold-Schild,D., Hanau,D., Spehner,D., et al. Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol,1999,162:3757-3760.
    [160]Leroux,R.L, Borkowski,A.,Vanwolleghem,T., et al.Antigen sparing and cross-reactive immunity with an adjuvanted rH5Nl prototype pandemic influenza vaccine:a randomized controlled trial. Lancet.2007,370(9587):580-589.
    [161]Pietro,A., Tosti,G., Ferrucci,P.F., et al. Heat shock protein peptide complex 96-based vaccine in melanoma:how far we are, how far we can get. Hum Vaccin,2009,5(11):
    [162]Beg,A.A.. Endogenous ligands of Toll-like receptors:implications for regulating inflammatory and immune responses. Trends Immunol,2002,23(11):509-512.
    [163]Dai,J., Liu,B., Caudill,M.M., et al. Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumor-specific T cell memory. Cancer Immunol,2003,3:1-11.
    [164]Suto,R., Srivastava,P.K.. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science,1995,269(5230):1585-1588.
    [165]Zheng,H., Dai,J., Stoilova,D., et al. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol,2001,167(12):6731-6735.
    [166]Radsak,M.P., Hilf,N.,Singh,J.H., et al. The heat shock protein gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood,2003,101(7):2810-2815.
    [167]Basu,S., Binder,R.J., Suto,R., et al. Necrotic but not apoptotic cell death releases heat shock proteins, whichdeliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immnol,2000,12(11):1539-1546.
    [168]Li,H., Zhou,M., Han,J., et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments.J Immunol,2005,174(1):195-204.
    [169]Banerjee,.P.P, Vinay,D.S,Mathew,A., et al. Evidence that glycoprotein 96(B2), a stress protein, functions as a Th2-specific costimulatory molecule. J Immunol,2002,169(7):3507-3518.
    [170]Wolfram,L.,Fischbeck,A.,Frey,I.. et al.Regulation of the expression of chaperonegp96 in macrophages and dendritic cells. PLoS One,2013,18(10):76350.
    [171]Gao,Y.Z., Fan,H.X., Qiu,L.P., et al. IFN-a-induced gp96 upregulation negatively affects the anti-HBV efficiency of IFN-a. Acta Microbiologica Sinica,2013,53(8):867-74.
    [172]Wills,A.D.,Malkovasky,M..Heat shock proteins, tumor immunogenicity and antigen presentation:an integrated view. Immunol Today,2000,21(3):129-132.
    [173]吴嘉仪,李高鹏,罗葆明.热休克蛋白在肝细胞癌形成、增殖、复发、转移及抗肿瘤免疫中的作用研究.岭南现代临床外科,2013,13(4):367-370.
    [174]Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide Complexes. J Current Oncology Reports,2005,7(2):104-108.
    [175]Basu S,. Binder R J,. Suto R,. et al.. Necrotic but not apoptotic cell death realease heat shock proteins,which deliver a partial maturation signal to dendritic cells and antivate the NF-kappa B pathway. J Int Immunol,12(11):1539-1546.
    [176]Zhang,Y., Helke,K.L.,Coelho,S.G,.et al. Essential role of the molecular chaperonegp96in regulating melanogenesis. Pigment Cell Melanoma Res,2014,27(1):82-9.
    [177]Morales,C. Rachidi,S., Hong,F., et al. Immune chaperone gp96 drives the contributions of macrophages to inflammatory colon tumorigenesis. Cancer Res,2014,74(2):446-59.
    [178]Widenmeyer,M., Shebzukhov,Y., Haen,S.P., et al. Analysis of tomor antigen-specific T cells and anibodies in cancer patients tre ated with radiofrequency ablation. J Int Cancer, 2011,128(11):2653-2662.
    [179]Lau,R.,Wang,F., Jeffery,G., et al. Phase 1 trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother,2001,24(1):66-78.
    [180]Belli,F., Testori,A., Rivoltini,L., et al. Vaccination of metastatic melanoma patient with autologous tumor-derived heat shock protein gp96-peptide complexes:clinical and immunologic findings. J Clin Oncol,2002,20(20):4169-4180.
    [181]Tosti,G., di Pietro,A., Ferrucci,P.F., et al. HSPPC-96 vaccine in metastatic melanoma patients:from the state of the art to a possible future. Expert Rev Vaccines,2009,8(11):1513-1526.
    [182]Menoret,A., Chandawarkar,R.Y., Srivastava,P.K.. Natural autoantibodies against heat-shock proteins hsp70 and gp96:implications for immunotherapy using heat-shock proteins. Immunology, 2000,101(3):364-370.
    [183]Li,Z., Dai,J., Zhen, H., et al. An integrated view of the roles and mechanisms of heat shock protein gp96-peptide complex in eliciting immune response. Front Biosci,2002,7:d731-d751.
    [184]Liu,Z., Li,X.H,, Qiu,L.P., et al. Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol,2009,39(11):3110-31120.
    [185]Gong,X.Y., Gai,W.W., Xu,J.Q.,et al. Glycoprotein 96-mediated presentation of human immunodeficiency virus type 1 (HIV-1)-specific human leukocyte antigen class I-restricted peptide an humoral immune responses to HIV-1 p24. Clin Vaccine Immunol,2009,16(11):1595-1600.
    [186]张天一,王华,张春辉,等.Gp96-肽复合物体外诱导CTL反应极其抗肿瘤效应研究.肿瘤,2005,25(6)566-590.
    [187]Ziigel,U., Sponaas,A.M., Neckermann,J., et al. Gp96-peptide vaccination of mice against intracellular bacteria. Infect Immunol,2001,69(6),4164-4167.
    [188]Zhao,B-,Wang,Y.,Wu,B.,et al. Placenta-derivedgp96as a multivalent prophylactic cancer vaccine. Sci Rep.2013,(3):1947-53.
    [189]Crane,C.A., Han,S.J.,Ahn,B.,et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res.2013,19(1):205-14.
    [190]Chandawarkar,R.Y.,Wagh,M.S., Srivastava,P.K.. The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med,1999,189(9):1437-1442.
    [191]Li,T.J., Chen,J.R., Hu,B.S., et al. Contruction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in pichia pastoris. World J Micro Biotech,2008, 24:867-874.
    [192]Li,Y., Song,H.L., Li,J., et al. Hansenula polymorpha expressed heat shock protein gp96 exerts protent T cell activation activity as adjuvant. J Biotech,2011,151:343-349.
    [193]Li,K., Gao,H.L., Gao,L., et al. Recombinant gp90 protein expressed in pichia pastoris induces a protective immune response against reticulo endotheliosis virus in chickens. Vaccine,2012, (45):6142-6151.
    [194]Meng,X.J.. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development. Vet Microbiol,2000,74(4):309-329.
    [195]Opriessnig,T.. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV. J Virol,2002,76(23):11837-11844.
    [196]Lager, K.M., Mengeling,W.L., Wesley,R.D.. Strain predominance following exposure of vaccinated and naive pregnant gilts to multiple strains of porcine reproductive and respiratory syndrome virus. Can J Vet Res,2003,67(2):121-127.
    [197]Mengeling,W.L.. Strain specificity of the immune response of pigs following vaccination with various strains of porcine reproductive and respiratory syndrome virus. Vet Microbiol,2003, 93(1):13-24.
    [198]Huang,Y.W., Meng,X.J.. Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res,2010, 154(1-2):141-149.
    [199]Strohmaier,K.R., Franze, Adam,K.H.. Location and characterization of the antigenic portion of the FMDV immunizing protein. J Gen Virol,1982.59(2):295-306.
    [200]Mateu,E., Diaz,I.. The challenge of PRRS immunology. Vet J,2008,177(3):345-351.
    [201]Bautista, E.M., Molitor,T.W.. Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine. Viral Immunol,1997,10(2):83-94.
    [202]Lopez,F.L.. Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection. Virus Res,1999,64(1):33-42.
    [203]Christianson,W.T.. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Can J Vet Res,1993,57(4):262-258.
    [204]Yoon,K.J.. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral Immunol,1996,9(1):51-63.
    [205]Yoon,K.J..Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection. Vet Microbiol,1997, 55(1-4):277-287.
    [206]Mahalingam,S., Lidbury,B.A.. Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci USA,2002,99(21):13819-13824.
    [207]Oliphant,T.. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol,2006.80(24):12149-12159.
    [208]Delputte,P.L.. Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages. Vet Immunol Immunopathol,2004,102(3):179-188.
    [209]Mateu,E., Diaz,I.. The challenge of PRRS immunology. Vet J,2008.177(3):345-351.
    [210]Lopez,O.J.. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent. Clin Vaccine Immunol,2007,14(3):269-275.
    [211]Chen,C., Jia,X.J., Liu,W.J.. Sheng Wu Gong Cheng Xue Bao,2011,27(5):704-711.
    [212]Li,Y.. Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol,2011,151(4):343-349.
    [213]Liu,Z.. Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol,2009, 39(11):3110-3120.
    [214]Li,H.T.. Enhancement of humoral immune responses to HBsAg by heat shock protein gp96 and its N-terminal fragment in mice. World J Gastroenterol,2005,11(19):2858-2863.
    [215]Yan,J.. Enhancing the potency of HBV DNA vaccines using fusion genes of HBV-specific antigens and the N-terminal fragment of gp96. J Gene Med,2007.9(2):107-121.
    [216]Wang,S.. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice. Vaccine,2011. 29(37):6342-6351.
    [217]Charerntantanakul,W., Kasinrerk,W.. Plasmids expressing interleukin-10 short hairpin RNA mediate IL-10 knockdown and enhance tumor necrosis factor alpha and interferon gamma expressions in response to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol,2012, 146(2):159-168.
    [218]Chung,H.K.,Chae,C.. Expression of interleukin-10 and interleukin-12 in piglets experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol,2003, 129(2-3):205-212.
    [219]Royaee, A.R.. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Vet Immunol Immunopathol,2004,102(3):199-216.
    [220]Franke,E.D.. Pan DR binding sequence provides T-cell help for induction of protective antibodies against Plasmodium yoelii sporozoites. Vaccine,1999,17(9-10):1201-1205.
    [221]Wiederkehr,D.D., Sydler,T., Buerqi,E.. et al. A new emerging genotype subgroup within PCV2b dominates the PMWS epizooty in Switzerland. J Vet Microbiol,2009,136(1-2):27-35.
    [222]Marion,K., Matthias,R., Matthias,E.. et al. Reduction of PMWS-assocated clinical signs and co-infections by vaccination against PCV2. Vaccine,2008,26(27-28):3443-3451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700